
Deriving design aspects from conceptual models

Bedir Tekinerdogan & Mehmet Aksit

TRESE project, Department of Computer Science,
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.

email: {bedir | aksit}@cs.utwente.nl, www server: http://wwwtrese.cs.utwente.nl

Abstract. Two fundamental issues in aspect orientation are the identification
and the composition of aspects. We argue that aspects must be identified at the
requirement and the domain analysis phases. We also propose a mechanism
for gradually composing aspects throughout the software development proc-
ess. We illustrate our ideas for the design of a transaction framework.

1. Introduction

Software components can be defined as programming language abstractions. Exam-
ples of software components are procedures, data structures and objects. Program-
ming languages are vehicles to express abstract executable mechanisms. Compo-
nents can be identified by the use of heuristic rules in conventional methods. For
example in OMT [Rumbaugh 91] tentative classes are identified by looking for
nouns in a problem statement. The identified components are composed by means of
the object-oriented composition mechanisms, such as inheritance, aggregation and
association. Object-oriented methods define a number of heuristic rules to identify
relations among components.

Similar to object-oriented design, in aspect-oriented design, two issues appear to
be important: identification of the abstraction models, that is, aspects and the com-
position of these aspects, or aspect weaving [Kiczales et. al 97]. We will focus on
these two issues in this paper. Regarding the aspect identification we argue that like
objects, aspects should be identified during the requirement and the domain analysis
phases. We will also discuss an approach in which aspects are gradually composed
along the software development process.

The outline of this paper is as follows: Section 2 will elaborate on our approach
for aspect identification and aspect composition. Section 3 will give our conclu-
sions.

2. Aspect identification

2.1 Where to look for?

Software development can be seen as a problem solving process in which the re-
quirements represent the problem for which a programming solution is required. A
software development process involves a number of steps, which produce various
kinds of software artifacts. These steps can be considered as transitions between
artifacts. No doubt, the early phases of the software development process includes

concerns, which have a major impact on the final structure and quality of the soft-
ware [Aksit 97]. We therefore, believe that aspects appear beyond the programming
level and as such the identification of aspects should start at the levels of require-
ments and domain analysis phases.

2.2 How to identify?

Here the fundamental question is, given a problem domain like for example the
transaction domain, how should we abstract and identify the aspects? To address this
issue, we propose the method described in Figure 1, which defines the basic steps
needed to identify aspects in the earlier phases of the software development process.
This method will be described in more detail in subsequent sections.

3a. Conceptual Modeling

3b. Aspect abstraction
4. Define design

space

6. Identify Rules for
Aspect composition

5. Aspect Composition
Specification

PROBLEM
DOMAIN

ASPECT-ORIENTED
DESIGN

CLIENT’S
WISH

1. Requirements
Analysis

2. Domain Analysis

Fig. 1. The aspect modeling method

2.2.1 Requirements Analysis

The first step in software development is the requirements analysis phase. The goal
of the requirements analysis phase is to understand and capture the exact needs of
the clients of a software system [Wieringa 96]. Requirements analysis deals with
eliciting, analyzing and capturing the requirements of the client for which the soft-
ware system is developed.

2.2.2 Domain Analysis

Domain analysis aims at systematically identifying, formalizing and classifying the
knowledge in problem domain in a reusable way [Arrango 94]. The basic steps of
domain analysis are the identification of the knowledge sources, the data collection
from the knowledge sources, data analysis of the extracted knowledge and knowl-
edge modeling. Domain models are mainly derived by considering commonalities
and variations between the retrieved data. The basic difference between require-
ments analysis and domain analysis is that requirements analysis focuses on the
requirements of one application whereas domain analysis attempts to model the
knowledge of a wide range of related applications. The deliverables of domain
analysis are a set of domain models, relations and rules that are common in a prob-
lem domain for the corresponding applications. Domain models can be represented
in many ways, e.g. ER diagrams, object-oriented class diagrams, or just ordered

text. In [Aksit et. al. 98] we applied domain analysis techniques to support the de-
velopment of stable frameworks.

2.2.3 Conceptual modeling

Requirements analysis extracts the potential aspects. Domain analysis collects
knowledge about these aspects. The conceptual modeling process elaborates on the
domain model to define canonical models. Canonical models are similar to concepts
of the classical view [Smith & Medin 81]. Concepts are not chosen arbitrarily but
are formed by abstracting the knowledge about instances. An identified concept is
useful if it has meaningful differences with the existing concepts. The meaningful-
ness on its turn is defined by the context.

An example: Aspect modeling for Adaptable Transaction Systems

We applied our above ideas for aspect identification and aspect modeling in a pilot
project which aims at designing an object-oriented atomic transaction framework to
be used in a distributed car dealer management system [Tekinerdogan 96]. After the
requirements analysis and domain analysis phases we could extract four basic
groups of aspects. Aspects related to the transaction models [Elmagarmid 92], as-
pects related to quality factors such as adaptability [Adaptability 96] and perform-
ance and aspects related to the object model. We developed conceptual models for
all these aspects.

