
SEMANTIC QUERY EXECUTION IN A
VIDEO DATABASE SYSTEM

a thesis

submitted to the department of computer engineering

and the institute of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Cemil ALPER

August, 2004

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Özgür Ulusoy (Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Uğur Güdükbay (Co-Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Enis Çetin

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute Engineering and Science

ii

ABSTRACT

SEMANTIC QUERY EXECUTION IN A VIDEO
DATABASE SYSTEM

Cemil ALPER

M.S. in Computer Engineering

Supervisors: Prof. Dr. Özgür Ulusoy and

Assist. Prof. Dr. Uğur Güdükbay

August, 2004

In this thesis, we have extended a video database management system, called

BilVideo, with semantic querying capability. Our work is based on a video data

model for the extraction and storage of the semantic contents of videos, and a

query language to support semantic queries on video data. The Web based query

interface of BilVideo has also been modified to handle semantic queries both

visually and textually.

Keywords: video databases, semantic video modeling, annotation of video data,

semantic querying of video data, semantic query execution.

iii

ÖZET

BİR VİDEO VERİTABANI SİSTEMİNDE ANLAMSAL
SORGULARIN ÇALIŞTIRILMASI

Cemil ALPER

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticileri: Prof. Dr. Özgür Ulusoy ve

Assist. Prof. Dr. Uğur Güdükbay

Ağustos, 2004

Bu tezde, BilVideo isimli veritabanı yönetim sistemine anlamsal sorgulama

yeteneğini kazandırdık. Çalışmamız, videoların anlamsal içeriğinin çıkartılıp sak-

lanması için tanımlanmış olan video veri modeline ve video verisini sorgulamayı

destekleyen sorgu diline sahip olan bir çalışmaya dayanmaktadır. Anlamsal sorgu-

ların görsel ve yazılı olarak girilmesini desteklemesi için BilVideo’nun Internet

tabanlı arayüzünde de değişiklikler yapıldı.

Anahtar sözcükler : video veritabanları, anlamsal video modelleme, video veri-

lerinden çıkarımlar yapma, video verilerini anlamsal sorgulama, anlamsal sorgu-

ların çalıştırılması.

