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Abstract

The work described in this report is motivated by the desire to test the expressive possibilities of
action language C+. The Causal Calculator (CCALC) is a system that answers queries about action
domains described in a fragment of that language. The Zoo World and the Traffic World have been
proposed by Erik Sandewall in his Logic Modelling Workshop—an environment for communicating
axiomatizations of action domains of nontrivial size.

The Zoo World consists of several cages and the exterior, gates between them, and animals of
several species, including humans. Actions in this domain include moving within and between cages,
opening and closing gates, and mounting and riding animals. The Traffic World includes vehicles
moving continuously between road crossings subject to a number of restrictions, such as speed
limits and keeping a fixed safety distance away from other vehicles on the road. We show how to
represent the two domains in the input language of CCALC, and how to use CCALC to test these
representations.
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1. Introduction
The work described in this report is motivated by the desire to test the expressive
possibilities of action language C+ introduced in the companion paper [6]. Specifically, we
are interested in the expressiveness of the “definite” fragment of C+ that is implemented in
the Causal Calculator (CCALC).

Language C+ is a recent addition to the family of formal languages for describing
actions, which started with STRIPS [4] and ADL [12]. It is an extension of action
language C defined in [5]. The Causal Calculator uses propositional satisfiability solvers
to answer queries about action domains described in C+. Its original version was written
by Norman McCain as part of his dissertation [11], and now it is being maintained by
Texas Action Group at Austin.1 It can be downloaded from its home page http://www.cs.
utexas.edu/users/tag/ccalc/. CCALC has been applied to several challenge problems in the
theory of commonsense knowledge [2,8–10] and to the formalization of norm-governed
computational systems [1].

The two test domains discussed in this paper, the Zoo World and the Traffic World,
have been proposed by Erik Sandewall in his Logic Modelling Workshop (LMW)2—an
environment for communicating axiomatizations of action domains of nontrivial size. The
Zoo World consists of several cages and the exterior, gates between them, and animals
of several species, including humans. Actions in this domain include moving within and
between cages, opening and closing gates, and mounting and riding animals. The Traffic
World includes vehicles moving continuously between road crossings subject to a number
of restrictions, such as speed limits and keeping a fixed safety distance away from other
vehicles on the road. More details can be found in the next section, which contains
extensive quotes from the LMW descriptions of both domains.

In accordance with our goal, we have attempted to translate these descriptions into the
input language of CCALC as closely as we could, including the elements that look some-
what arbitrary. One such element in the LMW description of the Zoo World has to do with
the “occupancy restriction”—there can be at most one large animal in each position. On the
one hand, LMW specifies that this restriction holds even dynamically: a concurrent move,
where one animal moves into a position at the same time as another animal moves out of
it, is only possible if at least one of the animals is small. On the other hand, the specifica-
tion tells us that an attempt to mount an animal fails if the animal moves at the same time,
in which case “the result of the action is that the human moves to the position where the
animal was”. Thus a failed mount is an exception to the occupancy restriction. In view of
this fact, the occupancy restriction has to be formalized as a “defeasible” dynamic law. It
is interesting to note that expressing such laws in C+ calls for the use of “nonexogenous
action constants”—a new feature of this language, not available in its ancestor C .

After a brief introduction to the input language of CCALC in Section 3, we present and
discuss a formalization of the Zoo World in Section 4 and a formalization of the Traffic

1 http://www.cs.utexas.edu/users/tag.
2 http://www.ida.liu.se/ext/etai/lmw/.
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World in Section 5. These two main parts of the paper do not logically depend on each

other and can be read in any order.

2. The logic modelling workshop descriptions

2.1. The description of the Zoo World

The following is the LMW description of the Zoo World that we want to formalize:

The ZOO is a scenario world containing the main ingredients of a classical zoo: cages,
animals in the cages, gates between two cages as well as gates between a cage and the
exterior. In the ZOO world there are animals of several species, including humans. Ac-
tions in the world may include movement within and between cages, opening and clos-
ing gates, feeding the animals, one animal killing and eating another, riding animals, etc.

. . . A finite surface area consists of a large number of positions. For example, one
may let each position be a square, so that the entire area is like a checkerboard. How-
ever, the exact shape of the positions is not supposed to be characterized, and the number
of neighbors of each position is left open, except that each position must have at least
one neighbor. The neighbor relation is symmetric, of course, and the transitive closure
of the neighbor relation reaches all positions.

One designated location is called the outside; all other locations are called cages. . .
The distinction between a ‘large’ number of positions and a ‘small’ number of locations
suggests in particular that locations can be individually named under a unique names
assumption, that every location is thus named, but on the other hand that at most a few
of the positions are named, and that the number of positions is left unspecified in every
scenario.

Each position is included in exactly one location. Informally, each cage as well as
the outside consists of a set of positions, viewed for example as tiles on the floor. Two
locations are neighbors if there is one position in each that are neighbors.

The scenario also contains a small number (in the same sense as above) of gates.
Informally, these are to be thought of as gates that can be opened and closed, and that
allow passage between a cage and the outside, or between two cages. Formally, each
gate is associated with exactly two positions that are said to be at its sides, and these
positions must belong to different locations.

. . . Some designated animals will need to be named, but the set of animals in a sce-
nario may be large, and it may not be possible to know them all or to name them all.
Animals may be born and may die off over time.

Each animal belongs to exactly one of a number of species. All the species are named
and explicitly known. The membership of an animal in a species does not change over
time. The species human is always defined, and there is at least one human-species
animal in each scenario.

Each animal also has the boolean properties large and adult. Some species are large,
some are not. Adult members of large species are large animals; all other animals are
small (non-large).
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Each animal has a position at each point in time. Two large animals cannot occupy

the same position, except if one of them rides on the other (see below).

. . . Animals can move. In one unit of time, an animal can move to one of the positions
adjacent to its present one, or stay in the position where it is. Moves to non-adjacent
positions are never possible. Movement is only possible to positions within the same
location (for example, within the same cage), and between those two positions that are
to the side of the same gate, but only provided the gate is open. Several animals can
move at the same time.

Movement actions must also not violate the occupancy restriction: at most one large
animal in each position. This restriction also holds within the duration of moves, in the
sense that a concurrent move where animal A moves into a position at the same time as
animal B moves out of it, is only possible if at least one of A and B is a small animal.

This means in particular that two large animals cannot pass through a gate at the
same time (neither in the same direction nor opposite directions).

. . . The following actions can be performed by animals . . .
• Move To Position. Can be performed by any animal, under the restrictions described

above, plus the restriction that a human riding an animal cannot perform the Move-
To-Position action (compare below).

• Open Gate. Can be performed by a human when it is located in a position to the side
of the gate, and has the effect that the gate is then open until the next time a Close
Gate action is performed.

• Close Gate. Can be performed by a human when it is located in a position to the side
of the gate, and has the effect that the gate is closed until the next time an Open Gate
action is performed.

• Mount Animal. Can be performed by a human mounting a large animal, when the
human is in a position adjacent to the position of the animal. The action fails if the
animal moves at the same time, and in this case the result of the action is that the
human moves to the position where the animal was. If successful, the action results
in a state where the human rides the animal. This condition holds until the human
performs a Getoff action or the animal performs a Throwoff action.
When a human rides an animal, the human cannot perform the Move action, and his
position is the same as the animal’s position while the animal moves.

• Getoff Animal to Position. Can be performed by a human riding an animal, to a posi-
tion adjacent to the animal’s present position provided that the animal does not move
at the same time. Fails if the animal moves, and in this case the rider stays on the
animal.

