
Leibniz’s (1984) An
Introduction to a
Secret Encyclopedia
includes the follow-
ing marginal note:

Principle of Physi-
cal Certainty:
Everything which
men have experi-
enced always and
in many ways will
still happen: for
example that iron
sinks in water
(Leibniz 1984).

In our daily lives,
we routinely use this principle. Thus, we
know that we can pull with a string but not
push with it; that a flower pot dropped from
our balcony falls to the ground and breaks;
that when we place a container of water on
fire, water might boil after a while and over-
flow the container.

The origin of such knowledge is a matter of
constant debate. It is clear that we learn a
great deal about the physical world as we
grow up. However, even philosophers were
tricked by the mechanisms that achieve this
knowledge; for example I. Kant said:  

All our knowledge begins with sense,
proceeds thence to understanding, and
ends with reason, beyond which nothing
higher can be discovered in the human
mind for elaborating the matter of intu-
ition and subjecting it to the highest
unity of thought. At this stage of our
inquiry it is my duty to give an explana-
tion of this, the highest faculty of cogni-
tion, and I confess I find myself here in
some difficulty.

In this article, we
argue that some dif-
ficulties regarding
commonsense rea-
soning about the
physical world can
be overcome by
using fictitious enti-
ties, laws, and prin-
ciples of physics.
Our argument is
along the lines of a
recent study in
physics instruction
where expert prob-
lem solving is
attributed to the

construction of physical representations that
contain imagined entities (Larkin 1983).

After a short overview of the role of mental
models, we present the motivation for this
research. In the next section, we study the
nature of physics and a simple abstraction
mechanism based on essential attributes and
influences. Envisioning and naive versus
physical representations are treated next. A
brief account of the content of mechanics fol-
lows, inspired by, yet basically incomparable
to, Hayes’s (1983) classification of the fluids
domain in his seminal paper. A set of prob-
lems showing the power of physical represen-
tations can be found in Some Examples. Some
interesting research efforts covering the relat-
ed areas of naive physics and qualitative rea-
soning are examined in Other Related
Research. Finally, the last section summarizes
our points and suggests some directions.

Mental Models
Why do we advocate that a theory of com-
monsense reasoning about the physical world
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The Power of 
Physical Representations

Varol Akman, Paul J. W. ten Hagen

Commonsense reasoning about the physical
world, as exemplified by “Iron sinks in water”
or “If a ball is dropped it gains speed,” will be
indispensable in future programs. We argue that
to make such predictions (namely, envisioning),
programs should use abstract entities (such as
the gravitational field), principles (such as the
principle of superposition), and laws (such as
the conservation of energy) of physics for repre-
sentation and reasoning. These arguments are in
accord with a recent study in physics instruction
where expert problem solving is related to the
construction of physical representations that
contain fictitious, imagined entities such as
forces and momenta (Larkin 1983). We give
several examples showing the power of physical
representations.
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are interested in reliable products that con-
tinue to correctly function under various dis-
turbances, we must take heed of these
notions and their effects on our designed
objects. Thus, during the design stage, we
might want to know what happens to a
nuclear reactor when a pressure regulator
starts to malfunction. Depending on the out-
come of such simulations, we can embed
more security checks and redundancies in our
designs.

Second is that all mechanical inventions
are firmly based on a deep understanding of
the physical world and its laws. If we want to
automatically design new devices, we need a
design system that has an appreciation for
physical phenomena. For example, even a
simple can opener is a device unifying diverse
physical notions such as friction, force, rota-
tion, and cutting. When human designers
invent a new device, they use their physics
knowledge in a fundamental way to reason
about the functioning of the device under
consideration. (The reader is referred to Veth
[1987]; Akman, ten Hagen, and Tomiyama
[1987]; and Akman et al. [1988] for detailed
accounts of why commonsense physical
knowledge might be crucial for realizing
intelligent computer-aided design systems).

The Nature of Physics
Observing that all our ideas in physics require
a certain amount of common sense in their
application, we see that they are not pure
mathematical or abstract ideas. In fact, nearly
every page of Feynman, Leighton, and Sands
(1966) has a caveat to this effect, as the fol-
lowing excerpts show: 

This system [a system of discourse about
the real world] is quite unlike the case of
mathematics, in which everything can
be defined, and then we do not know
what we are talking about. In fact, the
glory of mathematics is that we do not
have to say what we are talking about. The
glory is that the laws, the arguments,
and the logic are independent of what
“it” is. If we have any other set of objects
that obey the same system of axioms as
Euclid’s geometry, then if we make defi-
nitions and follow them out with correct
logic, all the consequences will be cor-
rect, and it makes no difference what the
subject was.

. . [W]e cannot just call F = ma a defini-
tion, deduce everything purely mathe-
matically, and make mechanics a
mathematical theory, when mechanics is

should be firmly based on physics? Although
we see the psychological literature on this
subject as a valuable source of information,
studies in learning show, maybe expectedly,
that human subjects have fuzzy and even
wrong ideas about the physics of everyday
life. DiSessa (1982) found out that a group of
elementary school students learning to con-
trol a computer-simulated Newtonian object
invariably had the wrong Aristotelian expec-
tation that bodies must move in the direction
they are last pushed. Another similar study
by McCloskey (1983) reports that assump-
tions of the naive theories of motion are
quite consistent across college students. It
turns out that the theories developed by dif-
ferent individuals are best described as differ-
ent forms of the same basic theory. What is
striking is that this basic theory is highly
inconsistent with the fundamental principles
of classical physics. McCloskey shows that
this naive theory of motion is similar to a
pre-Newtonian physical theory—the
medieval impetus theory—that the act of set-
ting a body in motion imprints in the object
a force, or impetus, which keeps the object in
motion. Figure 1 illustrates a case that is simi-
lar to the one examined by McCloskey. Asked
about how a metal ball put into the end of
the tube and shot out of the other end at
high speed would behave, more than half the
subjects drew the incorrect path.

Motivation
Why is commonsense physical knowledge
useful? In this article, we are concerned with
mechanics. Therefore, we might answer this
question from a viewpoint focusing on
mechanical design. We identify two aspects.

First is that mechanical design results in
physical objects. After production, a designed
object is left in the physical world. From this
moment on, it interacts with an environment
where physical notions such as force, motion,
collision, and so on, are in existence. If we
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Figure 1.  Correct and Incorrect Responses for the Spiral Tube Problem.



a description of nature. By establishing
suitable postulates it is always possible to
make a system of mathematics, just as
Euclid did, but we cannot make a mathe-
matics of the world, because sooner or
later we have to find out whether the
axioms are valid for the objects of
nature. Thus we immediately get
involved with these complicated and
“dirty” objects of nature, but with
approximations ever increasing in accu-
racy (pp. 12-2–12-3).

Let us now study in detail why we cannot
make mechanics a mathematical theory.