iv

Contents

1 Introduction 1

1.1 Organization of the Thesis . 3

2 Related Work 4

2.1 Semantic Video Modelling . 5

2.2 Semantic Information Extraction 6

2.3 Storing Semantic Data . 12

2.4 Querying Video Databases . 13

3 BilVideo Video Database System 15

3.1 System Architecture . 15

3.2 Video Data Model . 16

3.3 Query Language . 17

3.4 Query Processing . 18

4 Semantic Video Model 20

v

CONTENTS vi

4.1 The Data Model . 21

4.2 The Database Schema . 22

4.3 Video Annotator . 23

4.4 The Query Language . 26

4.5 The Semantic User Interface . 28

5 Semantic Query Processing 30

5.1 Query Processing in BilVideo . 30

5.2 Semantic Query Execution . 31

6 Implementation Details 41

6.1 Information Extraction . 43

6.2 Semantic GUI . 44

6.3 Parser . 46

6.4 Query Tree Construction . 48

6.5 Query Tree Traversal . 58

6.6 Database Connection . 59

7 Conclusion 62

Bibliography 63

Appendices 67

CONTENTS vii

A Database Table Specifications 68

B Earlier Version of AND-OR Rules without Semantic Queries for

Query Tree Construction 72

B.1 Phase1 - Reorganization . 72

B.2 Phase2 - Query Tree Construction 73

C Updated AND-OR Rules with Semantic Queries for Query Tree

Construction 78

C.1 Phase1* - Different Child Types 78

C.2 Phase2* - Different Child Types 79

C.3 Phase2** - At Least One Mixed Child Type 80

D Parenthesis Rules for Query Tree Construction 82

E NOT Rules for Query Tree Construction 84

List of Figures

3.1 BilVideo System Architecture . 16

3.2 Phases of query processing steps for spatio-temporal queries. . . . 19

4.1 The Database Schema . 23

4.2 Video Annotator Main Window 25

4.3 Standalone Semantic User Interface 29

4.4 Integrated Semantic User Interface 29

5.1 New query processing steps . 34

5.2 The parse tree for the conditions in the where clause of the sample

query (rectangular nodes represent subparse tree equivalents of the

corresponding condition types) 37

5.3 The subtree for the event condition of the sample query (rectangu-

lar nodes represent subparse tree equivalents of the corresponding

condition types) . 40

6.1 Parser of the BilVideo System . 47

viii

LIST OF FIGURES ix

6.2 Subparse Trees for Semantic Query Types (dotted nodes represent

subparse trees that have more child nodes than the nodes with

solid lines) . 49

6.3 A sample query and its corresponding parse tree (dotted nodes

represent condition types) . 50

6.4 Subparse tree structures of the subqueries for the sample query

(dotted nodes represent condition types) 50

6.5 The algorithm for query tree construction 54

6.6 ODBC Bridge Solution . 60

6.7 JDBC Bridge Solution . 61

6.8 Sample code for sending a query to the database and getting the

result of it . 61

B.1 Only content is coming from left child 73

B.2 Only content is coming from right child 73

B.3 Content and node (same with the current operator) coming from

left child . 73

B.4 Content and node (same with the current operator) coming from

right child . 74

B.5 Content and node (different than the current operator) coming

from left child . 74

B.6 Content and node (different than the current operator) coming

from right child . 75

B.7 Only nodes come from both child 75

LIST OF FIGURES x

B.8 Content and node coming from left child and content coming from

right child . 75

B.9 Content coming from left child and content and node coming from

right child . 76

B.10 Content and node coming from both children 76

B.11 Content from left child and node coming from right child (opposite

input yields opposite output) . 76

B.12 Content and node coming from left child and node (left child

empty) coming from right child (opposite child result order for

input yields opposite output) . 77

B.13 Content and node coming from left child and node coming from

right child (opposite child result order for input yields opposite

output) . 77

C.1 Content and node (same with the current operator) coming from

left child (opposite child result order for input yields opposite output) 79

C.2 Content and node coming from left child and content coming from

right child (opposite child result order for input yields opposite

output) . 79

C.3 Content and node coming from both children 80

C.4 Content and node coming from left child and content coming from

right child (opposite child result order for input yields opposite

output) . 80

C.5 Content and node coming from both children 81

D.1 Content coming from child . 82

LIST OF FIGURES xi

D.2 Content and node coming from child 83

E.1 Content coming from child . 84

E.2 Content and node coming from child 85

Chapter 1

Introduction

During the last 10 years, creation, storage and distribution of videos have im-

proved so much with the help of advances in compression techniques, decreasing

storage costs and availability of high speed transmission. These improvements

have led to the emergence of new application areas for videos like video archives,

digital libraries, video-on-demand, and e-commerce. As a multimedia data type,

video draws more attention with the increase in the amount of video data. Since

traditional data management techniques are not sufficient for management and

retrieval of large amount of video data, a new concept called video database man-

agement has been emerged. In the simplest form, a video database is composed

of digitized video plus some textual information about these video that are used

for retrieval purposes. The most important problems in the creation of a video

database are the extraction of the textual data from videos and the indexing of

this extracted data. In the literature, there have been a variety of research works

conducted on those issues. The information to be extracted from videos can be

categorized as follows:

• Moving objects : The information about objects of interest in a video like

which object is seen in a specific video frame, what is the 2D and 3D rela-

tions between these objects and how these objects move among contiguous

frames.

1

CHAPTER 1. INTRODUCTION 2

• Low-level features of objects : The information about objects of interest in

a video like the color, shape and texture of them.

• Semantic information: The information related to the semantic content of

a video. Most common semantic information extracted from videos are:

– Metadata about video, like subject, production year, producer or di-

rector of the video.

– Information about objects of interest in a video, like hair color, height

or title of the person.

