TEN YEARS OF COMPUTER DEVELOPMENT

reason I think the small machine will always
have a certain use in companies of a certain
size. The problems of sharing a large machine
between several autonomous users are not just
technical problems concerned with parallel
programming and time-sharing; they involve
problems of conviction and competence, and
the secrecy of data supplied by different clients
for the use of one machine.

Competence in the technical activity of
putting several jobs on to the machine and

sharing time by micro-seconds does not over-
come sociological problems and business
administration problems. These must be
solved, however, before the type of commercial
time-sharing which Dr Wilkes foresees can
come about. Therefore, for a long time to
come, I believe there will be a future for the
small machine.

References
1. A. W. Burks, H.H. Goldstine, and J.

Von Neumann. ‘Preliminary Discussion
of the Logical Design of an Electronic
Computing Instrument. Institute for Ad-
vanced Study, Princeton, N.J. (1946).

2. J. Von Neumann. * First Draft of a Report
on the EDVAC.” Moore School of Elec-
trical Engineering, University of Pennsyl-
vania (1945).

3. M. V. Wilkes. ‘The second decade of
computer development’. The Computer
Journal, 1 (1), 98 (1958).

Short Notes

Implementation of Karp-Luby Monte Carlo
Method : An Exercise in Approximate Counting

Richard Karp and Michael Luby introduced a
powerful framework for the construction of
Monte Carlo algorithms to solve hard counting
problems [cf. Journal of Complexity 1 (1),
45-64 (1985)]. They then applied it, as a special
case, to the problem of counting the number of
satisfying truth-value assignments for a Boolean
formula in disjunctive normal form. In this
paper, we describe an implementation of that
algorithm. Our experiments show that it indeed
works very well in practice.

Received June 1987

1. Introduction

Counting is difficult. To quote Valiant:!
‘Numerous problems in the mathematical
and physical sciences can be reduced to
questions of counting solutions in com-
binatorial structures. Much effort has been
put into developing analytic techniques for
doing this effectively for the various prob-
lems that arise most frequently. A glance at
the literature, however, suggests that the
search for positive results has had only very
limited success, and that for the majority of
questions we still cannot count exactly in
any effective sense’

Similarly, while estimating the number of
simple (non-self-intersecting) paths between
two corners of a grid graph, Knuth observes:?

‘Of course, 1 have only generated an

extremely small fraction of these paths, so 1

cannot really be sure; perhaps nobody will

ever know the true answer.’

In complexity theory, the notion of # P-
completeness formalises the difficulty of
counting problems. Introduced by Valiant,
this class typically contains problems poly-
nomially equivalent to the counting problems
associated with many NP-complete problems
such as counting the number of Hamilton
circuits in a graph. The reader is referred to
Gary and Johnson,® and Valiant* for the
fundamentals of NP- and # P-completeness.
Angluin® and Stockmeyer® offer several theor-
etical results about # P. Problems which are
4 P-complete are at least as hard as NP-
complete problems, making it unlikely that a
polynomial algorithm exists to solve them.

Fortunately, the prospects are not as dim as
they look, mainly due to tools like Karp and
Luby’s innovative Monte Carlo framework
that offers an attractive alternative for several
problems of this sort.” (Hammersley and
Handscomb?® give an overview of Monte Carlo
techniques. Fishman® studies such techniques

in reliability area.) Using randomisation, Karp
and Luby propose fast algorithms which
report an ‘almost correct’ answer ‘almost
surely’, provided that one is willing to spend
an extra effort to make the quoted notions
more and more refined. Specifically, such an
algorithm returns after a polynomial effort in
the problem size, ¢, and d, an answer A* for a
counting problem whose exact answer is A4
such that

Prob{A '|A*—A| > ¢} <0

Here || denotes the absolute value.t In other
words, the method computes the answer within
relative error at most ¢ and attaches to it a
confidence value of at least 1 —J. Statistically
speaking, only 1009 percent of the time the
returned result would not obey the relative
error bound. Here. ¢ and J are small positive
constants specified by the user. Note however
that such algorithms generally have to make
(pe 'log 61O trials where p is a measure of
the problem size. Thus, while one can theor-
etically choose ¢ and ¢ as close to zero as
required, it is prohibitively expensive to use
very small values.