• Throwoff. Can be performed by an animal ridden by a human, and results in the hu-
man no longer riding the animal and ending in a position adjacent to the animal’s
present position. The action is nondeterministic since the rider may end up in any
such position. If the resultant position is occupied by another large animal then the
human will result in riding that animal instead.

2.2. The description of the Traffic World

The following is the LMW description of the Traffic World that we want to formal-
ize:
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The TRAFFIC scenario world is intended to capture simple hybrid phenomena: vehicles

moving continuously with well defined velocities along roads with well defined lengths,
respecting speed limits and other restrictions on the vehicle’s behaviors.

The landscape in the TRAFFIC Scenario World uses the following two types:
• Nodes, which can be thought of as road crossings without any particular structure (no

lanes, etc.).
• Segments, which can be thought of as road segments each of which connects two

nodes.
The set of nodes and the set of segments are both considered as fully known, and all
nodes and segments can be assigned individual names.

Each segment has exactly one start node and exactly one end node. It also has a
length, which is a real number (or rational number, if preferred). This is all the structure
there is.

. . . The activity structure in the TRAFFIC world uses only one sort:
• Cars, which are intuitively thought of as driving along the arcs in the TRAFFIC

landscape structure.
Each car has a position at each point in time. The position is indicated as a pair

consisting of the segment where the car is located, and the distance travelled along the
segment. The distance travelled is a number between 0 and the segment’s length.

Each car has a top speed, and each road segment has a speed limit. The actual velocity
of a car at each point in time is the maximum velocity allowed by the following three
conditions:
• The speed limit of the road segment where it is driving.
• Its own top speed.
• Surrounding traffic restrictions.
Cars drive at piecewise constant velocity, and can change velocity discontinuously.
(A more refined variant, TRAFFIC2, will require cars to change their velocity
continuously, and assumes piecewise constant acceleration/deceleration.) When a car
arrives at a node (“intersection”) then it may continue on any segment that connects to
that node, except the one it is arriving at.

Cars can drive in both “directions” along a segment, that is, they can move both from
the start node to the end node, and vice versa.

Cars cannot overtake—if two cars go in the same direction on the same road segment,
and one catches up with the other, then it has to stay behind at least until they arrive to
the next node, where possibly the second car can choose another direction onwards. Cars
going in opposite directions on the same segment can meet without difficulty, however.

The surrounding traffic restriction says that a car is never allowed to be closer than a
fixed safety distance varsigma to the car in front of it, and it may never get itself into a
situation where that could happen. This means, first of all, that when it gets to a distance
of varsigma to a car moving in front of it on the same segment and in the same direction,
then it must reduce speed to match the speed of the car in front of it. Also when getting
close to a node (= an intersection), a car must reduce its speed in a way that takes into
consideration all other cars that are just approaching or leaving the same node.
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3. Language of the Causal Calculator
To understand the rest of this paper on the technical level, the reader will need some
knowledge of the syntax and semantics of C+. This information can be found, for instance,
in Sections 1–2.3, 3.1–3.3 and 4.1–4.3 of [6].

A CCALC input file consists of declarations, causal laws in the sense of C+ (or,
more often, schemas with metavariables whose instances are causal laws), queries (for
instance, planning problems) and comments. A brief, informal introduction to the language
of CCALC is given in [6, Section 6]. Here are the features of CCALC which are not
mentioned in that introduction but are used in our formalizations of the Zoo World and
Traffic World.

1. The ASCII representations of some symbols used in the language of CCALC are
summarized in the following chart:

Symbol ¬ �= ∧ ∨ ⊃ ≡ ⊥ �
ASCII representation - \= & ++ ->> <-> false true

Encoding multiple conjunctions and disjunctions by ASCII characters can be illustrated by
this example:

constraint
∨

P1

neighbor(P,P1)

is written in CCALC as

constraint [\/P1 | neighbor(P,P1)].
2. The symbol >> between the names of two sorts expresses that the second is a subsort

of the first, so that every object that belongs to the second sort belongs also to the first. For
instance, the declarations

:- sorts
location >> cage.

:- objects
cageA :: cage.

tell us that cageA is both a cage and a location.
3. If a sort name is composed by adding +none to the name of a previously declared

sort, this means that the set of objects of that sort consists of the objects of the previously
declared sort and the auxiliary symbol none. These “+none-sorts” are used for declaring
partial valued fluent constants and are not explicitly declared as sorts.

For instance, assume that the objects of sort node are a and b:

:- objects
a, b :: node.
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Then the objects of sort node+none will be a, b and none. This sort is useful when we

want to talk about the node at which a car currently is,

:- constants
node(car) :: sdFluent(node+none).

which may be none if the car is in the middle of a segment.
4. In the example above, note that the fluent constant node is declared as an

sdFluent. This stands for “statically determined fluent constant” [6, Sections 4.2, 5.5].
Their values are determined by static causal laws only and are not assumed exogenous in
the initial state.

5. Rigid constants [6, Section 4.6] can be declared as in the following example.

:- constants
sp(animal) :: species.

Function constant sp represents an operation that turns an animal into a species. The value
of the constant is not affected by any event.

6. The arguments of constants are supposed to be objects; when a constant has another
constant as an argument, the whole expression is understood as an abbreviation. For
instance, the schema

nonexecutable move(ANML,pos(ANML))

(“an animal cannot move into its current position”) has the same meaning as

nonexecutable move(ANML,P) if pos(ANML)=P

where P is a position variable.
7. Macros can be declared as in the following example.

:- macros
position(#1,#2,#3) ->

(segment(#1)=(#2) & distance(#1)=(#3)).

(#1,#2, . . . are parameters for macros.) Upon reading an input file, CCALC replaces every
occurrence of a pattern in the left-hand side of -> with the corresponding instance of the
right-hand side.

8. In the process of grounding, some parts of a schema turn into 0-place connectives �,
⊥. For instance, grounding turns G=G1 in the schema

constraint sides(P,P1,G) & sides(P,P1,G1) ->> G=G1.

into � when G and G1 are instantiated by the same object, and into ⊥ otherwise.
9. A comment starts with a %.
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4. The Zoo World
We present our formalization of the Zoo World along with detailed comments in
Section 4.1, discuss how closely it corresponds to the informal description in Section 4.2,
and show how we used CCALC to test it in Section 4.3.

4.1. Formalization

Our formalization of the Zoo World shown below is also available online.3

We distinguish between the general assumptions about the Zoo World quoted in
Section 2.1 above, and specific details, such as the “topography” of the zoo (including
the number of cages and gates), names of species other than human, and so forth.
We formalize here the general assumptions only, and leave these details unspecified.
A description of all the specifics has to be added to our formalization to get an input file
accepted by CCALC. The specific topography used in our computational experiments is
described in Section 4.3.

The annotation (lmw) found in many comments below refers to the Logic Modelling
Workshop description of the Zoo World quoted in Section 2.1.

%%% ZOO LANDSCAPE %%%

:- sorts
position;
location >> cage;
gate.

:- variables
P,P1 :: position;
L :: location;
C :: cage;
G,G1 :: gate.

:- constants
% Each position is included in exactly one location (lmw)

loc(position) :: location;
neighbor(position,position) :: boolean;
side1(gate) :: position;
side2(gate) :: position;
opened(gate) :: inertialFluent.

default -neighbor(P,P1).