– Information about the events that take place in a video, like a business

meeting, a sports match or a party.

Video data can be processed automatically or manually to extract such se-

mantic information from videos. Automatic techniques extract information by

the help of algorithms like object detection, text recognition, speech recognition

and motion segmentation. Then this data is processed to extract semantic in-

formation. Manual techniques are also developed for helping users to specify the

objects of interest and the details of events in a video.

Although the automatic extraction concept sounds good at first, related tech-

niques generally do not perform well. Because automatic extraction of initial

set of data is a very complicated process especially when the domain is not well

known. Besides, the semantic information extraction by processing automatically

extracted data is not an easy task when the domain of videos is unknown.

For the last several years, a video database system called BilVideo is being

developed at Bilkent University [1, 2]. BilVideo System was initially designed for

supporting spatio-temporal and trajectory queries over the videos stored in the

database. For this purpose, an information extraction tool called Fact Extractor

was designed and developed, which is used for extracting information about ob-

jects of interest in a video, like the appearance of objects in specific frames, 2D

and 3D spatio-temporal relations among objects in frames, and the movement of

objects among contiguous frames. The extracted information is kept as Prolog

CHAPTER 1. INTRODUCTION 3

facts and stored in a knowledge base. The system has its own SQL-like query lan-

guage. The submitted queries are sent to the Prolog engine to be executed over

the knowledge base. The system has a web based query interface for formulating

queries both visually and textually.

In this thesis, our main aim is to add semantic querying capability to BilVideo.

For this purpose, we use the semantic data model developed in a previous Master’s

Thesis as a starting point[3]. In that work, a semantic information extraction tool,

which stores the extracted information in a relational database, was developed

and a semantic query language grammar was specified as an extension to the

original query language of the BilVideo System. In our work, we have done

necessary additions and modifications into the query processor of BilVideo to

make the system accept and execute the semantic queries. We have also designed

a new query interface for specifying semantic queries visually, and integrated it

into the Web based query interface of BilVideo.

1.1 Organization of the Thesis

The thesis is organized as follows: Chapter 2 summarizes related work on se-

mantic video modelling, semantic information extraction, storage of the semantic

data and querying video databases. In Chapter 3, the architecture of the Bil-

Video system is described. In Chapter 4, the semantic video model that we used

is explained. In Chapter 5, the execution strategies used for semantic queries are

explained in detail. Implementation details of integration of semantic query ex-

ecution capability into the BilVideo System are described in Chapter 6. Finally,

Chapter 7 concludes the thesis.

Chapter 2

Related Work

In recent years, indexing and retrieval of video data according to its semantic

content has become a very hot research topic. In the literature, the recent works

on this topic can be categorized as follows:

• Semantic video modelling : Description of video data.

• Semantic information extraction: The extraction of semantic data from

video.

– Feature extraction: The automatic and manual ways of extracting low

and high-level features from video.

– Semantic information deduction: Ways of deducing extra semantic

data from the extracted low and high-level features of video.

• Storing semantic data: The methods of storing extracted semantic infor-

mation.

• Querying video data semantically : The methods of querying extracted se-

mantic data.

In this chapter, main categories of the research conducted on indexing and

retrieval of video data are presented. The research on semantic video modelling

4

CHAPTER 2. RELATED WORK 5

is summarized in Section 2.1, semantic information extraction in Section 2.2,

storing semantic data in Section 2.3, and querying video data semantically in

Section 2.4.

2.1 Semantic Video Modelling

Indexing and retrieval of video data semantically require the extraction of seman-

tic information from video clips stored in the database. This semantic information

has to be extracted in an organized fashion to be able to algorithmically index

and retrieve videos. A model has to be defined in terms of some predefined items

in a video for defining the content of each video clip. There are many semantic

video models proposed in the literature. As the items in a video that can be used

to define a video are limited, many of those proposed models are quite similar.

The most common items in these models are the objects of interest in a video

and the events that occur in a video. Among the other items used are the place

of the events, features of objects, backgrounds of the places where events occur,

and so on.