In this paper, we demonstrate that this is
not a serious issue since, using liberal values
likee = 0.1 and 0 = 0.1 will provide the almost
right answer. Therefore, there is essentially no
need to resort to conservative values like say,
& =0.001 and J = 0.001. Specifically, we de-
scribe an implementation of a Monte Carlo
algorithm by Karp and Luby for counting the
number of satisfying truth-value assignments
for a Boolean formula given in disjunctive
normal form.® For brevity, we shall frequently
cite results from Ref. 10 without elaboration.
The reader is asked to consult that paper for a
complete description.

2. Problem definition, notation and
Karp-Luby Algorithm

We closely follow the notation of Ref. 10. Let
X = {x;,x,,...,x,} be a set of Boolean vari-
ables. Thus each x; can be either 0 or 1. The
members of XU X where X ={x,x,,...,x,}
are called literals. Here X denotes the comp-
lement of x. A clause is a logical ‘and’ of a set
of literals. A disjunctive normal form (DNF)

formula is the logical ‘or’ of a set of clauses. A

truth-value assignment is a function f from X
to {0,1}. A truth-value assignment f is a
satisfying truth-value assignment for a given
DNF formula F if F evaluates to 1 upon
substitution of f{x,) for each variable x;.

Let F be given as U C, where C,’s are the
clauses. Let N, denote the number of truth-

t In the sequel, it will also be used to
denote the number of elements in a set but no
confusion will arise.

value assignments satisfying F. In this paper
we shall deal with the problem of computing
N, exactly or approximately. (In the latter
case it will be denoted by N¥%.) This problem
will be called CNTSAT in the sequel. It is
known that CNTSAT is # P-complete. Exact
but inefficient ways of computing N,. will be
postponed until Section 3. Now we shall
briefly summarise the Karp-Luby algorithm
to compute N}.

The algorithm of Karp and Luby to
approximately solve CNTSAT is based upon
the following crucial observation:

Let the universe S be the set of all tuples

(i, x) such that x is a truth-value assignment

yielding C; = 1. Let R be the set of all those

tuples (i,x) such that C; is the lowest-
numbered clause satisfied by x. Then |R| =

N,.

A trial of the algorithm consists of drawing a
member of S randomly and testing whether it
lies in R. Let us assume, without loss of
generality, that the clauses contain no con-
tradictory pair of literals or no repetitions of
the same literal.

The algorithm starts initialising N, to 0 and
computing |C,|'s and |S|. (By a slight abuse of
notation, |C| denotes the number of satisfying
truth-value assignments for clause C.) Com-
puting the former values is trivial, i.e. |C}| =
2"~ where k is the number of literals occurring
in C,. (Remember our assumption in the
preceding paragraph.) It is also noted that |S|
=2X|C| and |R| = |UJ C)|. Thus |S|/|R]| is at
most equal to m. This bound is essential since
using Bernstein’s inequality Karp and Luby
prove that a total of

N = ceil (1S||R|" In (2671) 4.5¢7%)

Trials would be required for the Monte Carlo
experiment. At each trial, the algorithm
computes a tuple (/,x) randomly, as noted
above. It then determines the lowest-numbered
clause C, satisfied by this x. If /=i it
increments the number of successful trials N
by one. The final step of the algorithm is to
report N, N7!|S| as the answer N%. By the
nature of the method, this answer is guaran-
teed to be ‘good’ by the formula

Prob{N'IN,—N}| > ¢} <o

Thus, with probability at least 1 — ¢, the value
N7} reported by the algorithm is a fine guess
for N,. i.e. it is off at most with relative error
€.

As for the complexity of the algorithm,
Karp and Luby proved that O(m®n) is the

THE COMPUTER JOURNAL, VOL. 34, NO. 3, 1991 279

bound. Briefly, the algorithm makes N =
O(m) trials each taking O(mn) time. Clearly,
the algorithm’s set-up time is only O(mn).

3. Implementation and computational
experience

Our implementation consists of three pro-
grams: COMB, CRIBLE and KL. They are
all written in Franz Lisp'!''? running under
UNIX{ and are available upon request. The
first two programs, verify the answer provided
by the last one. We now give a brief description
of each program.

COMB reports N,. exactly. It does so by
generating all combinations of the variables
and testing each combination to see if it
satisfies F. since there are 2" combinations to
be tested, this method is feasible only when n
is small.