3 http://www.cs.utexas.edu/users/tag/ccalc/zoo/.
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% Each position must have at least one neighbor (lmw)

constraint [\/P1 | neighbor(P,P1)].

% The neighbor relation is irreflexive
constraint -neighbor(P,P).

% The neighbor relation is symmetric (lmw)
constraint neighbor(P,P1) ->> neighbor(P1,P).

:- objects
% One designated location is called the outside (lmw)

outside :: location.

% All other locations are cages (lmw)
constraint [\/C | L=C] where L\=outside.

(A where clause at the end of a schematic expression instructs CCALC to limit
grounding to the values of the variables that satisfy the given test. This contributes to
efficient grounding.)

% Two positions are the sides of a gate
:- constants

sides(position,position,gate) :: boolean.

caused sides(P,P1,G) if side1(G)=P & side2(G)=P1.
caused sides(P,P1,G) if side1(G)=P1 & side2(G)=P.
default -sides(P,P1,G).

% Each gate is associated with exactly two positions that
% are said to be at its sides, and these positions must
% belong to different locations (lmw)
constraint loc(side1(G))\=loc(side2(G)).

(As in 6 of Section 3, the argument of loc is supposed to be an object, not a constant.
Here side1(G), side2(G) are understood to be the value of each constant.)

% No two gates have the same two sides
constraint sides(P,P1,G) & sides(P,P1,G1) ->> G=G1.

% Two positions are neighbors if they are the sides of a
% gate
constraint sides(P,P1,G) ->> neighbor(P,P1).

% Two positions in different locations are neighbors only if
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% they are the two sides of a gate

constraint loc(P)\=loc(P1) & neighbor(P,P1)

->> [\/G | sides(P,P1,G)].

%%% ANIMALS %%%

:- sorts
animal >> human;
species.

:- variables
ANML,ANML1 :: animal;
H,H1 :: human;
SP :: species.

:- objects
% One of the species is human (lmw)

humanSpecies :: species.

:- constants
% Each animal belongs to exactly one of a number of species.
% (lmw) Membership of an animal in a species does not
% change over time (lmw)

sp(animal) :: species;
% Some species are large, some are not (lmw)

largeSpecies(species) :: boolean;
% Each animal has a position at each point in time (lmw)

pos(animal) :: inertialFluent(position);

% Boolean property of animals (lmw)
adult(animal) :: boolean;

mounted(human,animal) :: inertialFluent.

default largeSpecies(SP).
default adult(ANML).

% Humans are a species called humanSpecies
caused sp(H)=humanSpecies.
constraint sp(ANML)=humanSpecies ->> [\/H | ANML=H].

:- macros
% Adult members of large species are large animals (lmw)

large(#1) -> adult(#1) & largeSpecies(sp(#1)).
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% There is at least one human-species animal in each

% scenario (lmw)
constraint [\/H | true].

% Two large animals cannot occupy the same position,
% except if one of them rides on the other (lmw)
constraint pos(ANML)=pos(ANML1) & large(ANML) & large(ANML1)

->> [\/H | (H=ANML & mounted(H,ANML1)) ++
(H=ANML1 & mounted(H,ANML))] where ANML@<ANML1.

(@< is a fixed total order.)

%%% CHANGING POSITION %%%

:- constants
accessible(position,position) :: sdFluent.

caused accessible(P,P1)
if neighbor(P,P1) & -[\/G | sides(P,P1,G) & -opened(G)].

default -accessible(P,P1).

% In one unit of time, an animal can move to one of the
% positions accessible from its present one, or stay in the
% position where it is. Moves to non-accessible positions
% are never possible (lmw)
constraint pos(ANML)\=P1

after pos(ANML)=P & -(P=P1 ++ accessible(P,P1)).

(The proposition constraint F after G is defined in [6, Appendix B] as an abbreviation
for caused ⊥ if ¬F after G.)

% A concurrent move where animal A moves into a position at
% the same time as animal B moves out of it, is only
% possible if at least one of A and B is a small animal.
% (lmw) Exceptions for (failed) mount actions and certain
% occurrences of throwOff -- when thrown human ends up
% where another large animal was (see the first two
% propositions in ’%%% ACTIONS %%%’)
constraint -(pos(ANML)=P & pos(ANML1)\=P)

after pos(ANML)\=P & pos(ANML1)=P
& large(ANML) & large(ANML1) unless ab(ANML).
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(Appending the unless clause makes the causal law defeasible; under certain

exceptional circumstances, this assertion is retracted. See [6, Section 4.3].)

% Two large animals cannot pass through a gate at the same
% time (neither in the same direction nor opposite
% directions) (lmw)
constraint -(pos(ANML)=P1 & pos(ANML1)=P1)

after pos(ANML)=P & pos(ANML1)=P & sides(P,P1,G)
& large(ANML) & large(ANML1) where ANML@<ANML1.

constraint -(pos(ANML)=P & pos(ANML1)=P1)
after pos(ANML)=P1 & pos(ANML1)=P & sides(P,P1,G)

& large(ANML) & large(ANML1) where ANML@<ANML1.

% While a gate is closing, an animal cannot pass through it
constraint -opened(G) ->> pos(ANML)\=P1

after pos(ANML)=P & sides(P,P1,G) & opened(G).

%%% ACTIONS %%%

:- variables
A,A1 :: exogenousAction.

:- constants
move(animal,position),
open(human,gate),
close(human,gate),
mount(human,animal),
getOff(human,animal,position),
throwOff(animal,human) :: exogenousAction.

:- macros
% Action #1 is executed by animal #2

doneBy(#1,#2) ->
([\/P | #1==move(#2,P)] ++
[\/G | #1==open(#2,G) ++ #1==close(#2,G)] ++
[\/ANML | #1==mount(#2,ANML)] ++
[\/ANML \/P | #1==getOff(#2,ANML,P)] ++
[\/H | #1==throwOff(#2,H)]).

(Different from “=” used in an atom, “==” is a comparison operator.)

% A failed mount is not subject to the usual, rather strict,
% movement restriction on large animals
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mount(H,ANML) causes ab(H).
% If the position a large human is thrown into was
% previously occupied by another large animal, the usual
% movement restriction doesn’t apply
throwOff(ANML,H) causes ab(H).

(The two propositions above describe exceptional circumstances for the movement
restriction between large animals.)

% Every animal can execute only one action at a time
nonexecutable A & A1 if doneBy(A,ANML1) & doneBy(A1,ANML1)

where A@<A1.

% Direct effect of move action
move(ANML,P) causes pos(ANML)=P.

% An animal can’t move to the position where it is now
nonexecutable move(ANML,pos(ANML)).

% A human riding an animal cannot perform the move action
% (lmw)
nonexecutable move(H,P) if mounted(H,ANML).

% Effect of opening a gate
open(H,G) causes opened(G).

% A human cannot open a gate if he is not located at
% a position to the side of the gate (lmw)
nonexecutable open(H,G)

if -(pos(H)=side1(G) ++ pos(H)=side2(G)).

% A human cannot open a gate if he is mounted on an animal
nonexecutable open(H,G) if mounted(H,ANML).

% A human cannot open a gate if it is already opened
nonexecutable open(H,G) if opened(G).

% Effect of closing a gate
close(H,G) causes -opened(G).

% A human cannot close a gate if he is not located at
% a position to the side of the gate (lmw)
nonexecutable close(H,G)
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if -(pos(H)=side1(G) ++ pos(H)=side2(G)).
% A human cannot close a gate if he is mounted on an animal
nonexecutable close(H,G) if mounted(H,ANML).