In the semantic model proposed in [9], the main entities are events, objects

that participate in these events and “actor” entities that describe object roles in

the events. Events are described with name, location and time of the event and

an event id.

In [19], a model called SemVideo is proposed. SemVideo model has the fol-

lowing types of information:

• Videos : The database manages many videos, each being represented by a

unique identifier.

• Video objects : A set of video segments that satisfy some constraints. Video

objects are abstract and not really stored in the database.

• Semantic objects : A semantic object is a description of knowledge about the

video. It has a number of attributes, each having a corresponding value.

CHAPTER 2. RELATED WORK 6

Each semantic object in the video has a unique identifier to differentiate

from others.

• Entities : An entity can be either a video, a video object or a semantic

object.

• Relationships : A relationship is an association between two entities. It can

be time related or semantic related.

In [21], a video is modelled with the events associated to the shots, objects of

interest in these shots and the static scene of these shots.

In [12, 13, 14, 15], a probabilistic multimedia object called multiject is pro-

posed. Multijects can belong to any of the three categories: objects (car, men

helicopter), sites (outdoor, beach) and events (explosion, man-walking).

2.2 Semantic Information Extraction

After defining a semantic video model for describing video clips, some methods to

extract semantic information according to the defined model are needed. In the

literature, many automatic and manual techniques of extracting low and high-

level features from video clips have been proposed. For helping the automatic

or manual extraction process, the developed tools use shot boundary detection,

object detection, text recognition, speech recognition and motion segmentation

algorithms. In [5, 7, 21, 22, 25], shot detection algorithms are used for identifying

the main shots in video clips, and then the keyframes representing the identified

shots are found. In [7], the keyframes are compared with preannotated database

of images to find textual representations for them. In [8, 28], object detection

with background subtraction algorithm for identifying the objects of interest in

video clips is used. In [6, 7], text recognition algorithms are used for capturing

the captions from videos. In [25, 27], speech recognition algorithms are used for

extracting the speech from video clips to be used for indexing. In [8, 25, 28],

some motion segmentation algorithms are used for detecting predefined specific

CHAPTER 2. RELATED WORK 7

motions of objects in videos that are associated with semantic meanings. It is

not always easy to extract semantic information automatically especially when

the domain of videos is not restricted specifically. Thus, manual annotation is

needed in such situations. In [5, 21, 29], annotation tools for extracting semantic

information manually are proposed.

In [7], cuts are detected in the video sequence, where consecutive frames show

a large difference, by the help of automatic shot detection algorithms. Keyframes

are then extracted to represent each shot. Thus, a video sequence is condensed

into a few images, hence this forms a compact key frame representation of the

video. Each key frame is compared with an annotated database of images to

obtain a textual description of the scene.

In [8], the motions of objects among consecutive frames are tracked by using

motion segmentation and background subtraction algorithms. Then, the motions

of objects are classified into following predefined events:

• appearance/disapperance of objects,

• merging/splitting of objects,

• entry/exit of objects, and

• occlusion of objects.

By using this extracted event information, summaries of videos are created ac-

cording to the events that are selected as critical by the users.

In [11], a new model based on the clustering of video shots is proposed. Similar

shots are clustered together and a new representation of the video data as a Time-

Space Graph (TSG) is produced. A set of temporal relations between clusters

are defined based on TSG. The clusters and their relationships describe the video

as a Temporal Clusters Graph (TCG). Extraction of semantic units consists of

exploring TCG according to the semantic of the temporal relations.

In [16], a semantic video indexing algorithm based on finite-state machines

that exploits the temporal dependencies of low-level descriptors extracted from

CHAPTER 2. RELATED WORK 8

videos is proposed. The proposed algorithm is applied to the analysis of soccer

video sequences for identifying events such as, goals, shots to goal, and so on.

Then summaries of videos are created by using the identified events.

In [20], an inductive decision-tree learning method to arrive at a set of if-

then rules is directly applied to a set of low-level feature-matching functions.