CRIBLE also reports N,. exactly. It employs
the well-known ‘formule du crible’ attributed
to Silva and Sylvester.'® Briefly, let B}, B,, ...,
B,, be finite sets. Then the formula states

T (=npm

Ien—¢

ne

iel

s -

1

where 7 denotes the power set of {1,2,...,m}.
Note that in our case, B, = C,. Again, since
there are 2™ —1 terms, contributing to the
sum, this method is feasible only when m is
small.

KL reports N, approximately and with an
attached probability using the algorithm ex-
plained in the previous section. Initially, the
DNF formula Fis in a file. In addition to F,
the file contains the values of n, ¢, and J. For
example, the following is an image of the file
which contains the formula

F=xx,Ux;X,%3U X X, X, U X, X5, X,

50

a simple test for Karp-Luby algorithm.

This example is taken from Ref. 10;

(setqn9)

(setg F((14)(1 —23)(125)(13 -4 —5)))

(setq delta 0.1)

(setq eps 0.1)

(Note how the complements are denoted by
negative numbers.)

As soon as this file is read by KL, m is
determined and a check is made to see if the
formula is *valid’. After this, depending on
the values of n and m, either COMB or
CRIBLE is used to compute the exact value of
N,.. (Obviously, for large values of n and m,
neither will be satisfactory.) Then KL is called
to compute N¥.

Whenever KL needs to make a binary
choice, it uses the Lisp function random.
Normally, (random UpperBound) returns a
random number between 0 and UpperBound
— 1. Thus, a good way to get a ‘well-mixed’
sequence of Is and Os is to use random 1001)
and regard returned values less than 500 as Os
and values equal or greater than 500 as Is.
(N.B. Franz Lisp returns a deterministic
sequence for (random 2)!) KL also needs a
way to generate random reals between 0 and
1. It was found that calling (random 1001) and
dividing the result by 1000 was good enough.

1 UNIX is a registered trademark of A. T.
& T. Bell Laboratories.

SHORT NOTES

Finally, KL needed a way to select clause i
with probability |C;|/|S|. This was, following
Karp and Luby’s “trick * mentioned in Ref. 10,
implemented as follows. Create an array
TABLE of nentries with the following contents

TABLE[] =|S|"'S|C/.

1

To select a clause with a probability as
mentioned above, we first get a random real r
between 0 and 1. Then, using binary search we
find the least j such that TABLE [j]>r.
Clause j is the required clause. This method
works extremely well in practice using the real
number generator described above.

The test cases tried by KL are listed in
Appendix 1. Table 1 in Appendix 2 Summarises
the results of these tests. Table 2 in appendix
2 shows the timing information for the
undertaken cases. All timing information in
this paper is in CPU seconds excluding the
garbage collection. Further experiments with
individual formulas are tabulated in Tables
3(a)—(g) in Appendix 3. These are important
to appreciate the robustness and efficiency of
KL. In all the examples we have tested, the
answers were always very close to the exact
answer. Notice that using KL, we were able to
answer some tough questions for COMB and
CRIBLE such as F,, F,, and F;;. However,
due to the proven efficiency of its underlying
algorithm, in this paper our main goal was to
establish the field performance of KL, in terms
of closeness to the real answer using pseudo-
random number generators such as the one
provided by Lisp. (Thus, in a way we are not
really too interested in the timing figures since
we already know KL’s asymptotic worst-case
performance.) We believe that we have proved
that KL is extremely robust in that sense.

4. Summary

We have given an implementation of a Monte
Carlo algorithm due to Karp and Luby®’ to
solve CNTSAT, i.e. the problem of counting
the number of satisfying truth-value assign-
ments for a Boolean formula in disjunctive
normal form. Our experience* shows that the
algorithm is indeed very effective.

Two conclusions can be drawn from this
study. The first is that Monte Carlo methods
which employ approximation and random-
isation hand in hand are very useful and
should be used under appropriate circum-
stances.t (Another encouraging clue as to the
value of such methods is the emergence of so
called ‘simulated annealing’ or ‘cooling’ tech-
niques’ to solve NP-complete problems
approximately.) The general conclusion is
that, despite the general opinion, the com-
plexity theory is offering down-to-earth and
practicable algorithmic advice.

Acknowledgement

This work has been completed while the author
was a visiting researcher with the University
of Utrecht, Department of computer Science,
Utrecht, the Netherlands.

* Luby himself has also implemented sev-
eral algorithms in his Ph.D. dissertation.®

t Cf. Karp’s Turin lecture for his views on
this subject.!?