% A human cannot close a gate if it is already closed
nonexecutable close(H,G) if -opened(G).

% When a human rides an animal, his position is the same as
% the animal’s position while the animal moves (lmw)
caused pos(H)=P if mounted(H,ANML) & pos(ANML)=P.

% If a human tries to mount an animal that doesn’t change
% position, mounting is successful
caused mounted(H,ANML) if pos(ANML)=P

after pos(ANML)=P & mount(H,ANML).

% The action fails if the animal changes position, and in
% this case the result of the action is that the human ends
% up in the position where the animal was (lmw)
caused pos(H)=P if pos(ANML)\=P

after pos(ANML)=P & mount(H,ANML).

% A human already mounted on some animal cannot attempt to
% mount
nonexecutable mount(H,ANML) if mounted(H,ANML1).

% A human can only be mounted on a large animal
constraint mounted(H,ANML) ->> large(ANML).

% A human cannot attempt to mount a small animal (lmw)
nonexecutable mount(H,ANML) if -large(ANML).

% A large human cannot be mounted on a human
constraint mounted(H,H1) ->> -large(H).

% A large human cannot attempt to mount a human
nonexecutable mount(H,H1) if large(H).

% An animal can be mounted by at most one human at a time
constraint -(mounted(H,ANML) & mounted(H1,ANML)) where H@<H1.

% A human cannot attempt to mount an animal already mounted
% by a human
nonexecutable mount(H,ANML) if mounted(H1,ANML).
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% A human cannot be mounted on a human who is mounted

constraint -(mounted(H,H1) & mounted(H1,ANML)).

% A human cannot attempt to mount an animal if the human is
% already mounted by a human
nonexecutable mount(H,ANML) if mounted(H1,H).

% A human cannot attempt to mount a human who is mounted
nonexecutable mount(H,H1) if mounted(H1,ANML).

% The getOff action is successful provided that the animal
% does not move at the same time. It fails if the animal
% moves, and in this case the rider stays on the animal
% (lmw)
caused pos(H)=P if pos(ANML)=P1

after pos(ANML)=P1 & getOff(H,ANML,P).

caused -mounted(H,ANML) if pos(ANML)=P1
after pos(ANML)=P1 & getOff(H,ANML,P).

% The action cannot be performed by a human not riding
% an animal (lmw)
nonexecutable getOff(H,ANML,P) if -mounted(H,ANML).

% A human cannot attempt to getOff to a position that is not
% accessible from the current position
nonexecutable getOff(H,ANML,P) if -accessible(pos(ANML),P).

% The throwOff action results in the human no longer riding
% the animal and ending in a position adjacent to the
% animal’s present position. It is nondeterministic since
% the rider may end up in any position adjacent to
% the animal’s present position (lmw)
throwOff(ANML,H) may cause pos(H)=P.
throwOff(ANML,H) causes -mounted(H,ANML).

% If the resultant position is occupied by another large
% animal then the human will result in riding that animal
% instead (lmw)
caused mounted(H,ANML1) if pos(H)=pos(ANML1) & large(ANML1)

after throwOff(ANML,H) where H\=ANML1.

% The action cannot be performed by an animal not ridden by
% a human (lmw)
nonexecutable throwOff(ANML,H) if -mounted(H,ANML).
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% The actions getOff and throwOff cannot be executed

% concurrently
nonexecutable getOff(H,ANML,P) & throwOff(ANML,H).

4.2. Discussion

Some of the requirements quoted in Section 2.1 refer to the difference between “large
numbers” (such as the number of positions) and “small numbers” (such as the number of
locations), and between objects that can be “individually named” or “known” and objects
that cannot. It seems to be impossible to address these distinctions in the language of
CCALC, which does not have quantifiers—they are simulated by multiple conjunctions
and disjunctions. In a language like this, all objects are “individually named”.

The specification quoted in Section 2.1 mentions the transitive closure of the neighbor
relation (it is required to reach all positions). The causal rules mimicking the usual logic
programming definition of the transitive closure do not provide a correct characterization
of this concept [6, Section 7.2], and we did not include a formalization of the requirement
that refers to transitive closure.4

The specification mentions also several kinds of events that are not described in any
detail—feeding animals, killing and eating animals, being born and dying. It also mentions,
in passing, the possibility of “vehicles” moving about the zoo. We did not include any of
these in our representation.

The specification defines two locations to be neighbors if there is one position in each
that are neighbors. This extension of the neighbor relation to locations is not mentioned
anywhere else, and we did not include it in our formalization. But it would be easy to
represent this extension, either by a statically determined fluent constant or by a macro.
For instance, we can write:

:- macros
neighbor1(#1,#2) ->

((#1)\=(#2) & [\/P \/P1 | loc(P)=(#1) & loc(P1)=(#2)
& neighbor(P,P1)]).

With those exceptions, we tried to follow the specification closely. Nonetheless, we
imposed a number of additional commonsense stipulations, such as the following.

• The neighbor relation is irreflexive.
• Positions in different locations are neighbors only if they are sides of the same gate.
• No two gates have the same sides.
• An animal cannot move to a position it’s already in.
• A human cannot open (close) a gate that is already opened (closed).

4 Transitive closure can be characterized by a causal theory that is not definite in the sense of [6, Section 2.6],
or by a definite causal theory using some auxiliary constants.
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We also added a number of action preconditions that might conceivably be relaxed, among

them are the following.

• Each animal can execute at most one action at a time.
• A mounted human cannot open or close a gate.
• A human cannot (attempt to) mount a human who is in turn already mounted on an

animal.

In fact, we added many such preconditions for the mount action. (After all, it is a zoo, not
a circus.) Such action preconditions are accompanied by corresponding state constraints
when needed, prohibiting, for instance, states in which several humans are mounted on a
single animal.

We also allow only small humans (that is, children) to mount humans. This restriction
may seem reasonable enough in itself, but we in particular wanted to rule out the possibility
that two humans could attempt to mount one another, simultaneously, with the result that
they would wind up switching positions. This illustrates a fairly general kind of difficulty.
Another example is this: We do not allow an animal to throw off a rider at the same time
that the rider is getting off. Intuitively, it might be the case that the animal intends to throw
the rider off at precisely the moment that the rider intends to dismount, but, according to our
formalization, only one of those two actions can in fact occur—either the animal manages
to throw the rider off, or the rider manages to dismount. There is an even simpler example
of this kind: intuitively, two or more animals may intend to move to a given position at a
given time. Our formalization reflects the idea that, despite their intentions, at most one of
them can succeed! In such cases, we do not attempt to describe more complicated scenarios
in which the agents may, for instance, “partially” succeed in executing the actions they
intend to execute.

The Zoo specification explicitly leaves it to the axiomatizer to decide the following:
What happens when a rider is thrown to a position that another large animal is either
entering or leaving? We have chosen to have the thrown rider end up riding that large
animal only if it is entering the position. Otherwise, the thrown rider ends up (unmounted)
in a position just vacated by the animal. This latter possibility is an exception to one of the
general restrictions on movement, which we discuss next.

There are several general laws of movement in the specification of the Zoo World.

• At most one large animal in each position, unless one is mounted on the other.
• In a single time step, an animal’s movements cannot take it further than the positions

neighboring its current position.
• Animals cannot pass through closed gates.
• Two large animals cannot pass through a gate at the same time.
• A large animal cannot enter a position just vacated by a large animal.