The Meaning of Physical Laws
Centuries of scientific activity gave rise to an
enormous body of physical knowledge that
can be found in textbooks. The aim is to pro-
vide an account of how the physical world
behaves. Theoreticians realized that mathe-
matics is an excellent tool for physics because
all laws can be written in symbolic form with
absolute clarity and economy. Yet physical
formulas by themselves do not provide
enough insights.

Although it is interesting and worth-
while to study the physical laws simply
because they help us to understand and
to use nature, one ought to stop every
once in a while and think, “What do
they really mean? The meaning of any
statement is a subject that has interested
and troubled philosophers from time
immemorial, and the meaning of physi-
cal laws is even more interesting, because
it is generally believed that these laws
represent some kind of real knowledge.
The meaning of knowledge is a deep
problem in philosophy, and it is always
important to ask, “What does it mean?”

Let us ask, “What is the meaning of the
physical laws of Newton, which we write
as F = ma? What is the meaning of force,
mass, and acceleration?” Well, we can
intuitively sense the meaning of mass,
and we can define acceleration if we
know the meaning of position and time.
We shall not discuss these meanings, but
shall concentrate on the new concept of
force. The answer is equally simple: “If a
body is accelerating, then there is force
on it.” That is what Newton’s laws say, so
the most precise and beautiful definition
of force imaginable might simply be to
say that force is the mass of an object
times the acceleration. Suppose we have
a law which says that the conservation of

momentum is valid if the sum of all
external forces is zero; then the question
arises, “What does it mean, that the sum
of all the external forces is zero?”  A
pleasant way to define that statement
would be: “When the total momentum is
a constant, then the sum of the external
forces is zero.” There must be something
wrong with that, because it is just not
saying anything new. If we discovered a
fundamental law, which asserts that the
force is equal to the mass times the accel-
eration, and then define the force to be
the mass times the acceleration, we have
found out nothing. We could also define
force to mean that a moving object with
no force acting on it continues to move
with constant velocity in a straight line.
If we then observe an object not moving
in a straight line with a constant veloci-
ty, we might say that there is a force on
it. Now such things certainly cannot be
the content of physics, because they are
definitions going in a circle. The Newto-
nian statement above, however, seems to
be a most precise definition of force, and
one that appeals to the mathematician;
nevertheless, it is completely useless,
because no prediction whatsoever can be
made from a definition. One might sit in
an armchair all day long and define
words at will, but to find out what hap-
pens when two balls push against each
other, or when a weight is hung on a
spring, is another matter altogether,
because the way the bodies behave is
something completely outside any
choice of definitions (Feynman,
Leighton, and Sands 1966, p. 12-1).

For instance, the important thing about
force is that it has a material origin. If a physi-
cal body is not present, then a force is taken
to be zero. If we discover a force, then we also
try to find something in the surroundings
that is a source of the force. Another rule
about force is that it obeys Newton’s Third
Law: the forces between interacting objects
are equal in magnitude and opposite in direc-
tion (see Laws of Mechanics). These concepts
we have about force, in addition to a mathe-
matical rule such as F = ma, are the key ele-
ments in solving physics problems. It is only
through combining the mathematical equa-
tions with these concepts that experts attempt
to solve physics problems (Larkin 1983).

Consider, for example, the use of con-
straints to model physical laws. A constraint
such as f(x1, . . . xn) = 0 can be used to deter-
mine any xi if all the others are given a value.
However, as de Kleer (1975) points out:

A theory of
commonsense 
reasoning
about the
physical
world should
be firmly
based on
physics.
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F = ma, we can choose to write down two
rules: one describing the influence of m on a
and the other describing the influence of F
on a. Consequently, we omit a causal rule
describing the effect of a on F; this informa-
tion is, nevertheless, present in the original
formula.

Essential Attributes and Influences
Let us think of a simplified way of looking at
physics problems. We usually have various
objects under consideration and state several
facts about them. We can use predicates to
talk about objects, which follows the advice
of Hayes (1985). Thus, p(a) means that an
object a has an attribute p. To denote that
object a has no attribute p, we write (a).
Predicates can be one-, two-, . . . place
depending on how many objects are required
to form them. Thus, the predicate “x is fric-
tionless” is one-place, “x is longer than y” is
two-place, “z is faster than x but slower than
y” is three-place, and so on. For the preceding
examples, we write in predicate notation fric-
tionless(x), longer(x,y), and inbetween(z,x,y).
In general, p(a1, . . . an) means that an n-tuple
of objects a1, . . . an has an attribute p, in
other words, a1, . . . an such that p holds.

By abstraction, we signify the mapping of a
set of objects to a new set of objects that have
some of their attributes ignored. For instance,
we can take a block and map it to a point
mass by simply ignoring its spatial dimen-
sion. Similarly, we can map a surface to a fric-
tionless surface, a gas to an ideal gas, and a
fluid to an incompressible fluid. By doing so,
we are creating predicates that are unverifi-
able; for example, frictionless(s), ideal(g),
incompressible(f) denote attributes that are
not possible to observe. The objects denoted
by abstract terms do not empirically exist
because of the way they are constructed
(Zinoviev 1983); we decide to take certain
objects and neglect some of their attributes.

Our view is that this abstraction process is
how physics experts start solving problems.
That is, the mapping of empirical objects to
abstract objects is an important ingredient in
solving a physics problem because the physi-
cal laws in general are stated over abstract
entities and as state transformations. With
the earlier attribute viewpoint, it is easy to
write down transformations. Assume that s1 is
a state of an object at a certain moment, and
s2 is a state at a later moment. This transfor-
mation is denoted by →. To denote that
object a exists, we can write E(a). Thus, 

(a) → E(a) denotes the creation of object a,
whereas E(a) → (a) denotes the death of a.
We can write similar statements about the

There is much more information in an
expression! If all we are interested in is
solving a set of equations, looking at
constraint expressions may be a valid
perspective. However, [if] we are solving
a physical problem in which a duality
exists between the mathematical struc-
ture of the equations and the actual
physical situation we have thrown away
most of the information. To the sophisti-
cated student this duality is very clear
and the mathematical equation is far
more than a constraint expression. For
him, the expression encodes a great deal
of qualitative knowledge and every
mathematical manipulation of the
expressions reflects some feature of the
physical situation (pp. 110-111).

For example, we see in NEWTON that when-
ever we calculate an imaginary number from
a velocity equation, we decide the body
under consideration is not able to reach a cer-
tain point. Similarly, we treat vector equa-
tions in a careful manner so that signs of the
involved quantities make sense. If a force is
trying to prevent the motion of a body, its
direction is taken opposite the direction of a
movement. The issue of what signs should be
assigned to the quantities under considera-
tion is the first sign of a correct attempt to
solve a physics problem.

However, a more important kind of knowl-
edge is encoded in a physics formula. Again,
with F = ma, F and m should be placed during
problem solving at the same conceptual layer
because they can be independently deter-
mined from any other quantities (Shoham
1986). However, a is placed at a higher layer
because it is determined by the quantities in
the previous layer. Quantities such as F and m
are only allowed to be manipulated external-
ly (exogenous variables), whereas a is derived
(endogenous). The only intended meaning of
F = ma is that at any given moment, the net
force on a body is equal to the product of its
mass and acceleration.