Most important low-level features used by the system are the motion, color and

edge features of objects among contiguous frames. The extracted rules show

the order and priority of each low-level feature in the classifier when multiple

features are present, which is very important for on-line fast video understanding

and indexing.

In [22], a method for finding the semantic scenes in a video, which are com-

posed of semantically related shots, is proposed. By using shot detection algo-

rithms, a video is divided into shots. Then, the system tries to find the shots

that are related to each other according to the similarity of the frames in those

shots. The combination of related shots forms a semantic scene in a video. The

idea behind this method is the fact that closely related shots are put one after

another during the editing phase of video creation.

In [24], a method for retrieving the content related to the spatio-temporal

relations among objects in video data is proposed. The prototype system extracts

moving objects from video data and evaluates their spatio-temporal correlation.

Abstract representation of spatio-temporal correlation among objects is defined

by a knowledge designer, and it is stored as an element of a knowledge base that is

associated with a keyword representing the semantic contents of spatio-temporal

correlation. As an example of possible applications, the authors concentrated on

the case of video database of soccer games.

In [25], the low-level features extracted from videos are processed to find high

level information that is used for querying the video database. Scene change

detection, shot classification, text recognition (for captions), speech recognition

and motion segmentation algorithms are used by the system to extract the low-

level features.

CHAPTER 2. RELATED WORK 9

In [26], the low-level features extracted from sports videos are used for iden-

tifying specific events in sports videos. For this purpose, both rule based and

probabilistic inference are used.

In [27], a method to segment a sports video into semantic units to represent a

broadcast sports video is proposed. Speech that takes place in videos is considered

for this purpose by using speech recognition algorithms.

In [28], a method for extracting semantic information from videos by tracking

the head and hand position and motions of a person is presented. They proposed

that the posture of a human can be estimated by using the following information:

• Position of head implies not only a position where human is but also a

posture whether he/she is standing or sitting.

• Direction of head implies what he/she is looking at.

• Positions of hands imply gestures and interactions with objects.

By matching the extracted information to a set of possible actions according

to a probabilistic model, natural language sentences representing the frames are

generated automatically.

In [5], a new type of video production framework A4SM (Authoring System

for Syntactic, Semantic and Semiotic Modelling), which is for automated and

semi-automated annotation of audiovisual media, is presented. It is claimed that

annotation of a video after its creation is very hard for the people who are anno-

tating it. Because of this reason, the annotation of the video during its creation

is a better way. Thus, they designed a digital camera and a handheld device

that is connected to the camera and runs an annotation program. The system

is designed for news production that is to be used by the cameraman and the

reporter for annotating the video. This extracted information is used by the news

editors with the help of a post production editing tool for identifying the parts

of the video that are important and are worth to be used and archived.

CHAPTER 2. RELATED WORK 10

In [12, 13, 14, 15], a method that converts the indexing problem into a mul-

timedia pattern recognition problem is proposed. A probabilistic multimedia

object (multiject) is proposed that has a semantic label and summarizing a time

sequence of a set of features extracted from multiple media. Multijects can be-

long to any of the three categories: objects (car, man, helicopter), sites (outdoor,

beach), or events (explosion, man-walking). For identifying the multijects in a

video, the system first segments the video clips into shots using shot detection

algorithms and then each shot is processed to obtain regions homogeneous in

color and motion.Then, the dominant regions are then tracked within the shot

and labelled. All regions are labelled by a single person choosing from a list of

semantic labels. Each region is then processed to extract a set of features that

characterize the visual properties including the color, texture, motion, shape and

edginess of each region. The regions (multijects) are then related to other multi-

jects by a factor graph framework that uses sum-product algorithm in a tree and a

graph called multinet is constructed, which is used for modelling the interactions

between multijects.