We stipulate in addition that no animal can pass through a closing gate. It may be interesting
to note that these restrictions are expressed, in our formalization, without mention of
actions. Instead, we write dynamic laws that mention only fluent constants. The many
action preconditions that they imply can then be left implicit.
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Fig. 1. A zoo landscape.

There are exceptions to the general law that a large animal cannot enter a position just
vacated by a large animal. The first exception is clearly required by the specification—a
failed mount results in the human occupying the position vacated by the animal that was
unsuccessfully mounted. The other exception is the one mentioned previously, involving a
rider who is thrown into a position just vacated by a large animal. To accommodate these
exceptions to the general law, we make the related proposition defeasible by appending
the unless clause. The abnormality constant used in the clause is false by default, but is
made true whenever these exceptional circumstances arise.5 Under such circumstances, a
large animal can enter a position just vacated by another large animal despite the movement
restriction between large animals.

4.3. Testing

To test our formalization, we gave CCALC queries and checked that its answers matched
our expectations. Queries related to action domains and their CCALC representations are
discussed in [6, Sections 3.3, 6]. Besides the representation of the Zoo World shown above,
the CCALC input included the description of a specific landscape. The zoo we used for
testing is small. It includes 2 locations—a cage and the outside—that are separated by a
gate and consist of 4 positions each (Fig. 1). All positions within the cage are each other’s
neighbors, as well as all outside positions. The input also included information about the
specific animals mentioned in each query.

(1) The gate is closed, and Homer, an adult human, is in position 6. His goal is to mount
Jumbo, an adult elephant, which is in position 3 and is not going to move around. How
many steps are required to achieve this goal?

This question can be represented by the following CCALC query:

:- query
maxstep :: 3..4;
0: -opened(gateAO),

pos(homer)=6;
maxstep: mounted(homer,jumbo);
T=<maxstep ->> (T: pos(jumbo)=3).

5 Test 4 (Section 4.3) shows the cases when this exception happens.
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(In the last line, T is a variable for the initial segment of integers—numbers from 0 to 10.)

CCALC has determined that the length of the shortest solution is 4. It found a solution

in which Homer walks to the gate, opens it, walks into the cage, and then mounts
Jumbo.

(2) The gate was closed, and Homer was outside; after two steps, he was inside. What can
we say about his initial position?

To answer this question, we asked CCALC to find all models satisfying the conditions

0: -opened(gateAO),
loc(pos(homer))=outside;

2: loc(pos(homer))=cageA.

CCALC has determined that Homer’s only possible initial position is 7. Homer opened the
gate and moved to position 4.

(3) Initially Homer was outside, and Snoopy, a dog, was inside the cage, with the gate
closed. Is it possible that they switched their locations in one step? in two steps? If the
elephant Jumbo is substituted for Snoopy, will the answers be the same?

What is essential here is that small animals, unlike elephants, are not affected by
the occupancy restriction (Section 2.1); Homer and Snoopy can pass through the gate
simultaneously. In response to the query

:- query
maxstep :: 1..2;
0: -opened(gateAO),

loc(pos(homer))=outside,
loc(pos(snoopy))=cageA;

maxstep:
loc(pos(homer))=cageA,
loc(pos(snoopy))=outside.

CCALC reported that the length of the shortest solution is 2. In case of Jumbo, CCALC

surprised us by discovering that the length of the shortest solution is 4, and not 5 as we had
thought. Homer opens the gate, mounts Jumbo (on the other side), dismounts (by either
being thrown off or getting off), following which Jumbo moves out of the cage. When
we told CCALC that Homer never mounts Jumbo, CCALC agreed that the length of the
shortest possible sequence of actions is 5.

(4) Can a large animal move into a position at the same time as another large animal moves
out of it?
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The answer is yes. Although the occupancy restriction applies within the duration of

moves (Section 2.1), this scenario is possible in the process of a failed attempt of the first
animal to mount the second. There is also the possibility that the first animal is thrown off
into the position just vacated by the second.

To investigate this, we asked CCALC whether the following is possible:

[\/P | (0: -(pos(homer)=P)) &
(1: pos(homer)=P) &
(0: pos(jumbo)=P) &
(1: -(pos(jumbo)=P))];

0: mounted(homer,silver).

(Silver is a horse.) CCALC found a solution in which Silver throws off Homer. Then we
replaced the last line of the query with

0: [/\ANML| -throwOff(ANML,homer)].

CCALC found a solution in which Homer tried to mount Jumbo. On the other hand,
a horse cannot possibly move into a position at the same time as an elephant moves
out of it. Accordingly, CCALC determined that there is no model satisfying the
condition

[\/P | (0: -(pos(silver)=P)) &
(1: pos(silver)=P) &
(0: pos(jumbo)=P) &
(1: -(pos(jumbo)=P))].

(5) In position 1, Jumbo throws off Homer. What are the possible positions of Jumbo and
Homer after that?

This question illustrates the nondeterministic character of the Throwoff action (Sec-
tion 2.1). The given assumption can be represented by the condition

0: pos(jumbo)=1,
throwOff(jumbo,homer).

According to CCALC, in the models satisfying this condition Homer is thrown into
positions 2, 3 and 4; Jumbo always stays in position 1.

5. The Traffic World

In this section we present our formalization of the Traffic World. We start with
discussing the possibility of describing continuous motion using integer arithmetic in
Section 5.1 and the use of action languages for representing change in the absence of
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actions in Section 5.2. Our formalization of the Traffic World is presented in Section 5.3

and examples of the use of CCALC for testing the formalization are shown in Section 5.4.
Finally, Section 5.5 compares our approach to the Traffic World with related work.

5.1. Continuous motion and integer arithmetic

Under some special circumstances, questions about continuous motion can be discussed
using integers, without ever mentioning reals or even rational numbers. Such special
circumstances are assumed in our formalization of the Traffic World. Specifically, we
assume that

• the lengths of all road segments and the safety distance varsigma are expressed by
integers,

• the top speeds of all cars and the speed limits on all road segments are expressed by
integers,

• in the scenarios under consideration, the times when cars leave and reach endpoints of
road segments, and the times at which the distance between two cars traveling on the
same segment in the same direction becomes varsigma are expressed by integers.

These constraints are similar to those adopted in the description of the spacecraft Integer
in [8]:

Far away from stars and planets, the Integer is not affected by any external forces. As
its proud name suggests, the mass of the spacecraft is an integer. For every integer t ,
the coordinates and all three components of the Integer’s velocity vector at time t are
integers; the forces applied to the spacecraft by its jet engines over the interval (t, t +1),
for any integer t , are constant vectors whose components are integers as well. If the crew
of the Integer attempts to violate any of these conditions, the jets will fail to operate!

The spacecraft Integer is actually close to the refined version of the Traffic World
mentioned in Section 2.2 above, in the sense that its velocity changes continuously, and
its acceleration is piecewise constant.

For query answering on the basis of our formalization of the Traffic World, it is essential
that all time instants mentioned in the queries be expressed by integers.

Assumptions like these make it easier to describe motion in the action languages whose
semantics is defined in the framework of transition systems. The use of these languages for
describing motion without such simplifying assumptions is a topic for future research.

5.2. Change in the absence of actions

In our formalization of the Traffic World, the action of selecting a new road segment
when a car reaches an intersection is denoted by ChooseSegment(c, sg)—the driver of
car c chooses to turn into road segment sg.

This action of selecting a new road segment when a car reaches an intersection is
actually the only action performed in the Traffic World. Between intersections every car is
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assumed to be moving at the maximum speed allowed by the road conditions, so that the

drivers are not permitted to perform any actions affecting the speeds of their cars.