The notion of causality is of key impor-
tance in physics although this notion is
somewhat against Bertrand Russell’s famous
advice (Shoham 1986): “The law of causality,
I believe, like much that passes to muster
among philosophers, is a relic of a bygone
age, surviving, like the monarchy, only
because it is erroneously supposed to do no
harm”(p. 143). We tend to believe, as
Shoham aptly stated, that people decide what
variables are to be exogenous and then define
causal rules correspondingly. The causal rules
that are constructed depend on the theory we
are dealing with. For example, in the case of 

All our ideas
in physics
require a 

certain
amount 

of common
sense in their 

application.
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attributes. Thus, (a) → p(a) stands for the
acquisition of an attribute, and p(a)→ (a)
stands for the loss of an attribute by object a.
It is messy to tell exactly when an object is
created or annihilated. If heat is given to a
drop of water, the drop acquires the attribute
hot and loses the attribute cold. However, if
enough heat is applied, the drop turns to
steam. Two possibilities exist: this is the same
individual that was liquid before, or this is a
new individual.

By essential influences we mean those influ-
ences which play a central role in a situation.
Consider the example of a pendulum clock
(Feynman, Leighton, and Sands 1966). If a
pendulum clock is standing upright, it works
as expected, but if it is tilted, nothing hap-
pens. Something else, something outside the
machinery of the pendulum clock, is involved
in the operation of the clock: the earth is
pulling on the pendulum. Once we encode
this effect through the vector of gravitational
force, we can take the earth out of the picture
and consider our pendulum embedded in a
field of gravitation—the essential influence
for this problem. Consequently, it is an easy
matter to deduce that the pendulum will tick
with a different rate on the moon.

Shape is a difficult attribute to deal with.
With a rectangular block sliding along an
inclined plane, one can use the abstraction
that the block is a point mass. However, if a
ball is rolling down on an inclined plane, a
point mass viewpoint can lead to an incorrect
perspective because, for example, the angular
momentum as a result of rotation is no longer
accountable. For the sliding block problem,
we take the mass of the block as a constant
because we can reasonably assume that it is

going at a low speed (compared to the speed
of light), and its mass is independent of time.
Similarly, for a block attached to a spring with
stiffness constant k, we normally think that if
the spring is stretched by x, then we can find
the force on the spring using F = –kx. This
relation is based on the assumption that for
small x, k is constant. Note it is not implicit
in this formula that the spring can break if
the force is exceedingly large.

Another way of looking at physical influ-
ences is to regard them as functions. Thus, by
(fx), let us denote that function f takes object
x and gives fx as the new object. This map-
ping is an intensional definition of a function
as opposed to the usual, extensional defini-
tion. Functional equivalence then becomes
(fx) = (ghx); that is, apply g on the result of
applying h to x to obtain a summary effect
equivalent to (fx). This notation helps one
formulate state transformations. Consider
object x, which is a block of ice. Now (fx),
where f is heat, renders a new object fx,
which is equal to water. Let us call this object
x. Applying f on gives a new object that is
equal to steam. (Thus self-application of func-
tions is sometimes meaningful.)

Envisioning
In envisioning, we deliberately ignore the
values of the problem variables; we let them
take any value, allowing us to discover all the
possibilities for a given problem. Only one of
these possible answers is observable for a
given set of initial conditions. The idea of
envisionment is clearer with a pioneering
program called NEWTON.
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along s3 must be a = g sinθ. The length of the

straight segment is ; so, using the kine-

matic equation relating acceleration, dis-

tance, and velocities, we get -2gLtanθ.

Again, if vc4 is imaginary, c4 is not reachable.
(This argument is simpler and more elegant if
you use the same law of energy conservation
to explain the behavior of the block on the
straight section; however, de Kleer uses the
argument given here.)

This line of reasoning can be conveniently
depicted in the envisionment tree in figure 3.
The branches of the tree correspond to the
different situations that can arise depending
on the solutions of the equations mentioned
earlier. Basically, we have a set of worlds W
and a set of times T. There is a linear ordering
< (meaning prior to) over T. We can then
think of a two-dimensional space where we
have differing worlds as we move along one
axis and differing times as we move along the
other axis. Any particular point in this space
can be thought of as a pair of coordinates
(w,t) for some wεW and tεT. This index
denotes a point whose location is determined
by which world it is on the one hand and
what time it is on the other hand. In left-to-
right order, the possible worlds in figure 3 are
as follows:

w1: Slide until at most c3, slide backwards,
oscillate around c2.
w2: Slide until at most c3, slide backwards,

fall off from c1.
w3: Slide until after c3 but before c4, slide

backwards, oscillate around c2.
w4: Slide until after c3 but before c4, slide

backwards, fall off from c1.
w5: Slide until c4, fall off from c4.
For example, denoting the moments that m
passes through the points c1 by ti, it is seen
that m is at c2 at t2, at some point of s2 for
any t such that t2 < t < t3, and then for all t >
t3 on s1 or s2 if it follows the prediction denot-
ed by w1.

At each fork of the envisionment tree, sev-
eral possibilities exist. A block would always
take one of the branches and go down the
tree ending up in a leaf. The forks correspond
to the points where we have to disambiguate
the ambiguities, whereas leaves correspond to
particular behaviors. Disambiguation is
achieved by solving some equations. Looking
at the formula giving vc2, we see that this
velocity can never be imaginary. Thus, the
block would always reach c2; it would never
stop there because at this point, it would
have a positive velocity. Let us look at the

NEWTON

The first attempt at predicting the interaction
of moving objects in a simple, idealized world
was made by Johan de Kleer (1975) with a
program called NEWTON. NEWTON works in a
two-dimensional world called the roller coast-
er. We start with a classical problem used by
de Kleer. In figure 2, a small sliding block
(idealized as a point) of mass m starts at point
c1 along a frictionless surface consisting of
three parts: s1 and s2, which are concave, and
s3, which is straight. We want to know if the
block will reach point c4. 