280 THE COMPUTER JOURNAL, VOL. 34, NO. 3, 1991

V. AKMAN*

Centre for Mathematics and Computer Sci-
ence (CWI), Kruislaan 413, 1098 SJ Amster-
dam, the Netherlands.

References

1. L. G. Valiant, Negative results on count-
ing. In Lecture Notes in Computer Science
67 (Proceedings of the 4th GI Con-
ference, Aachen, W. Germany), edited
K. Weihrauch, pp. 38-46. Springer-Verlag
(March 1979).

2. D. E. Knuth, Mathematics and computer
science: Coping with finiteness. Science
194, 1235-1242 (1976).

3. M. R. Garey and D.S. Johnson, Com-
puters and Intractability : A Guide to the
Theory of NP-Completeness. W. H. Free-
man, San Francisco (1979).

4. L. G. Valiant, The complexity of enumer-
ation and reliability problems. SIAM
Journal on Computing 8 (3), 410-421
(1979).

5. D. Angluin, On counting problems and
the polynomial time hierarchy. Theor-
etical Computer Science 12, 161-173
(1980).

6. L. Stockmeyer, On approximation al-
gorithms for # P. SIAM Journal on Com-
puting 14 (4), 849-861 (November 1985).

7. R. M. Karp and M. Luby, Monte Carlo
algorithms for enumeration and reliability
problems. Proceedings of the 24th IEEE
Foundations of Computer Science Sym-
posium, pp. 56-64 (1983).

8. J. M. Hammersley and D. C. Hands-
comb, Monte Carlo Methods. Methuen,
London (1964).

9. G. S. Fishman, 4 Monte Carlo sampling
plan for estimating reliability parameters
and related functions. Tech. Rep.
UNC/ORSA/TR-85/7, Curriculum in
Operations Research and Systems Ana-
lysis, University of North Carolina at
Chapel Hill (June 1985).

10. R. M. Karp and M. Luby, Monte Carlo
algorithms for the planar multiterminal
network reliability problem. Journal of
Complexity 1 (1), 45-64 (1985).

I1. J. K. Foderaro and K. L. Sklower, The
FRANZ LISP Manual. University of
California, Berkeley (September 1981).

12. R. Wilensky, LISPcraft. W. W. Norton
& Company, New York (1984).

13. L. Comtet, Analyse Combinatoire (Tome
Second). Presses Universitaires de France,
Boulevard Saint-Germain, Paris (1970).

14. R. M. Karp, Combinatorics, complexity,
and randomness. Communications of the
ACM 29 (2), 98-109 (February 1986).

15. S. Kirkpatrick, C. D. Gelatt, Jr., and
M. P. Vecchi, Optimisation by simulated
annealing. Science 220 (4598), 671-680
(13 May 1983).

16. M. Luby, Monte Carlo methods for esti-
mating system reliability. Tech. Rep.
UCB/CSD 84/168. Computer Science
Division, University of California,
Berkeley (June 1983).

* Now at: Department of Computer and
Information Science, Bilkent University, PO
Box 8 06572, Maltepe, Ankara, Turkey.

SHORT NOTES

APPENDIX 1
List of tested Boolean formulas

Below, we list the formulas used to test KL. For other parameters such as n the reader is referred
to Table 1 in Appendix 2. For ease of typesetting, we choose to stick here to the notation used
by KL (cf. Section 3).

@ F=((123)(1-2-3)(=1-2-3)(=123)(36)(3=7)(67) (12) (13 —4) (47) (45 —6) (2)

(36) (13-7))

F,=((125) (14—89) (23456 —10) (1 —345) (1234567) (-2 —3 —4) (=2))

F,=((14) (1 =23) (125) (13 —4 —5))

F,=((123=7)(12-34)(1 —457) (1 =23 —4) (—1267) (=1 —234) (=1 =2 —34) (- 12

—34))

F=((D (=D @) (=2)3)(3) (5) (=5 () (=8))

Fo=((1-2-3)(15-6) (345) (123 —4) (123456) (2 —3))

F,=((=12-3)(=2-3)(—=2—-34) (14—5—6) (12345) (23456))

F,=((12) (234) (456) (567) (—1 =2 —=3) (=2 =7) (56))