The speeds of cars may change many times, however, during a time interval that does
not include the execution of actions. Consider, for instance, a long road segment with a
high speed limit, and two cars moving along it in the same direction. If the top speed of
the car in front is lower than the top speed of the second car then the latter will slow down
at some point to match the speed of the slower car. If there are several cars on the road
moving in the same direction then the surrounding traffic restriction may force the last of
them to reduce its speed several times, although no actions will be executed. (An example
of such a scenario is shown in Section 5.4.)

A similar phenomenon will be observed when several cars have simultaneously (or
almost simultaneously) approached the same node from different directions, with the
intention to turn into the same road. The cars will have to leave the intersection one
by one, after the intervals that will guarantee the safety distance between them. In our
formalization, there are no causal laws determining the order in which the cars are going
to depart. This nondeterministic sequence of events may take a long time, and it does not
involve the execution of actions.

Change in the absence of actions, so essential in the Traffic World, can be described
in C+ using dynamic laws that do not contain action constants. For instance, the dynamic
law

caused Distance(c) = ds + sp
after ¬WillLeave(c) ∧ Distance(c) = ds ∧ Speed(c) = sp

says that if (i) car c is going to remain on the same road segment during the next time
interval, (ii) the distance travelled by c along that segment so far is ds, and (iii) the speed
of c during that time interval is going to be equal to sp, then by the end of the time interval
the distance travelled by c along the current road segment will become ds + sp.

5.3. Formalization

Our formalization of the Traffic World is shown below and is available online.6

We distinguish between the general assumptions about the Traffic World quoted in
Section 2.2 above and specific details, such as the number and positions of road segments,
the numerical values of their speed limits, the number of cars and their top speeds. Here
we formalize only the general assumptions, and leave such details unspecified, as in the
formalization of the Zoo World. A description of a specific scenario has to be added to our
formalization to get an input file accepted by CCALC.

As with the Zoo World, the annotation (lmw) found in many comments below refers
to the Logic Modelling Workshop description of the Traffic World quoted in Section 2.2.

6 http://www.cs.utexas.edu/users/tag/ccalc/traffic/.
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%%% TRAFFIC %%%
:- sorts
integer;
node;
segment;
car.

:- variables
Nd :: node;
Sg :: segment;
C,C1 :: car;
Ds,Ds1 :: integer;
Sp,Sp1 :: integer.

:- objects
0..maxInt :: integer.

(Since the range of integers that we need depends on the scenario, we define an
appropriate value for the macro maxInt in each scenario description.)

:- constants
% If a car is pointing toward the end node of the segment on
% which it currently is, its positiveOrientation is true

positiveOrientation(car) :: inertialFluent;

% Each car has a position at each point in time. The posi-
% tion is indicated as a pair consisting of the segment
% where the car is located, and the distance travelled
% along the segment (lmw)

segment(car) :: inertialFluent(segment);
distance(car) :: simpleFluent(integer).

:- macros
position(#1,#2,#3) ->

(segment(#1)=(#2) & distance(#1)=(#3)).

:- constants
% Each segment has exactly one start node and exactly one
% end node (lmw)

startNode(segment) :: node;
endNode(segment) :: node;

% Each segment has a length, which is a real number (or
% rational number, if preferred). (lmw) We assume it to
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% be an integer

length(segment) :: integer;

% Each road segment has a speed limit (lmw)
speedLimit(segment) :: integer;

% Each car has a top speed (lmw)
topSpeed(car) :: integer;

% Actual speed of a car during the next time interval
speed(car) :: sdFluent(integer);

% The new segment a car will continue on
nextSegment(car) :: inertialFluent(segment+none);

% A car will leave the segment on which it is currently
% travelling

willLeave(car) :: simpleFluent;

% The node at which a car is
node(car) :: sdFluent(node+none).

exogenous willLeave(C).

% The position of a car determines whether it is at a node
% or not and, if it is, which node it is at.
caused node(C)=Nd

if positiveOrientation(C) & position(C,Sg,0)
& startNode(Sg)=Nd.

caused node(C)=Nd
if -positiveOrientation(C) & position(C,Sg,0)

& endNode(Sg)=Nd.
caused node(C)=Nd

if positiveOrientation(C) & position(C,Sg,length(Sg))
& endNode(Sg)=Nd.

caused node(C)=Nd
if -positiveOrientation(C) & position(C,Sg,length(Sg))

& startNode(Sg)=Nd.

default node(C)=none.

% A car will have a positive orientation after leaving the
% start node of the segment it is entering
caused positiveOrientation(C)

after willLeave(C) & nextSegment(C)=Sg
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& node(C)=startNode(Sg).
% A car will have a negative orientation after leaving
% the end node of the segment it is entering
caused -positiveOrientation(C)

after willLeave(C) & nextSegment(C)=Sg
& node(C)=endNode(Sg).

% Proceed to the next segment if the car was about to leave
caused segment(C)=Sg after willLeave(C) & nextSegment(C)=Sg.

% The distance covered by a car which remained on the same
% segment
caused distance(C)=Ds+Sp

after -willLeave(C) & distance(C)=Ds & speed(C)=Sp
where Ds+Sp=<maxInt.

(A where clause at the end of a schematic expression instructs CCALC to limit
grounding to the values of the variables that satisfy the given test.)

% The distance covered by a car right after it changed to
% a new segment
caused distance(C)=Sp after willLeave(C) & speed(C)=Sp.

% The time when a car reaches a node is assumed to be
% an integer
constraint position(C,Sg,Ds) ->> Ds=<length(Sg).

% No two cars on the same segment and having the same
% orientation can be closer than varsigma (lmw)
constraint position(C,Sg,Ds) & position(C1,Sg,Ds1)

->> positiveOrientation(C)\=positiveOrientation(C1)
where C@<C1 & abs(Ds1-Ds)<varsigma.

(@< is a fixed total order; abs stands for the absolute value.)

% If a car is waiting at a node and there is a car too close
% on the next segment it will travel on, the time at which
% the car in front will reach a distance of varsigma from
% the node is assumed to be an integer
constraint position(C1,Sg,Ds1) ->> Ds1=<varsigma

after position(C1,Sg,Ds) & Ds<varsigma & nextSegment(C)=Sg
& modifiedOrientation(C)=positiveOrientation(C1).
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(The proposition constraint F after G is defined in [6, Appendix B] as an abbreviation

for caused ⊥ if ¬F after G.)

:- constants
% For any car in the middle of a segment, its
% modifiedOrientation has the same value as its
% positiveOrientation. If a car has selected a new
% segment, then modifiedOrientation has the value that
% positiveOrientation would have if the car were at
% the beginning of the new segment

modifiedOrientation(car) :: sdFluent.

caused modifiedOrientation(C)
if nextSegment(C)=none & positiveOrientation(C).

caused modifiedOrientation(C)
if nextSegment(C)=Sg & node(C)=startNode(Sg).

default -modifiedOrientation(C).

:- constants
% The relation between modifiedSegment and segment is
% similar

modifiedSegment(car) :: sdFluent(segment).

caused modifiedSegment(C)=Sg if nextSegment(C)=none
& segment(C)=Sg.

caused modifiedSegment(C)=Sg if nextSegment(C)=Sg.

:- constants
% The relation between modifiedDistance and distance is
% similar

modifiedDistance(car) :: sdFluent(integer).

caused modifiedDistance(C)=Ds if nextSegment(C)=none
& distance(C)=Ds.

caused modifiedDistance(C)=0 if nextSegment(C)\=none.