In [21], a video summarization system for mobile devices is proposed. The sys-

tem is composed of an annotation tool called VideoAnn for extracting semantic

information from videos to be used for querying the system, a semantic video sum-

marizer for creating a summary of the video according to the extracted semantic

information, and a transcoder for converting the video format supported by the

mobile device and an application interface on mobile device for querying and

viewing the video summary. In VideoAnn, the annotation process starts with au-

tomatic detection of the shots and the keyframes representing these shots. Then,

the users enter the objects, events and static scene in the detected shots. The

users are also able to specify the exact locations of the objects in the keyframes

by drawing a minimum bounding rectangle for the objects.

In [23], a method of retrieving video data from films by specifying the semantic

content of scenes, is proposed. Related to the creation of films, there is a so-called

“the grammar of the film”, which is an accumulation of knowledge and rules for

expressing certain semantics of a scene more effectively. In this research, the main

emphasis is on the features of video that can be observed as a consequence of the

CHAPTER 2. RELATED WORK 11

effects of the grammar of film. These features are classified as follows:

• Combination of shot length: The length of a shot implies quick or slow

passing of time. When quickness or heavy action needs to be emphasized,

a number of short shots are connected. On the other hand, slowness is

emphasized by a sequence of long shots.

• The visual dynamics of the shot : Instead of extracting certain semantic

objects, overall appearance of images is considered. The usage of static

shots in which there is little difference between two consecutive frames and

dynamic shots in which there is much difference between consecutive frames,

are detected to find out if the scene is calm and quite, busy and active or

if it contains heavy action.

• The combination of similar shots : Shots are regarded as similar if the color

range and distributions are roughly the same for two shots. The combina-

tion of similar shots are tried to be matched with some predefined patterns

to identify if the scene is a chase scene or not.

In [29], a practical application called OntoLog for searching and navigating in

metadata for temporal media is presented. Currently, the OntoLog System con-

sists of five main modules, the Annotation Tool, the Resource Description Frame-

work (RDF) Storage, the Temporal Media Source, and the Search and Browse

Server and its Client. The role of the Annotation Tool is to produce and edit

annotations to form RDF based metadata describing the contents of the material

stored in the Temporal Media Source. The information extracted by the tool

is a list of people, places, events, topics or objects that occur in the video, and

indicate the temporal intervals in which each information type is present and the

extracted information is organized in hierarchical ontologies instead of flat lists.

CHAPTER 2. RELATED WORK 12

2.3 Storing Semantic Data

Semantic information is extracted from videos according to the defined semantic

video model by using different methods. This extracted information should be

somehow stored to be used for indexing and retrieval purposes. In the literature,

many different ways of representing and storing the extracted information are

proposed.

In [17, 18, 21], it is proposed to represent and store the extracted semantic

information in XML format. MPEG7 has its own standardization for repre-

senting the semantic information, which is described in [17]. In [21], MPEG7

standardization is directly used for representing and storing extracted semantic

information, but in [18] they use their own XML format for semantic information

representation instead of using the MPEG7 format.

Another approach for representing the semantic information is graph based

representation. In this approach, there is a need for defining a way of mapping the

semantic information into a graph based representation and this representation

is used for storing the semantic information. In [12, 13, 14, 15], a graph based

representation of semantic information is proposed which is called a multimedia

network (multinet) composed of multimedia objects (multijects) and relations

between them. In [9], a mapping between semantic information and a graph

based representation is made in such a way that the main components of their

semantic model (events, objects in events and roles of objects in events) is mapped

to vertices and the relations between these components are mapped to edges in

a graph. In [29], the Resource Description Framework (RDF) [30], which is a

standard for machine-readable metadata built on the semantic network model,

is used for mapping semantic information and as RDF Storage module, they use

MySQL relational database that has RDF programming libraries available for it.

In [24], extracted semantic information is represented using Relation Descrip-

tion Factor, which is a set of primitive descriptors specified in the definition of

knowledge for the representation of abstract spatial correlation among objects.

These descriptors are stored as an element of a knowledge base that is associated

CHAPTER 2. RELATED WORK 13

with a keyword representing the semantic contents of spatio-temporal correla-

tion.

