
103 

A Simple and Efficient Haloed Line Algorithm for 
Hidden Line Elimination 

W.R. Franklin’ and V. Akman† 

Abstract 1. Introduction 

An efficient algorithm, HALO, is given to compute 
haloed line drawings of wire frame objects. (Haloed 
line drawings are described by Appel et al. 1 

HALO has two parts: CUT and DRAW. CUT 
uses an adaptive grid to find all edge intersections. It 
overlays a square grid, whose fineness is a function of 

As computer aided design (CAD) deals with more com- 
plicated databases, it becomes crucial to display the 
data effectively so that people can comprehend it. A 
suitable method must be efficient since users will be 
interactively manipulating and displaying their data. 
With special purpose hardware becoming less expen- 

the number and length of the edges, on the scene. It 
determines the cells that each edge passes through, sorts 

sive, and even custom VLSI design becoming as easy as 
writing software (for those with the appropriate facili- 

these by cell to obtain the edges in each cell, and then, 
in each cell, tests each pair of edges in that cell for 

ties), a suitable algorithm should lend itself to parallel- 
ism and implementation in silicon. Since a CAD data- 

intersection. For broad classes of input this takes time 
linear in the number of edges plus the number of inter- 

base may contain wire frame models without any sur- 
face information, the algorithm should be able to han- 

sections. CUT writes a file containing all the locations 
where each edge is crossed in front by another. Given a 
halo width, DRAW reads this file edge by edge. For 
each edge, it subtracts and adds the halo width to each 
intersection to get the locations where the edge becomes 
invisible and visible. It sorts these along the edge, and 
then traverses the edge, plotting those portions where 
the number of “visible” transitions is equal to the 
number of “invisible” transitions. DRAW takes time 
linear in the number of edge segments. Dividing HALO 
into two parts means that redrawing a plot with a 
different halo width is fast, since only DRAW need to 
be rerun. 

dle them. 

This paper offers an efficient algorithm called 
HALO to solve this problem via the technique of 
haloed line elimination. Haloed lines are introduced in 
Appel et al.1 which cites many reasons for using them 
and gives good examples. Briefly, we assume that each 
line has a narrow region, or halo, that runs along it on 
both sides. If another more distant line intersects this 
first line, then that part of the farther line that passes 
through the first line’s halo is blotted out. For example, 
see figure 1 which shows four drawings of a pair of 
cubes. Figure 1(a) gives all the edges. Figure 1(b) draws 
the visible edges solidly, but removes the hidden edges. 

CR Categories and Subject Descriptions: I.3.5 [Com- Figure 1(c) draws the visible edges solidly, but dashes 
the hidden edges. Finally, figure 1(d) gives all the edges, 
but adds the haloed line effect. It should be clear that 

puter Graphics]: Computational Geometry and Object 
Modeling - geometric algorithms, languages, and sys- 
tem; F.2.2 [Analysis of Algorithms and Problem Com- 
plexity]: Nonnumerical Algorithms and Problems - 
geometrical problems and computations 

General Terms: Algorithms, design. 

Additional Key Words and Phrases: Hidden line elimi- 
nation, haloed line effect, wire frame. 

the haloed drawing shows more 3-dimensional relation- 
ships than the other three. Figure, 1(b) and 1(c) do not 
give the 3-dimensional relationship between two edges 
that are both hidden, since either both will be omitted 
or both will be drawn dashed. Further, if we dash the 
hidden edges, we must be able to tell which edges are 
hidden, so we must know what the faces of the objects 
are. In contrast, with haloed lines we produce a gap on 
an edge where it passes behind another edge, so we 
need only the edge data and not the faces. 

To be fair, Markowsky and Wesley2 show how to 
calculate the faces from just the edges, but the process 
is slow and subject to ambiguities. To observe that 
distinct objects can have the same wire frame, refer to 
figure 2 which shows an object with 9 vertices (the 
corners and the center of a rectangular block) and 20 
edges (the edges of the block and those connecting each 
block corner to the center). This represents a closed 

*Electrical, Computer and Systems Engineering Depart- 
ment 
Rensselaer Polytechnic Institute 
Troy, New York 12180 
USA 

†Centre for Mathematics and Computer Science 
Kruislaan 413 
1098 SJ Amsterdam 
The Netherlands 

North-Holland 
Computer Graphics Forum 6 (1987) 103-110 

http://www.eg.org
http://diglib.eg.org

	1. Introduction 
	2. The Algorithm 
	3. Implementation Notes 
	4. Efficiency 
	5. Extensions 
	Acknowledgments 
	References 