:- constants
% Maximum speed allowed by the top speed of a car and the
% speed limit of the segment on which the car will be
% travelling

maxSpeed(car) :: sdFluent(integer).

caused maxSpeed(C)=min(Sp,Sp1)
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if topSpeed(C)=Sp & nextSegment(C)=none

& speedLimit(segment(C))=Sp1.

(As in 6 of Section 3, the argument of speedLimit is supposed to be an object, not a
constant. Here segment(C) is understood to be equal to the value of that constant.)

caused maxSpeed(C)=min(Sp,Sp1)
if topSpeed(C)=Sp & nextSegment(C)=Sg

& speedLimit(Sg)=Sp1.

:- constants
% The first car is ahead of the second

ahead(car,car) :: sdFluent.

caused ahead(C1,C)
if positiveOrientation(C1)=modifiedOrientation(C)

& segment(C1)=modifiedSegment(C)
& distance(C1)>=modifiedDistance(C) where C\=C1.

default -ahead(C1,C).

% No overtaking
constraint -ahead(C,C1) after ahead(C1,C).

:- constants
% The first car is ahead of the second car and not farther
% than varsigma from it

varsigmaAhead(car,car) :: sdFluent.

caused varsigmaAhead(C1,C)
if ahead(C1,C) & distance(C1)=Ds1 & modifiedDistance(C)=Ds

where Ds1-Ds=<varsigma.
default -varsigmaAhead(C1,C).

% The actual velocity of a car at each point in time is the
% maximum velocity allowed by the following three
% conditions:
% - The speed limit of the road segment where it is
% driving
% - Its own top speed
% - Surrounding traffic restrictions (lmw)

% If a car is in the middle of a segment and there is no
% other car which is varsigma ahead of the car and which
% will not leave, then it will travel at its maximum speed
caused speed(C)=Sp
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if nextSegment(C)=none & maxSpeed(C)=Sp

& [/\C1 | varsigmaAhead(C1,C) ->> willLeave(C1)].

% If a car is in the middle of a segment and there is a car
% varsigma ahead of it which will not leave, then its speed
% will be the smaller of its maximum speed and the speed of
% the car in front
caused speed(C)=min(Sp,Sp1)

if nextSegment(C)=none & maxSpeed(C)=Sp
& varsigmaAhead(C1,C) & -willLeave(C1) & speed(C1)=Sp1.

% If a car is at the end of a segment and will not leave
% then it will stay where it is
caused speed(C)=0 if nextSegment(C)\=none & -willLeave(C).

% If a car is at the end of a segment and will enter a new
% segment where there is no car within varsigma, then it
% will travel at its maximum speed
caused speed(C)=Sp

if willLeave(C) & maxSpeed(C)=Sp
& [/\C1 | -varsigmaAhead(C1,C)].

% If a car is at the end of a segment and will enter a new
% segment where there is a car within varsigma, its speed
% will be the smaller of its maximum speed and the speed
% of the car in front
caused speed(C)=min(Sp,Sp1)

if willLeave(C) & varsigmaAhead(C1,C)
& maxSpeed(C)=Sp & speed(C1)=Sp1.

:- constants
% Choose a new segment for a car to proceed

chooseSegment(car,segment) :: exogenousAction.

% Direct effect of choosing a new segment
chooseSegment(C,Sg) causes nextSegment(C)=Sg.

% Cannot choose the segment that is already chosen
nonexecutable chooseSegment(C,Sg) if nextSegment(C)=Sg.

% When a car arrives at a node ("intersection") then it may
% continue on any segment that connects to that node...
% (lmw)
constraint node(C)=startNode(Sg) ++ node(C)=endNode(Sg)

after chooseSegment(C,Sg).
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% ...except the one it is arriving at (lmw)

constraint nextSegment(C)\=Sg after segment(C)=Sg.

% A car cannot arrive at a node without choosing a new
% segment on which to proceed
constraint -[\/Nd | node(C)=Nd]

after [/\Sg | -chooseSegment(C,Sg)] & node(C)=none.

% A car can’t have a next segment unless it has travelled to
% the end of its current segment
caused nextSegment(C)=none if node(C)=none.
caused nextSegment(C)=none

if node(C)=startNode(segment(C)) & positiveOrientation(C).
caused nextSegment(C)=none

if node(C)=endNode(segment(C)) & -positiveOrientation(C).

% Only cars which have selected a new segment can leave
constraint willLeave(C) ->> nextSegment(C)\=none.

% At most one car will leave a node and enter a new segment
% at each time
constraint willLeave(C) & willLeave(C1) & node(C)=node(C1)

->> nextSegment(C)\=nextSegment(C1) where C@<C1.

% If there is a car at a node which has selected a new
% segment, and there are no cars within varsigma from
% the node, then there should be a car which will leave
% the node (i.e. no unnecessary waiting is allowed)
constraint nextSegment(C)=Sg &

-[\/C1 | varsigmaAhead(C1,C) & distance(C1)<varsigma]
->> [\/C1 | node(C1)=node(C) & nextSegment(C1)=Sg

& willLeave(C1)].

5.4. Examples

We tested certain aspects of our formalization by giving CCALC queries about
several scenarios and checking that its answers matched our expectations. Besides the
representation of the Traffic World shown above, the input for each scenario included the
description of a specific landscape. Here are three examples:

(1) Consider three roads with the lengths and speed limits shown in Fig. 2. The top speed
of car1 is 2 and it is initially located at node a. (Note that segment seg_bc1 is
long and has a high speed limit whereas segment seg_bc2 is short but its speed
limit is low.) Which way must the car go in order to reach c from a as soon as poss-
ible?



134 V. Akman et al. / Artificial Intelligence 153 (2004) 105–140
Fig. 2. Initial state and landscape for Example 1.

This planning problem can be described as follows:

:- query
maxstep :: 1..10;
0: position(car1,seg_ab,0),

positiveOrientation(car1);
maxstep: node(car1)=c.

CCALC found the following shortest plan:

0: distance(car1)=0 segment(car1)=seg_ab speed(car1)=2
node(car1)=a

1: distance(car1)=2 segment(car1)=seg_ab speed(car1)=2

ACTIONS: chooseSegment(car1,seg_bc1)

2: willLeave(car1) distance(car1)=4 segment(car1)=seg_ab
nextSegment(car1)=seg_bc1 speed(car1)=2 node(car1)=b

3: distance(car1)=2 segment(car1)=seg_bc1 speed(car1)=2

ACTIONS: chooseSegment(car1,seg_bc2)

4: willLeave(car1) distance(car1)=4 segment(car1)=seg_bc1
nextSegment(car1)=seg_bc2 speed(car1)=1 node(car1)=c

In order to be at node c at time 4, the car needs to take the segment with the higher
speed limit. Another variant of this problem asked CCALC to find a plan in which car1
would be at node c at time 5. In that case the plan returned showed car1 choosing to take
seg_bc2.

Also note in the plan above that just before the car arrived at node c, it chose a new
segment. This is because of the proposition that prevents a car from arriving at a node
without concurrently choosing a new segment.
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Fig. 3. Example 2.

(2) The top speeds of three cars and their initial positions are as shown in the top diagram
of Fig. 3. Cars car1, car2 and car3 have top speeds of 3, 2 and 1, respectively.
Assuming the speed limit is 3 and the safety distance is 1, how will the cars move
during the next 3 time intervals?