In NEWTON , a production-rule system looks
at the local geometric (topological) features
to predict what might happen next. The left-
hand side of a production describes the fea-
tures of the environment (for example, the
shape of the paths, the velocity of the block),
and the right-hand side lists the conse-
quences (for example, sliding, falling). A
closed-world assumption is in effect: The
actions on the left-hand side never produce a
change in the features (for example, a block
sliding on a segment does not cause a change
in the shape of the segment).1

We can summarize the reasoning suggested
by de Kleer as follows: Without falling off or
changing direction, m starts to slide down the
surface. After reaching the bottom c2, it starts
going up. It still will not fall off, but it might
start sliding back. If m ever reaches the
straight section (that is, the segment s3), it
still will not fall off, but it might change the
direction of its movement. To determine
whether m reaches c4, we must study its
velocity. The velocity at the bottom can be
computed using the conservation of energy:
vc2

=          . Similarly, using vc2 and the con-
servation of energy, we can set up an equa-
tion that can be solved for the velocity vc3 at
the start of the straight section:        

=            If vc3 is imaginary, we

know that the straight segment is never
reached. At the straight section, we would use
kinematics to find out whether the block ever
reaches c4. The acceleration of the block
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Newton’s use of 
quantitative knowledge to
disambiguate ambiguities
remains an important
contribution.
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next equation giving the value of vc3. After
manipulation, it can be rewritten as 

= 2g(h1 – h2). This equation has a simple
message. If c3 is located higher than c1, m
cannot reach c3. Until now, we did not really
need any numeric knowledge other than h1 >
h2 to decide that m arrives at c3. However,
after c3, we need to know the values of L and
θ to discover that c4 is reachable. Assume that
m has barely made it to c4, that is,  vc4 ≥ 0.
Then the inequality h1 – h2 ≥ L tanθ should
be satisfied.

Naive Versus Physical Representation
NEWTON has been a cornerstone in the search
for knowledge representation and reasoning
methodology for physical domains. A later
work on mechanics problem solving in the
style of NEWTON is MECHO (Bundy 1978). This
program tries to improve the envisioning pro-
cess by making it more goal directed. The
main improvement is that MECHO does not
generate the envisionment tree, only the
parts needed to answer a question.2 Thus, for
a suitable set of values of the earlier problem
parameters, MECHO would only generate the
real path that would be taken by the block,
say the leftmost.

Larkin (1983) points out that NEWTON has a
naive way of representing physical knowl-
edge. In particular, it has an internal represen-
tation that contains direct representations of
the visible entities mentioned in the problem
description. As a result, it performs simula-
tion—NEWTON’s inferencing by way of an
envisionment tree follows the direction of
time flow. However, the lack of deeper
physics principles in NEWTON is more serious.
For instance, Larkin (1983) notes that a physi-
cist encountering the earlier problem about
the sliding block might reason as follows (it
should probably be said that the following
protocol is hypothetical and does not origi-
nate from an interview with an expert physi-
cist): The energy at c1 consists of kinetic
energy, zero because m is at rest, and poten-
tial energy determined by h1. At c2, the poten-
tial energy is zero because the block is at the
bottom, and the kinetic energy is unknown
because the speed is unknown. At c3, the
potential energy is determined by h2, and the
kinetic energy is still unknown. At some
point c (which might be above or below c4),
the block momentarily stops, and the kinetic
energy is again zero. Writing down the equa-
tion 0 + mgh1 = 0 + mg(h2 + X sinθ), where X is
the distance m travels along s3 after point c3,
immediately leads to a solution. (It is noted
that in the last equation, inside the parenthe-
ses, Larkin writes , which is wrong.)

Briefly, if X >         , then m reaches c4 and
falls off.

Compared to NEWTON’s solution, there are
good insights in this solution. The fact that a
body has speed is identified with its having
kinetic energy. That a body is at a given
height is identified with its having potential
energy. In writing down the preceding equa-
tion, the absence of friction (and hence no
loss of energy as a result of heat dissipation) is
used to state a simpler law of energy conser-
vation. The fact that potential energy and
kinetic energy are convertible to each other is
implicitly used. The expert is also aware that
m, which is initialy at rest, is brought to
motion by the gravitational field of the earth,
which is constant and equal to g at distances
not too far away from the surface of the
earth. As another pointer to the use of deep
knowledge, consider the decision of the
expert to select c2 as a standard point for
potential energy calculation. If the expert had
used any other point, say c3 instead of c2, it is
obvious that the potential energy is changed
only by the addition of a constant. Because
the energy conservation law cares only about
changes, it does not matter if a constant is
added to the potential energy.

NEWTON’s use of quantitative knowledge
(represented as frames) to disambiguate ambi-
guities remains an important contribution.
Frames in NEWTON are not procedures but
describe dependencies among variables. They
are similar to Minsky’s (1975) frames in that
they are used to chunk physical formulas of
the same nature. Because many different
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Description of Motion. Speed as a deriva-

tive , distance as an integral

, and acceleration as the

derivative of speed are the basic notions. We
distinguish velocity from speed, which is the
magnitude of velocity. (We sometimes denote
vectors with bold letters.)

Pseudovectors. Ordinary vectors are, for
example, coordinate position, force, momen-
tum, or velocity. Vectors that are obtained as
a cross-product behave differently with
respect to rotation, for example, torque τ,
angular velocity ω, and angular momentum
L. The corresponding equations are τ = r × F,
v = ω × r, and L = r × p, respectively, where p
is the momentum, and r is the radius.

Work. If a body is moving along a curved
path, then the change in kinetic energy as it
moves from one point (1) to another (2) is
equal to \i(1,2,F.ds).

Torque. Torque bears the same relationship
to rotation as force does to linear movement;
that is, a torque is that which makes some-
thing rotate or twist.

Energy. In mechanics problems, energy
basically takes the following forms: gravita-
tional, kinetic, heat, and elastic.

Power. Power equals work done per second.
In other words, the rate of change of kinetic
energy of a body is equal to the power used
by the forces acting on it.

Field. We need two kinds of laws for a field.
The first law gives the response to a field, that
is, the equations of motion. The second law
gives how strong the field is, that is, the field
equation. In other words, “One part says that
something produces a field. The other part
says that something is acted on by the field.
By allowing us to look at the two parts inde-
pendently, this separation of the analysis sim-
plifies the calculation of a problem in many
situations” (Feynman, Leighton, and Sands
1966, p. 12-8). 

The idea of a field is closely associated with
potential energy. We note that the gravita-
tional force on a body is written as mass
times a vector, which is dependent only on
the position of the body: F = mC. One can
thus analyze gravitation by imagining a
vector C is at every position that affects any
mass placed there. Because the potential
energy can be written as U = m∫(field).ds, we
find that the potential energy of a body in
space can be written as mass times a function
ψ, the potential. To get the force from the

potential energy, we use                (and simi-

equations apply to a problem, grouping equa-
tions in frames helps isolate the relevant ones
with less effort. Dependencies among vari-
ables are then searched for a solution (the
goal variable). For example, a kinematics
frame3 knows about the usual equations of
motion (de Kleer 1977):

frame kinematics of object, surface, t1, t2

variables: (v1: velocity of object at time t1

v2: velocity of object at time t2

d: distance of surface
t:  time between t1 and t2

a: acceleration of object)
equations:

(v2 = v1 + at, v2
2 = v1

2 + 2ad, d = v1t +         )

Frames use two kinds of variables: the
names of the objects and their essential
attributes (such as velocity or acceleration).
Each equation of a frame referencing the goal
variable is a possible way to determine this
variable. However, unknown variables in
equations referencing the goal variable must
be given a value (possibly using other frames
or asking the user) because every unknown in
the equation must be determined before
achieving the goal.