F,=((1 —2—11)(1234-5-917) (12345678911 —1920) (13) (1) (1791315 —16 —17

—20) (1456 —8 —10 —11 —12 —13) (1234) (15—19 —20) (14689) (1 -4 —56 —7 —12

—13)(120) (1 —1920) (1220) (11112131418 —19) (11020) (11314 16) (12345) (1 —2 —3

—4-5)(1268 —10))

® F,=((1)(12) (12 —4) (110) (123 —9) (125) (12425) (1 —1819) (12324) (13519) (13 —4
—25))

@ F,=((123)(1234)(123456)(12346789) (123491011 —12) (1234 —15—16 —17) (12
341718) (123 —182021) (1235 —2122232425) (123920) (12357 —20) (12318 —19) (12
3-4-16))

@ F,=((123456789)(—1-2—-3-4-5-6—-7-8-9)(101112131415) (—10 —11 —12
“13—14—15) (1234567 =89 —10 —11 —1213 — 14 —15))

@ F,=((—1234567891011) (12345678910 —11) (12345678910 —11) (—1 —223456
7891011))

@ F,=((123456789101112131415161718) (12345678910111213 —1415—16171819
20) (=1 —-2—-34567891020) (—1 —2 —345678910111220) (—1 —2 —34—5—6—78
9121517 — 1820))

@ F,=((12345678910111213141516171819) (234567891011121314151617181920)
(34567891011121314151617181920) (4 —5—6—7—8 -9 —10—11 —12 —13 —14 —15
—16—17—18) (5—67—89 —10 —11 —12 —13 —14151920) (=1 -2 -3 -4 —5—6—7
—87 -9 —10 =19 —20))

APPENDIX 2
Experimental Results for the formulas in Appendix 1

The following table summarises the results of our experiments. Throughout this Appendix we
utilised ¢ = 0.1 and 6 = 0.1. The last column that we denoted by Err gives the relative error in the
approximate answer. The last two columns were computed with higher precision and then
rounded to the values shown.

Table 1. Overall counts ¢ = ¢ = 0.1)

F n m N N, |S] N, N} Err
1 7 14 18874 6298 368 124 122.8 +0.01
2 10 7 9437 6889 920 664 671.6 +0.01
3 5 4 5393 3933 18 13 13.1 +0.01
4 7 8 10785 10135 64 60 60.1 +0.00
5 10 10 13481 2720 5120 1024 1033.0 +0.01
6 6 6 8089 6696 45 37 372 +0.00
7 6 S 6741 6195 24 22 22.1 +0.00
8 7 7 9437 5426 160 92 920 —0.00
9 20 20 26962 7458 1931520 524288 534280.7 +0.02

10 25 11 14829 3928 65011712 16777216 17220716.5 +0.03

11 25 13 17526 6138 12124160 4194304 42461539 +0.01

12 15 5 6741 6711 1153 1149 11479 —0.00

13 12 4 5393 4043 8 6 6.0 —0.00

14 20 5 6741 5510 709 581 579.5 —0.00

1S 25 6 8089 8027 13568 13472 134640 —0.00

To compare the timings of the programs Lisp function ptime was used. Normally, ptime also
returns the time spent in collecting garbage. This is discounted in the following figures. When left
unspecified, the exact answer was computed by inspection. (For example, one can easily see that
F, reduces to x,. Thus the answer becomes 2'® = 524288. It must be remarked that, in general, a
counting program may gain considerably on the average by first attempting to simplify.) The
column specified as 2" is the maximum possible count; thus N,, can be at most this much. The
column Perc gives the ratio of the exact answer to the maximum possible.

APPENDIX 3
Execution time vs. ¢ and ¢ for some formulas

The following tables give some statistics to
demonstrate the effect of changing ¢ and 6. We
tried here both simple formulas (Tables
3(a)(c)) and more difficult ones (Tables

3(NHe).

Table 3(a). Results for F

THE COMPUTER JOURNAL, VOL. 34, NO. 3, 1991

e 0 N N, N} Err CPU
0.1 0.2 14507 4892 124.1 +0.00 458.4
0.1 0.3 11952 4024 1239 —-0.00 377.8
0.1 0.4 10140 3439 124.8 +0.01 316.1
0.1 0.5 8734 2980 125.6 +0.01 270.6
0.2 0.1 4719 1551 120.9 —0.02 148.0
0.3 0.1 2098 717 125.8 +0.01 64.8
0.4 0.1 1180 371 115.7 —-0.07 37.0
0.5 0.1 755 258 125.7 +0.01 23.6
Table 3(5). Results for F,