The conditions can be represented by the following query:

:- query
maxstep :: 3;
0: position(car1,seg_ab,0),

positiveOrientation(car1),
position(car2,seg_ab,2),
positiveOrientation(car2),
position(car3,seg_ab,5),
positiveOrientation(car3).

CCALC found a scenario satisfying the conditions (Fig. 3):

0: distance(car1)=0 distance(car2)=2 distance(car3)=5
speed(car1)=3 speed(car2)=2 speed(car3)=1

1: distance(car1)=3 distance(car2)=4 distance(car3)=6
speed(car1)=2 speed(car2)=2 speed(car3)=1
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2: distance(car1)=5 distance(car2)=6 distance(car3)=7

speed(car1)=1 speed(car2)=1 speed(car3)=1

3: distance(car1)=6 distance(car2)=7 distance(car3)=8
speed(car1)=1 speed(car2)=1 speed(car3)=1

(3) The landscape and the initial positions of two cars are shown at the top of Fig. 4. The
top speeds of both cars and the speed limits for all segments are 1. The safety distance
is 2. What are the possible scenarios in which both cars will be on segment seg_cd
at time 5?

This question can be represented by the following query:

Fig. 4. Example 3, Scenario 1.
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:- query

maxstep :: 5;
0: position(car1,seg_ac,1),

position(car2,seg_bc,1),
[/\C | positiveOrientation(C)];

maxstep: [/\C | segment(C)=seg_cd].

CCALC has determined that there are two possibilities. Here is the first (Fig. 4):

0: distance(car1)=1 distance(car2)=1 segment(car1)=seg_ac
segment(car2)=seg_bc speed(car1)=1 speed(car2)=1

1: distance(car1)=2 distance(car2)=2 segment(car1)=seg_ac
segment(car2)=seg_bc speed(car1)=1 speed(car2)=1

ACTIONS: chooseSegment(car1,seg_cd)
chooseSegment(car2,seg_cd)

2: willLeave(car1) distance(car1)=3 distance(car2)=3
segment(car1)=seg_ac segment(car2)=seg_bc
nextSegment(car1)=seg_cd nextSegment(car2)=seg_cd
speed(car1)=1 speed(car2)=0 node(car1)=c node(car2)=c

3: distance(car1)=1 distance(car2)=3 segment(car1)=seg_cd
segment(car2)=seg_bc nextSegment(car2)=seg_cd
speed(car1)=1 speed(car2)=0 node(car2)=c

4: willLeave(car2) distance(car1)=2 distance(car2)=3
segment(car1)=seg_cd segment(car2)=seg_bc
nextSegment(car2)=seg_cd speed(car1)=1 speed(car2)=1
node(car2)=c

5: distance(car1)=3 distance(car2)=1 segment(car1)=seg_cd
segment(car2)=seg_cd speed(car1)=1 speed(car2)=1

In the second scenario, the states at times 0 and 1 and the actions performed between
times 1 and 2 are the same. For times 2 through 5, everything is the same except that car1
is replaced by car2 everywhere, and vice versa.

The fact that the same actions lead to different states illustrates the nondeterminism in
the transition system to which the formalization corresponds. This nondeterminism arises
when more than one car is waiting to enter a new segment. In such situations the car which
will leave the node is chosen nondeterministically so, as in this example, there may be
multiple scenarios that differ from each other by the order of cars leaving the node.
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5.5. Related work
Henschel and Thielscher [7] showed how to formalize the Traffic World in the fluent
calculus [13]. They do not assume that speeds and lengths are expressed by integers, as
we do (Section 5.1). Other than that, their representation differs from ours in the following
ways:

• Instead of having all cars obey the same rules, cars are divided into two groups:
“deliberative” cars and “non-deliberative” cars. Drivers of deliberative cars can set
their own speeds (using an action to change the speed of a car) instead of having to
go at the maximum speed possible, and are allowed to wait at nodes. Non-deliberative
cars are just like cars in our paper, as described in the Logic Modelling Workshop
specification (Section 2.2).

• There is a “waiting area” associated with each node-segment pair. In this area, the cars
that are going to enter the segment wait in line until there are no cars within varsigma
from the node. When the new segment becomes free, the first car in the waiting area is
allowed to leave.

• At any time, a car is in exactly one of three states: moving on a segment, at a node, or
in a waiting area. Cars which are at a node or in a waiting area are not considered to be
on segments. So after a car arrives at a node, the cars following it are allowed to arrive
at the node too, even if the car remains there.

• For each node, the segments leading to it are assigned priorities. When several drivers
simultaneously decide to turn into the same segment, their cars are placed in the
waiting area in the order determined by the priorities of the segments they arrived
from.

If a car is considered to be on some road segment at all times, as in our formalization, the
number of cars that can approach a node is limited by the number of roads leading to that
node. The view adopted in [7], on the other hand, makes a car at a node exempt from the
surrounding traffic restriction, so that the number of cars that can gather at a node (or in a
waiting area) is unlimited. Perhaps we model streets in a city, and Henschel and Thielscher
model roads between towns. It would not be difficult to modify our formalization to include
deliberative cars and waiting areas; see [3, Section 5.3] for a related discussion.

6. Conclusion

This paper described how two interesting and quite different medium-sized domains, the
Zoo World and the Traffic World, can be represented in the input language of the Causal
Calculator. The Zoo World contains many different actions, agents (animals and humans),
and interactions between those agents but does not involve much continuous action. The
Traffic World, by contrast, has only one action, but it involves continuous change in the
states of many agents of the same kind (cars in this case). It also involves change in the
absence of actions.
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Two interesting aspects of action domains, nondeterminism and indirect effects

of actions, are parts of both Zoo and Traffic and are handled conveniently in their
representations in the input language of CCALC. (Throwing off a mounted human and the
order in which cars leave segments are examples of nondeterminism in Zoo and Traffic,
respectively. A rider being in the position of the animal which he mounts and changing
of the speeds of cars after choosing a new segment are examples of indirect effects in the
two domains.) In fact, indirect effects are quite easy to handle thanks to the ability to write
static laws, which represent how the values of certain fluents affect the values of other
fluents without reference to any actions or time.

The formalization of the Zoo World shows how exceptions to generally valid laws can
be represented using “defeasible” dynamic laws. Some laws can be rendered ineffective
under certain conditions.

In the formalization of the Traffic World, continuous motion is described using integers,
under certain simplifying assumptions. Change without any actions can be easily described
using dynamic laws that do not involve actions.

Despite the convenience with which most parts of the specifications could be
represented, there are two aspects of the domains for which the input language of CCALC

was not completely suitable. The specification of the Zoo World mentions the distinction
between small numbers of objects which can all be named and ‘large’ numbers of object
which cannot all be named. Due to the absence of real quantifiers in CCALC, such large sets
of objects cannot be represented. The closest approximation is to use multiple disjunctions
or conjunctions. Another shortcoming of CCALC is that it can only deal with integers.
Therefore certain assumptions had to be made about the nature of the continuous motion
in the Traffic World, restricting the representation.

As a final note, this work was motivated by the desire to test the expressive possibilities
of C+, which is a formal language with a precisely defined semantics. But having a working
practical system, such as CCALC, was a great advantage when trying to formalize a
complicated domain. It is quite easy to write flawed causal laws, and having an automated
system to compare our intuitions with the actual effects of the causal laws was helpful. We
were often corrected by CCALC and sometimes surprised when it answered our queries
with results that we had not expected.
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