2.4 Querying Video Databases

In the video database management systems that store the extracted semantic

information using graph-based represantation, the problem of querying the system

is converted into a pattern matching problem. Such systems take the queries

directly in graphical format or convert the queries into graphical format and then

they try to match the query graph with the stored ones. In [12, 13, 14, 15],

a Query-By-Keyword scheme is used for querying the system. The keywords

entered by the users are used to search among a predefined set of keywords

representing certain high-level or semantic concepts. Among the results of this

search, the users select some of them as examples, whose multimedia network

(multinet) representations are used for querying the whole set of stored multinets.

In [9], the users directly enter their queries in a graphical format and this query

graph is compared with the stored set of graphs using their graph matching

algorithm.

In [19], two formal query languages are proposed for querying the video

database. These languages are Video Algebra and Video Calculus. Queries in

video algebra are composed using a collection of operators like boolean, physical,

semantic, projection, composition and update operators. Video calculus is an ex-

tension to the relational calculus and it is an alternative to the video algebra. It

allows users to describe the set of answers without being explicit about how they

should be computed. As in relational calculus, the language for writing formulas

is the heart of video calculus.

In the video database system presented in [21], users are able to specify their

requests through a GUI in terms of:

• Preference topics : The users choose their preferred topics among predefined

ones and then select videos from the list of videos belonging to those chosen

CHAPTER 2. RELATED WORK 14

groups.

• Topic rankings : The users choose their preferred topics according to the

topic rankings and then select videos from the list of videos belonging to

those chosen groups.

• Query keywords : The users enter some keywords that are used for searching

the video database and then they select a video from the results of the

search.

• Time constraint : The users enter their time constraints which is used for

searching the video database and then they select a video from the results

of the search.

In [24], the extracted information is represented using the Relation Descrip-

tion Factor and stored in a knowledge base. The users enter their queries using

Relation Description Factor, which are then compared with the ones stored in

the knowledge base.

Chapter 3

BilVideo Video Database System

In this chapter, the BilVideo video database management system [1] in which

this thesis is integrated into, is described. The organization of this chapter is as

follows: The architecture of BilVideo is given in Section 3.1. The spatio-temporal

data model proposed for video data type is described in Section 3.2. Types of

queries that can be answered by the system are given in Section 3.3. The query

processing approach is explained in Section 3.4.

3.1 System Architecture

The client/server architecture of the BilVideo system is shown in Figure 3.1.

Client side of the system consists of the Fact Extractor and the Video Annota-

tor tools for information extraction and the web-based query interface for video

retrieval. Fact Extractor tool is used for extracting the spatio-temporal infor-

mation of objects in videos and this information is stored in a knowledge base

as Prolog type predicates. Video Annotator is used for extracting the semantic

information from videos to construct a feature database and this feature database

is stored in a relational DBMS1. The heart of the system is the Query Processor,

which is responsible for answering user queries in a multi-threaded environment.

1Currently Oracle8i RDBMS Server is being used for this purpose

15

CHAPTER 3. BILVIDEO VIDEO DATABASE SYSTEM 16

Figure 3.1: BilVideo System Architecture

The users interact with the query processor through the web-based query in-

terface. This interface supports the entrance of textual and visual queries. A

visual query is formed by a collection of objects with different attributes includ-

ing object-trajectory with similarity measure and spatio-temporal ordering of

objects in time. Motion is sketched as an arbitrary polygonal trajectory for each

query object. The system has a SQL-like query language for textual queries. The

earlier version of the system supports spatio-temporal, relative object-motion,

object-appearance and similarity-based object-trajectory queries and it uses the

knowledge-base to answer these types of queries. By using spatio-temporal rela-

tions, a restricted set of events can also be specified as query conditions.

3.2 Video Data Model

In BilVideo System, segmentation of video into shots is done using spatial rela-

tions of objects in video frames. Spatial relations can be grouped into mainly

three categories: topological relations that describe neighborhood and incidence,

directional relations that describe order in space, and distance relations that de-

scribe range between objects. The Fact Extractor tool is used for extracting the

spatial relations among salient objects by using their minimum bounding rectan-

gles which are specified manually.