e 0 N N, N} Err CPU
0.1 0.2 7254 5285 670.3 +0.01 271.8
0.1 0.3 5976 4367 672.3 +0.01 2299
0.1 0.4 5070 3605 654.2 —0.01 193.6
0.1 0.5 4367 3085 649.9 —0.02 163.5
0.2 0.1 2360 1675 653.0 -0.02 913
0.3 0.1 1049 733 642.9 —0.03 398
04 0.1 590 428 667.4 +0.00 21.8
0.5 0.1 378 262 637.7 —-0.04 14.2
Table 3(c). Results for F,

e 0 N N, N} Err CPU
0.1 0.2 4145 3048 13.2 +0.01 70.6
0.1 03 3415 2492 13.1 +0.01 58.1
0.1 04 2897 2126 13.2 +0.01 489
0.1 0.5 2496 1803 13.0 +0.00 423
0.2 0.1 1349 983 13.1 +0.01 23.0
0.3 0.1 600 434 13.0 +0.00 10.5
04 0.1 338 261 13.9 +0.07 5.7
0.5 0.1 216 164 13.7 +0.05 3.8
Table 3(d). Results for F,

e 0 N N, N} Err CPU
0.1 0.2 8290 7777 60.0 +0.00 246.8
0.1 03 6830 6396 59.9 —0.00 201.2
0.1 04 5794 5432 60.0 +0.00 169.4
0.1 0.5 4991 4676 60.0 —0.00 1SI.1
0.2 0.1 2697 2556 60.6 +0.01 78.7
0.3 0.1 1199 1131 60.4 +0.01 35.5
04 0.1 675 631 59.6 —0.00 19.8
0.5 0.1 432 404 59.8 —-0.00 129
Table 3(e). Results for F;

e 6 N N, Nt Err CPU
0.1 0.2 10362 2166 1070.2 +0.04 292.8

- 0.1 03 8538 1711 1026.0 +0.00 236.0

0.1 04 7243 1427 1008.7 —0.01 208.9
0.1 0.5 6349 1293 1061.1 +0.04 182.7
0.2 0.1 3371 667 1013.1 —0.01 93.9
0.3 0.1 2854 354 936.5 —0.08 41.7
04 0.1 843 178 1081.1 +0.05 22.7
0.5 0.1 540 118 11188 +0.09 152

281

Table 2. Overall timings (seconds)

SHORT NOTES

Table 3(f). Results for F,

CPU

F 2» N, Perc COMB CRIBLE KL e & N N, N* Err
1 128 124 097 4.7 — 5853 0.1 02 20724 5739 534886.8 +0.02 1384.8
2 1024 664 0.65 122.9 13.7 358.1 0.1 0.3 17075 4723 534264.6 +0.02 1132.1

0.1 0.4 14485 4047 539652.1 +0.03 948.2

3 32 13041 1.7 0.7 93.4 0.1 0.5 12477 3457 5351659 +0.02 808.6
4 128 60 047 6.5 7.6 3145 434
p 1024 1024 1.00 1% 1059 3702 02 0.1 6741 1894 5426938 +0.03 434.9

: . . : 03 0.1 2996 849 547350.0 +0.04 196.0

6 64 37058 2.3 L6 1999 04 0.1 1686 457 523549.6 —0.00 108.9
7 64 22 0.34 2.2 0.8 143.8 0.5 0.1 1079 288 5155494 —0.02 69.3
8 128 92 0.72 3.9 7.8 243.2
9 1048576 524288 0.50 — — 1768.0
10 33554432 16777216 0.50 — 1125.6 992.7 Table 3(g). Results for F,,

11 33554432 4194304 0.12 — — 1357.1 =
12 32768 1149 0.30 — 1.5 3456 . ,
13 4096 6 0.00 359.6 0.5 2031 coN N W Err CPU
14 1048576 581 0.00 — 1.7 5399

0.2 11398 2959 168774922 +0.01 772.3

15 33554432 13472 0.00 — 4.4 1008.0 16136971.6 t0'04 640.9

0.4 7967 2135 17421865.8 +0.04 512.4
17695159.3 +0.05 446.5
17901013.5 +0.07 248.7
18028126.4 +0.07 111.4
17182167.7 +0.02 63.1

16307651.7 —0.03 39.8

0.1
0.1 0.3 9391 2331
0.1
0.1

.1 0.5 6863 1868
0.2 0.1 3708 1021
03 0.1 1648 457
04 0.1 927 245
0.5 0.1 594 149

Improved Recursion Handling through Integrity
Constraints

A new form of database integrity constraint is
introduced which describes the structure present
in data when that structure takes the form of a
graph, tree or list. This type of integrity
constraint is of particular benefit in reducing the
overhead when detecting termination in the case
of recursive queries.