The Content of Mechanics
This section outlines the building blocks of
classical mechanics. It is neither complete nor
uniform; however, it should give an idea
about what kind of knowledge should be for-
malized for a deep coverage of mechanics. It
is noted that we are not yet concerned with a
concrete knowledge representation scheme.
This decision is thought to be in agreement
with Hayes (1985), where the building of
minitheories (clusters) is given priority over
favorite notations: “Initially, the formaliza-
tions need to be little more than carefully
worded English sentences. One can make
considerable progress on ontological issues,
for example, without actually formalizing
anything, just by being very careful what you
say” (p. 483).

Fictitious Entities
We begin with a set of the basic fictitious
entities of classical mechanics.
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larly for other directions). To get the field
from the potential, we do the same: 

Cx= – (and similarly for other directions).

Succinctly, F = – ∇ U, and C = – ∇ψ .

Pseudoforce. A well-known pseudoforce is
centrifugal force. If we are in a rotating coor-
dinate system, we experience a force throwing
us outward. Using the pseudoforce, we can
explain several interesting problems. In figure
4, adapted from Feynman, Leighton, and
Sands (1966), a container of water is pushed
along a table, with acceleration a. The gravita-
tional force acts downward, but in addition, a
pseudoforce is acting horizontally. The latter
is in a direction opposite to a. As a result, the
surface of the water is inclined at an angle
with the table, as shown in the left part of the
figure. If we stop pushing, the container slows
down because of friction, and the pseudoforce
reverses its direction, causing the water to
stand higher in the forward side of the con-
tainer. The normal to the surface is parallel to
the vector sum of a and g, that is, to the net
force on a surface element, which keeps each
point on the water’s surface at the same
potential energy. 

Centrifugal force is not the only force
developed in a rotating system. Another force
is called the Coriolis force. With this force,
when we move a body in a rotating system,
the body seems to be pushed sidewise. If we
want to move something radially in a rotat-
ing system, we must also push it sidewise
with force Fc = 2mωvr. Here ω is the angular
velocity, and vr is the speed at which the
body is moving along the radius.

Conservative Force. If the integral of the
force times the distance in traveling from one
point to another is the same (regardless of the
shape of the curve connecting them), then
the force is conservative (for example, gravity).

Center of Mass. Given a rigid body, a cer-
tain point is such that the net external force
produces an acceleration of this point, as if
the whole mass is concentrated there. The
point does not have to be in the material of
the body; it can lie outside.

Laws of Mechanics
The second set of building blocks comprise
the laws of mechanics as follows.

Newton’s First Law (the principle of inertia).
If an object is left alone (not disturbed), it
continues to move with a constant velocity in
a straight line if it was originally moving, or it
continues to stand still if it was standing still.

Newton’s Second Law. The motion of an
object is changed by forces in this way: The

time rate of change of momentum is propor-
tional to the force.

Newton’s Third Law (the principle of
action equal reaction). Suppose we have
two small bodies, and suppose that the first
one exerts a force on the second one, pushing
it with a certain force. Then simultaneously,
the second body pushes on the first with an
equal force in the opposite direction. These
forces effectively act in the same line.

Conservation of Linear Momentum. If
there is a force between two bodies, and we
calculate the sum of the two momenta, both
before and after the force acts, the results
should be equal.

Conservation of Angular Momentum. If
no external torques act on a system of parti-
cles, the angular momentum remains con-
stant. Also, the external torque on a system is
the rate of change of the total angular
momentum: τext = 

Conservation of Energy. An abstract quan-
tity exists that does not change in all the nat-
ural phenomena which the world undergoes:
energy.

(Galilean) Relativity Principle. The laws of
physics look the same whether we are stand-
ing still or moving with a uniform speed in a
straight line.

Work Done by a Force. If the force is in one
direction, and the object on which the force
is applied is displaced in a certain direction,
then only the component of force in the
direction of the displacement does any work;
that is, physical work is expressed as ∫F•ds.

Work Done by Gravity. The work done in
going around a path in a gravitational field is
zero, implying that we cannot make perpetual
motion in a gravitational field.

Hooke’s Law (the law of elasticity). The
force in a body that tries to restore the body
to its original condition when it is disturbed
is proportional to the distortion. This law
holds true if the distortion is small. If it gets
too large, the body is torn apart or crushed.
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Figure 4.  Pseudoforce Acting on a Container of Water.
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hW =  +  , or 

W =                      .

Analogs. We have already seen examples of
analogs when we talked about force versus
torque, linear momentum versus angular
momentum, and so on, in Fictitious Entities.
In general, analogy refers to relating two
domains that are at first sight dissimilar and
using the tools of one domain to solve the
problems of the other. The analogy between
mechanics and electricity is well known, as
table 1 partially illustrates (Feynman,
Leighton, and Sands 1966). As a result, not
only in problem solving but also in design,
analogy has found its deserved place. The fol-
lowing excerpt is especially illuminating in
this respect:

Suppose we have designed an automo-
bile, and want to know how much it is
going to shake when it goes over a cer-
tain kind of bumpy road. We build an
electrical circuit with inductances to rep-
resent the inertia of the wheels, spring
constants as capacitances to represent
the springs of the wheels, and resistors
to represent the shock absorbers, and so
on for parts of the automobile. Then we
need a bumpy road. All right, we apply a
voltage from a generator, which repre-
sents such and such a kind of bump, and
then look at how the left wheel jiggles
by measuring the charge on some capac-
itor. Having measured it (it is easy to do),
we find that it is bumping too much. Do
we need more shock absorber, or less
shock absorber? With a complicated
thing like the automobile, do we actually
change the shock absorber, and solve it
all over again? No!, we simply turn a
dial; dial number ten is shock absorber
number three, so we put in more shock
absorber. The bumps are worse—all
right, we try less. The bumps are still
worse; we change the stiffness of the
spring (dial 17), and we adjust all these
things electrically, with merely a turn of
the knob (Feynman, Leighton, and
Sands 1966, p. 25-8).

Some Examples
In this section, we give some example prob-
lems and their solutions. Our aim is to
demonstrate the use of physical representa-
tions. We regard the following problems as
difficult problems for envisioners and expect
that they will constitute part of a test set for
future programs.

Principles
Although they are classified under different
headings in this article, it should be noted
that the boundary between physics laws and
physics principles is not well defined. We sug-
gest that by principles, we should refer to the
problem-solving elements, for example, the
principle of virtual work (see below). In any
case, this section, in its current form, makes
no claim to completeness.

Superposition. The total field resulting
from all the sources is the sum of the fields
resulting from each source. Suppose that we
have a force F1 and have solved for the forced
motion. Then we find out another force F2

exists and solve for the other forced motion.
Using the superposition of solutions, we can
now predict what would happen if we had F1

and F2 acting together. The solution is x1 + x2

if xi’s are the individual solutions for forces Fi.
In general, a complicated force can be divided
into a set of separate forces, each of which is
simple (in the sense that we can solve for the
forced motion they cause).