2.2.4 Define design space

Even though we may not know about individual designs it is convenient to talk
about design spaces. We define a design space as a set of descriptions of possible
designs. The identified concept models represent the dimensions of such a design
space. Our concept of design space is similar to the concept of information space
described in [Jacobson 92]. In [Aksit & Tekinerdogan 98] we elaborate on the con-
cept of design space and more specific on the concept of design algebra. For the
adaptable transaction domain the design space is as follows:

Design Space = (Transaction x ObjectModel x Object Coupling x
Adaptability x Performance)

Each element in this design space represents a design solution for the given problem
domain. Since each basic concept is composed of sub-concepts the design space is
very large.

2.2.5 Aspect composition specification
Basically there are two ways for aspect composition. Composition at-once or grad-
ual composition. In the composition at-once approach, one aspect composer com-
poses all the identified aspects into to the final realization model. The problem with
this approach is that the aspect composer needs to deal with all the aspects at once
which may be a difficult, error-prone and time-consuming process. In addition, not
all the combinations of the design space may be possible or useful. It is therefore,
not necessary to elaborate on all the elements of the design space. Accordingly, we
need some mechanisms to restrict this large design space and exploit only the useful

combinations. In order to meet this requirement dedicated aspect composers will be
used in our approach. These aspect composers are used to gradually explore the
useful combinations in the design space. For example in the transaction system
application we adopt a AdaptabilityComposer which composes a domain model
aspect with the adaptability aspect. The basic issue of the use of multiple dedicated
aspect composer is the ordering of the composition of aspects. If we have 6 aspects
we can apply the gradual aspect composition in 6!= 720 ways. This is a difficult
task. We therefore apply some general rules to manage this situation. The most
intuitive ordering is to start with the domain models and end with the component
models. From the resulted space a new model is selected which includes the useful
and desired combinations. This process is iterated until we have included all the
aspects and domain models. The final result of this process is a realization model.
The realization model includes all the elements, which defines the final implemen-
tation for the design problem.

2.2.6 Define aspect composition rules

After we have determined the ordering of the aspect composers we must define the
rules which will be applied in each specific aspect composer. In [Aksit & Tekiner-
dogan 98] we have described this process in more detail.

Conclusion

In this paper we have proposed an approach for identification of proper aspects from
the domain analysis and requirements analysis phases. The aspect composition can
be done centrally by one composer or gradually by multiple composers along the
software development process. We illustrated the practical applicability of gradually
composing aspects.

References
[Adaptability 96] M. Aksit, B. Tekinerdogan, L. Bergmans, K. Lieberherr, P. Steyaert, C. Lucas, & K. Mens,

ECOOP ’96 Adaptability in Object-Oriented Software Development Workshop, url:
http://wwwtrese.cs.utwente.nl/ecoop96adws/, 1996.

[Aksit 97] M. Aksit. Issues in Aspect-Oriented Programming, Position paper, AOP workshop, ECOOP ’97.
[Aksit & Tekinerdogan 98] M. Aksit & B. Tekinerdogan, Models for Composing Design Aspects, University

of Twente, Department of Computer Science, 1998.
[Aksit et. al. 98] M.Aksit, B. Tekinerdogan, F. Marcelloni., & L. Bergmans. Deriving Object-Oriented

Frameworks from Domain Knowledge. To be published as chapter in M. Fayad, D.Schmidt, R. Johnson
(eds.), Object-Oriented Application Frameworks, Wiley, 1998.

[Arrango 94] G. Arrango. Domain Analysis Methods. In Software Reusability, Schäfer, R. Prieto-Díaz, and
M. Matsumoto (Eds.), Ellis Horwood, New York, New York, 1994, pp. 17-49.

[Elmagarmid 92] A. Elmagarmid (ed), Database Transaction Models for advanced applications, San
Mateo, CA, Morgen Kaufmann, 1992.

[Jacobson 92] I. Jacobson, M. Christerson, P. Jonsson & G. Overgaard, Object-Oriented Software Engineer-
ing - A Use Case Driven Approach, Addison-Wesley/ACM Press, 1992.

[Kiczales et al. 97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J-M. Loingtier and J. Irwin,
Aspect-Oriented Programming, ECOOP’97 Conference proceedings, LNCS 1241, June 1997, pp. 220 –
242.

[Smith & Medin 81] E.E. Smith & D.L. Medin. Categories and Concepts, Harvard University Press, 1981.
[Tekinerdogan 96] B. Tekinerdogan. Requirements analysis of transaction processing in a distributed car

dealer system. Technical report. University of Twente, 1996.
[Wieringa 96] R.J. Wieringa. Requirements Engineering: Frameworks for understanding, Wiley, 1996.