Received September 1987

1. Introduction

Some database integrity constraints control
the values which an attribute can adopt (e.g.
age < 21) or the existence of values in other
relations, e.g.

if there is an entry for supplier n in the
supplier-parts relation, then there must be a
corresponding entry for supplier » in the
supplier relation.

Other constraints (data dependencies) are
concerned with the relationship between the
sets of values in one set of attributes with the
sets of values in some other, e.g. functional
dependencies, multivalued dependencies, etc.

However, there are other relationships
which may be present in the data in a database
which are not readily captured by existing
constraints. For example, the data stored in a
relation may represent some form of structure
such as a graph, tree or list. Apart from some
limited cases, it is not immediately obvious
how one can represent information such as
this using existing integrity constraints.

If the data in a relation (or set of relations)
do satisfy some structural form, one may wish
to impart this information to a database
management system so that it can check that
this form is maintained just as it checks the
integrity of data as specified by other integrity
constraints. For this purpose a new form of
constraint, called a structure constraint, is
proposed.

Besides the obvious use of such a constraint
in maintaining the integrity of data in a
database, this type of constraint carried with it

another significant advantage. It can be used
to produce a more efficient system for handling
recursion in databases by reducing the over-
head incurred in run-time detection of ter-
mination.

The following section describes the basic
structural forms used in this constraint. Sec-
tion 3 details the structure constraints and
gives examples while Section 4 discusses their
role in improving the efficiency of dealing with
recursive relations. Section 5 looks at some
theorems relating to these constraints.

2. Structural forms

This section considers some basic structural
forms which may exist in a set of data stored
in a relation. Before defining these structures,
consider briefly some terminology which will
be used. Let 7 be a set of constraints. SAT(J)
denotes the set of relations that satisfy each of
the constraints in /. Let 7, and J, be constraints
or sets of constraints.

1, = Lif SAT (I,) < SAT (I,)

A tuple is a set of mappings from attributes
to domain values. A relation is a set of tuples.
Let R be a relation over a set, U, of attributes
and let te R. For W < U, we let t(W) denote
the restriction of ¢ to the set W. Let R be a
relation over a set, U, of attributes, and let 4,
B < U. R obeys the functional dependency A —
B if for any pair of tuples t;,t,e R, 1,(4) =
t,(A) implies that ,(B) = t,(B).

suppose that R is a relation with the
relational scheme R (4, B, C) where 4 and B
are attribute sets and C is an abbreviation for
the rest of the attributes. Then:

Definition

A chain over a pair of attribute sets 4 and B of
R (4, B,C) is a sequence of tuples (a,, b,,¢c,),
(ay, by, ¢,) ... (a,,b,,c,) where b, =a,, for
every ,0<i<n.

Definition

The length of a chain is the number of tuples,
n, in the sequence.

282 THE COMPUTER JOURNAL, VOL. 34, NO. 3, 1991

2.1 Directed acyclic graph

A typical example of this type of structure
occurs in the part of relation, where an object
is described in terms of its component parts.
An illustration of this is given in Table 1.

Since this graph is intended to be acyclic, no
part should be a sub-part of itself. Thus the
addition of a tuple such as

part-of (5, 1, 1)

would be invalid as it would violate the
condition of acyclicity.

A formal definition of this type of structure
is as follows:

Definition

A directed acyclic graph structure (dag struc-
ture) is present in attribute sets 4 and B of a
relation R with relation scheme R (4, B, C),
written as graph (A, B), if there is no chain of
the form (a,, b,,c,), (a,, b,,¢,) ... (a,, b,,c,) in
which a, = b

n-

2.2 Directed tree structures

A special case of a dag structure is the tree
structure. This is identical to the tree structure
in QBE [1,2]. An example of this is shown in
Table 2.

Table 1. Example of acyclic directed graph
structure

part part 1-no part 2-no no-of-pts

1 2 1

1 3 2

2 4 4

2 5 2

3 S 7
51 55 2
100 101 2
101 102 4
101 103 2
103 104 2
100 104 2