Equivalence of Simple Harmonic Motion
and Uniform Circular Motion. Uniform
motion of a body in a circle is closely related
to oscillatory up-and-down motion. Although
the distance y means nothing in the oscilla-
tor case, it can still be artificially given to
model the oscillation in terms of circular
motion.

Virtual Work.  We imagine a structure
moves a little—even though it is not really
moving or even movable. We use this small
imagined move to apply the law of energy
conservation. This principle is especially
useful in problems of the sort depicted in
figure 5, where we are asked to find the value
of weight W such that the system is in equi-
librium. Noting that a small move of W
toward the bottom should be counter-
acted by weights W1 and W2, we find
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Rocket Problems
These problems are taken from Feynman,
Leighton, and Sands (1966). How fast do we
have to send a rocket away from the earth so
that it leaves the earth? The problem can be
stated as a functional requirement: The rocket
must leave the earth. We are now asked to
find an attribute (the speed) of the rocket.
Notice that many other attributes have been
left out, and a pair of objects—the earth and
the rocket—have been identified. The essen-
tial influence is the earth’s gravitational field.

The kinetic energy plus the potential
energy of the rocket must be a constant. Let
us exaggerate and imagine the rocket in two
extreme positions. When it is far away from
the earth, it has zero potential energy. Its
kinetic energy is also zero because we can
assume that it barely left the earth. However,
initially it has the total energy 

where m is the rocket’s mass,

M is the earth’s mass, and R is the earth’s
radius. The conservation of energy 

gives where .

With a small change to the problem, at
what speed should a satellite travel to keep
going around the earth? It turns out that
energy conservation is not the best approach
to this problem. A force approach written as
an equality between centrifugal and gravita-

tional forces, , gives 

The reason we thought that a force
expression is more convenient here results
from the nature of the problem; there is a
rotating object, and this object guides our
search among the mathematical expressions
applicable to the problem. This line of reason-
ing should be compared with de Kleer’s

(1975) search strategy.
Now let us take a look at the following

problem. A rocket of large mass M ejects a
small piece of mass m with a velocity V rela-
tive to the rocket. With the assumption it was
standing still, the rocket now gains a velocity
v. With the law of momentum conservation,

this velocity is seen to be v = .   Thus,

rocket propulsion is essentially the same as
the recoil of a gun. It does not need air to push
against (Feynman, Leighton, and Sands 1966).

Let us suppose that the two objects are
exactly the same, and then we have a little
explosion between them. After the explosion,
one is moving, say, toward the right, with a
velocity v. Then it appears reasonable that the
other body is moving toward the left with a
velocity v because if the objects are alike, no
reason exists for right or left to be preferred;
so, the bodies would behave symmetrically.

The Ball with Strings
Consider figure 6, which is taken from den
Hartog (1961). A heavy ball of weight W is
suspended by a thin thread and has an identi-
cal thread hanging from it. When we start
pulling down on the lower string, which of
the two strings will break first?

Figure 6. The Ball with Strings.
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predict, for example, that water would slowly
evaporate if it is left in an open jar at room
temperature. This weakness results from the
fact that no change is immediately observable
at a macrolevel, the realm of discourse of the
envisioner.

All things are made of atoms, particles that
move around in perpetual motion, attracting
or repelling each other depending on the dis-
tance between them. Physicists think that our
knowledge of atoms gives us useful informa-
tion (Feynman, Leighton, and Sands 1966).
The atomic hypothesis describes processes
well. For example, let us observe the jar with
some water in it. What happens as time
passes? The water molecules are constantly
moving around. From time to time, one on
the surface is hit strong enough so that it flies
out. Thus, molecule by molecule, the water
evaporates.

If we cover the jar with a lid, we observe no
change because the number of molecules
leaving the surface is equal to the number of
those coming back. Thus, in the long run,
nothing happens. Note, however, that we
should find a large number of water
molecules among the air molecules. If we
take the lid away and replace the moist air
with dry air, water again evaporates. The
number of molecules leaving the surface is
still the same, but not as many are coming
back. Interestingly, relating the frequency
with which the atoms collide to the tempera-
ture, one can also understand such phenome-
na as why evaporation resumes in a covered
jar if you heat the water.

The concept of equilibrium is an important
one for envisionment and one that provides
an excellent macrodescription of a microcon-
cept. Water molecules are constantly leaving
the fluid and entering the air and vice versa.
If the rates of entry and exit are equal, then
the air is saturated, and there is no evapora-
tion (putting a lid on the jar causes the air to
saturate after some time interval and stops
the evaporation process).

The Heated Rubber Band
This problem is taken from Feynman,
Leighton, and Sands (1966) and is another
good example of the convenience of thinking
in terms of atomic processes. If we apply a gas
flame to a rubber band holding a weight, the
band contracts abruptly, as shown in figure 7.
How can we explain this phenomenon?

A molecular explanation would be as fol-
lows: A rubber band consists of a tangle of
long chains of molecules, not unlike a molec-
ular spaghetti with cross-links. When such a
tangle is pulled out, some of the chains line

We assume that we apply force F. The
bottom string experiences F, but the upper
string experiences W + F. Thus, the upper
string will break first. According to den
Hartog, this effect happens only if we pull
down slowly. If we instead give a sudden,
sharp pull to the lower string, it breaks, and
the ball remains suspended. This effect has to
do with the fact that the threads are elastic
and have a certain elongation associated with
the force sustained by them. By giving a quick
pull to the lower thread, the force in the
lower thread can be made quite large, and this
force accelerates the ball downward. Howev-
er, the movement of the ball takes some time,
and before any appreciable downward dis-
placement is observed, the string is broken.

Den Hartog relates a similar experiment.
Consider a ball, with a single string attached
to it laying on a table. By a slow pull, one can
drag the ball on the table with a uniform
speed. In this case, the applied force is equal
to the friction force between the ball and the
table. A quick pull, however, breaks the
thread in an instant. For a short time, the ball
is subjected to a large force that subjects it to
acceleration. However, the ball hardly moves
because the time interval is small. Instead, its
velocity is destroyed by the retarding action
of the friction force.

The Open Water Jar
A major weakness of the current envisioners
is their inability to switch between
macroworlds and microworlds. In other
words, the individuals that an envisioner
knows about are either in the world as we see
it or are underlying the world (atomic pro-
cesses). (In fact, Schmolze’s [1987] thesis is
the only attempt, albeit a rather restricted
one, to deal with atomic processes.) To our
best knowledge, no current envisioner can
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up along the direction of pull. At the same
time, chains are hitting each other continual-
ly because of thermal motion. Thus, if a chain
is stretched, it does not remain stretched by
itself; it would be hit from the sides by other
chains that would tend to unstretch it again.
When we heat the rubber band, we increase
the amount of bombardment on the sides of
the chains.

With thermodynamics, this explanation
can be made quantitative. When heat ∆Q is
delivered, the internal energy is changed by
∆U, and some work is done. The work done
by the rubber band is –F∆L, where F is the
force on the band, and L is the length of the
band. Note that F can be considered a func-
tion of temperature T and length L, just as gas
pressure can be expressed as a function of T
and volume V. From the first law of thermo-
dynamics, we get ∆Q = ∆U – F∆L. The term
–F∆L, the work done by the rubber band, is
analogous to P∆V, the work done by a gas.
Just as the gas expands when heated and does
work on its surroundings, so does the rubber
band work and lift the weight attached to it.
The second law applies as well; from it, one
can calculate how much the force exerted by
the rubber band increases (with increasing
temperature) in terms of the heat needed to
keep the temperature constant when the
band is stretched a little bit (Feynman,
Leighton, and Sands 1966). Feynman extends
the analogy: “If one can write ∆U = ∆Q + A∆B
where A and B represent different quantities,
force and length, pressure and volume, etc.,
one can apply results obtained for a gas by
substituting A and B for P and V” (Feynman,
Leighton, and Sands 1966, p.45-4). (He then
illustrates this point by considering a battery,
where A = voltage and B = charge.)

Other Related Research
A discussion of naive physics and qualitative
physics is given in Schmolze’s (1987) disserta-
tion. Here, we offer a shorter discussion for
completeness and refer the reader to
Schmolze for an analysis of these areas. (N.B.
We omit a discussion of Forbus’s [1984] quali-
tative process theory, nonwithstanding its
importance). The articles by de Kleer and

Brown (1984), Kuipers (1984, 1986), Forbus
(1984), Forbus and Gentner (1986), and
Hayes (1985) form the basis of naive and
qualitative physics. Incidentally, it is not easy
to delineate the areas covered by these terms.
We propose that naive physics should be
understood as the construction of knowledge
representation methods, and qualitative
physics should cover reasoning techniques.

With the term naive physics, Patrick Hayes
(1985) proposed the construction of a formal,
sizable portion of commonsense knowledge
about the physical world. This corpus should
include knowledge about objects, shape,
space, movement, substances, time, and so
on. As for the knowledge representation lan-
guage to be used, Hayes is not specific; a col-
lection of assertions in logic, for example,
might be sufficient (see Essential Attributes
and Influences). At this preliminary stage, he
is not interested in the efficiency of reasoning
with this body of knowledge. What he is
really after is “the extent to which it [a naive
physics theory] provides a vocabulary of tokens
which allows a wide range of intuitive concepts
to be expressed, to which it then supports
conclusions mirroring those which we find
correct or reasonable” (Hayes 1985, p. 470).

Qualitative physics provides an account of
behavior in the physical world. Unlike con-
ventional physics, qualitative physics predicts
and explains behavior in qualitative terms.
Although the behavior of a physical system
can be given by the precise values of its vari-
ables (temperatures, velocities, forces, and so
on) at every moment, such a description fails
to provide insights into how the system
works. Important concepts causing change in
physical systems are concepts such as
momentum, force, and feedback that can be
intuitively understood (de Kleer and Brown
1984). In conventional physics, they are
embedded in a framework of continuous dif-
ferential equations. In qualitative physics,
each measurable property such as the speed
of a ball is represented in two parts: a quanti-
ty and its rate of change. The representation
is qualitative because the quantity values are
selected from a discrete quantity space. For
example, the quantity space for water can
only have two values: the freezing and the
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of a component over its entire range of opera-
tion, the range is divided into subregions,
each characterized by a different component
state where different confluences apply.
When the valve is closed, the correct conflu-
ence should read ∂Q = 0; we simply do not
say anything about P. Similarly, when the
valve is open, the confluence becomes ∂P = 0.

ENVISION has a component library where the
components relevant to the reasoning
domain are stored. Another module holds the
topology of the device under consideration.
The input to ENVISION is the input signals and
boundary conditions. The output is a behav-
ioral prediction along with a so-called causal
explanation. De Kleer and Brown’s principle
of no function in structure requires that the
laws of the parts of the device cannot pre-
sume the functioning of the entire device.
Various classwide assumptions are made to
avoid tricky situations. For example, in fluid
flow, enough particles always exist in a pipe
so that macroscopic laws hold; the mean free
path of the particles is small compared to the
distances over which the pressure appreciably
changes; dimensions of an electric circuit are
small compared to the wavelength associated
with the highest frequency; and so on.

QSIM and CA

Qualitative simulation can be defined as the
derivation of a behavioral description of a
mechanism from a qualitative description of
its structure. Kuipers (1986) believes that
causality can be taken as identical to value
propagation with constraints. Hence, Kuipers
(1984) has a constraint-centered ontology.
(However, de Kleer and Brown [1984] and
Forbus [1984] have device- and process-cen-
tered ontologies, respectively.) Kuipers’ quali-
tative simulation framework is a symbolic
system that solves a set of constraints
obtained from differential equations. His QSIM

algorithm is guaranteed to produce a qualita-
tive behavior corresponding to any solution
to the original equation. He also shows that
in some cases, a qualitative description of
structure is consistent with an intractably
large number of behavioral predictions. A
couple of techniques representing different
trade-offs between generality and power have
been proposed for taming this intractable
branching (Kuipers and Chiu 1987).

As an example of how QSIM can be used,
consider the problem of throwing an object
vertically into the air from some height. This
problem is first described to QSIM using a
problem-description language. In addition to
the initial values of the problem variables,
the description includes the physical con-

boiling temperatures. In general, rates of
change are limited to three cases: increasing,
decreasing, and constant.

ENVISION

De Kleer and Brown (1984) introduced quali-
tative differential equations (confluences)
and implemented them in a program called
ENVISION. To obtain confluences, we let contin-
uous variables take discrete values from a
quantity space, such as {0,+,–}. Let [x] denote
the qualitative value of an expression x with
respect to the quantity space. Then the
proposition “x is increasing” is written as

= +, and we can define arithmetic to deal

with [x] + [y] or [x][y], although cases exist
where ambiguities have to be resolved using
numeric values (for example, when the oper-
ation is addition and [x] = + and [y] = –). Let

∂x denote     . Using confluences, we can

explain as follows: Consider the pressure reg-
ulator in figure 8, which is adapted from de
Kleer and Brown (1984). A confluence such as
∂P + ∂A – ∂Q = 0, where P is the pressure
across the valve, A is the area available for
flow, and Q is the flow throughout the valve,
describes this device in qualitative terms. An
increase in pressure at a is seen to cause an
increase in pressure at point b, which gener-
ates more flow through b. As a result, pressure
at c increases and is felt at d. Then the
diaphragm e presses downward, causing the
valve to close somewhat. As a result, constant
pressure is maintained at c, although the
pressure at a is fluctuating. Because a single
confluence cannot characterize the behavior
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straints (lawlike knowledge) acting on the
ball: and a = g < 0, where s, v,

and a stand for displacement, velocity, and
acceleration, respectively. The user enters
these constraints into the system. (In the
future, it might be possible to extract the rele-
vant portion of a physics knowledge base to
use it in a problem.4) From this initial infor-
mation, QSIM reasons in an intuitive way and
finds that the ball rises to a particular height,
stops, and then falls to the earth again. The
landmark point where the velocity becomes
zero is discovered by QSIM. Landmark values
are important in identifying the different
regions of behavior for a mechanism.

In our view, the main problem with QSIM

lies in its essence. Obviously, QSIM has no
knowledge of physics whatsoever. In this
example, QSIM cannot possibly know that the
object might leave the earth to orbit around it
or even go to infinity if it is given enough ini-
tial speed (see Rocket Problems). QSIM assumes
for all cases that a is constant; it does not
know that the value g for a is applicable only
near the surface of the earth and that a
decreases inversely with the square of dis-
tance. Thus, by submitting a problem to QSIM,
it is assumed that all relevant knowledge is
given; any physics law left unspecified cannot
be used. It is only fair to note that this con-
demnation of QSIM is not total. The simple
yet mathematically elegant framework of QSIM

has much to offer. We think that one can
teach QSIM the necessary domain-specific
knowledge (in our case, classical mechanics
but in another case, for example, economics
laws) and, thus, employ it in a more useful
manner. It remains to be seen whether QSIM’s
problem-description style is sufficient enough
to codify laws such as energy conservation.
(The answer is probably no.)

An interesting extension of qualitative sim-
ulation is Weld’s (1987) comparative analysis
which was implemented in a program called
CA. CA deals with the problem of predicting
how a system reacts to perturbations in its
parameters and why. For example, compara-
tive analysis explains why a ball goes up
higher if it is thrown with a greater speed.
Weld also studies exaggeration. Consider a
question such as “What happens to the
period of oscillation of a block attached to a
spring on a frictionless table as the mass of
the block is increased?” Exaggeration suggests
that if the mass were infinite, then the block
would hardly move, and thus, the period
would be infinite. Therefore, had the mass
increased a little, the period would increase as
well. (For another example of exaggeration,
see Rocket Problems).

Summary

Contrary to their public image, expert sys-
tems are admittedly not true experts in their
fields (McCarthy 1987). This observation has
contributed to the emergence of dichotomies
in AI such as deep versus shallow knowledge.
Although problems exist with using these
adjectives, it is understandable that an expert
system is not a deep model of its domain of
expertise. An expert system’s if-then rules can
only capture the superficial characteristics of
a domain. However, a real expert has deeper
knowledge about his or her domain of exper-
tise. Several criteria have been suggested for
true expertise; we only give a representative
list.

First, experts can explain their line of rea-
soning in a logical way. Their explanations
differ markedly from those generated by cur-
rent expert systems. When asked about how a
certain result was obtained, an expert gives
information related both to the real world
and its abstract models, not just a list of the
rules used.

Second, experts use multiple models of a
domain to classify and solve problems in an
efficient manner. They solve difficult prob-
lems using difficult methods. However, for
easy problems, they either reduce the compli-
cated methods to simpler versions or use
already available simple methods. Further-
more, experts can predict. Before they delve
into a problem, they have some general idea
about what the solution should look like.

Third, experts can discover the inconsisten-
cies in ill-defined problems. They can judge
and eliminate irrelevant or contradictory
information. Presented with incomplete prob-
lem statements, they make reasonable
(default) assumptions. As a result, they can
work in a nonmonotonic mode, occasionally
revising their beliefs during the problem-solv-
ing process.

In this article, we argue that an expert
theory of envisioning should be based mainly
on physics knowledge. This theory satisfies
the previous criteria. The fictitious entities of
physics such as energy, work, and force make
up the elements that the envisioner reasons
about. Abstract principles such as superposi-
tion and laws such as Newton’s are used as
the essential tools for reasoning. Simplifying
techniques such as essential attributes and
influences are advocated as preliminary aids
to problem solving. Our work is in the precise
spirit of Larkin’s (1983) study in the expert-
novice difference in problem-solving perfor-
mance and is based on her distinction between
naive versus physical representations.

Kuipers’ QSIM

algorithm is
guaranteed to
produce a
qualitative
behavior 
corresponding
to any 
solution to 
the original
(differential)
equation.
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Many problems remain to be solved. Cen-
tral among them is choosing a concrete
knowledge representation method. We think
frames are appropriate for this purpose
(Minsky 1975). Another problem is to define
a core subset of physics that can be used
effectively for envisioning in different areas.
Until now, we have mainly studied the
domain of mechanics, following the AI tradi-
tion. Yet another project is to study the limits
of reasoning without recourse to lawlike
knowledge. To invert a remark of Larkin
(1983), “Why are people good at predicting
the outcome of physical interactions in the
world around them and so bad at physics,
even the branch of physics (mechanics) that
deals with interaction of everyday objects?”
Are there other, fundamentally different ways
of looking at the physical world? For exam-
ple, John McCarthy (1987) writes that a com-
monsense knowledge “database would
contain what a robot would need to know
about the effects of moving objects around,
what a person can be expected to know about
his family, and the facts about buying and
selling” (p. 1030) in addition to other infor-
mation. Here, the problem lies in integrating
these diverse (and, obviously, not all physi-
cal) domains of knowledge using a base lan-
guage, a problem McCarthy calls generality in
AI. McCarthy (1987) adds, “This does not
depend on whether the knowledge is
expressed in a logical language or in some
other formalism” (p. 1030). We agree and
note that although these other perspectives
might indeed be necessary, they are outside
the domain of this discourse and do not
diminish the need for representing physics
knowledge in an intelligent reasoner. ■
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Notes

1. In a related work, Davis (1986) gives the
following justification for the closed-world
assumption: “The ‘frame’ or ‘persistence’
problem of determining what remains true
over time requires no special treatment in
our logic. We can avoid this problem, not
by virtue of any special cleverness on our
part, but by virtue of the structure of the
domain. The predicates in the domain are
divided into two classes. The first class
includes predicates which depend on posi-
tion and velocity of objects. These are not
assumed to remain constant over any inter-
val unless they can be proven to be so. The
second class includes structural predicates,
depending only on the shape and other
material properties of the objects. These are
defined to be constant over the problem,
and so are defined atemporally. Similar
considerations would seem to apply to any
closed world, complete physical theory; it
is not clear why the frame problem should
ever create trouble in such a domain.”

2. It is arguable that an envisioner should
generate only the relevant parts of an envi-
sionment tree. Goal-directed envisioning is
fine as long as questions such as “What
happens next?” are avoided.

3. De Kleer published a revised, shorter ver-
sion of de Kleer (1975) in de Kleer (1977).
An interesting decision was made in the
second version to call the restricted-access
local consequent methods (RALCMs) of the
first version FRAMEs.

4. An important issue then is the composition
of the mechanism under consideration: A
system’s behavior should be deducible from

its structure (for example, components and
their connections), as mentioned in the
case of envision. Analogs of this principle
are used in various domains. In linguistics,
it is assumed that the semantic value of any
expression is a function of the semantic
values of its syntactic constituents. Thus,
the semantic rules compute the semantic
values of increasingly longer parts of a
statement. Admittedly, this view is some-
times dangerously mechanistic.
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