CHAPTER 3. BILVIDEO VIDEO DATABASE SYSTEM 17

In a video, a shot in which the spatial relations among objects changes, is

considered as a keyframe and it is used for indexing the shots. Spatial relations

are called spatio-temporal relations because they do have a time component rep-

resented by frame numbers of keyframes. Spatio-temporal relations for the shots

are stored on a keyframe basis as Prolog facts in a knowledge-base. Inference

rules are used to reduce the number of facts stored in the knowledge-base since

some facts could be derived using the other facts stored. The benefit of storing

facts in a knowledge-base is the reduction of the computational cost of relation

computation during the time of query processing since computation of relations

are done a priori.

3.3 Query Language

BilVideo System has a SQL-like query language for specifying spatio-temporal

queries. In [3], an extension to this query language is proposed for specifying

semantic queries. The details of this extension is described in Chapter 4. In this

thesis, the integration of this extension to the BilVideo system is implemented.

Details of this integration is described in Chapters 5 and 6. Without the semantic

extension, the query language can be used to specify mainly five types of queries.

These are:

• Object queries are used to retrieve objects, along with video segments where

the objects appear.

• Spatial queries are used to query videos by spatial properties of objects

defined with respect to each other. Three types of spatial properties are

supported by the system which are topological relations that describe neigh-

borhood and incidence in 2D-space, directional relations that describe order

in 2D-space, and 3D-relations that describe object positions on z-axis of the

three dimensional space.

• Similarity-based object-trajectory queries are used to query videos to find

paths of moving objects.

CHAPTER 3. BILVIDEO VIDEO DATABASE SYSTEM 18

• Temporal queries are used to specify the order of occurrence for conditions in

time. Supported temporal operators in temporal queries are before, meets,

overlaps, starts, during, finishes and their inverse operators.

• Aggregate queries are used to retrieve statistical data about objects and

events in video data. There are three aggregate functions, average, sum

and count.

3.4 Query Processing

In BilVideo System, the web-based query interface is used for specifying textual

and visual queries. Visual queries are transformed into the SQL-like textual

queries automatically by the interface. The resulting queries are sent to the query

processor. Query processor is responsible for retrieving and responding to user

queries in a multi-threaded environment. The queries are reconstructed by the

query processor as Prolog-type knowledge-base queries. Results returned from

the knowledge-base are sent to the web clients. The phases of query processing

for spatio-temporal queries are as follows (Figure 3.2):

• Query parsing : The lexical analyzer partitions a query into tokens, which

are passed to the parser with corresponding values for further processing.

Using the predefined grammatical rules parser creates a parse tree to be

used as a starting point for query processing. This phase is called query

recognition phase.

• Query decomposition: The parse tree generated after the query recognition

phase is traversed in a second phase, which is called query decomposition

phase, to construct a query tree. Queries are decomposed into three basic

types of subqueries: plain Prolog subqueries or maximal subqueries that

can be directly sent to the inference engine Prolog, trajectory-projection

subqueries that are handled by the trajectory projector and similarity-based

object-trajectory subqueries that are processed by the trajectory processor.

CHAPTER 3. BILVIDEO VIDEO DATABASE SYSTEM 19

• Query execution: The query tree is then traversed in pre-order in the next

phase of query processing, query execution phase, executing each subquery

separately and performing interval processing so as to obtain the final set

of results.

• Interval processing : Results returned by subqueries are further processed

in the internal nodes of the query tree to compute the final result set for

user queries.

Figure 3.2: Phases of query processing steps for spatio-temporal queries.

A semantic video model and semantic extensions to the query language are

proposed to support semantic queries [3]. To this end, a tool is implemented for

extracting semantic information from video clips. The proposed extensions are

integrated into BilVideo and also necessary additions are made to the web-based

query interface for specifying semantic queries.

Chapter 4

Semantic Video Model

A video has two main layers. These are the feature and context layer, which

deals with the low level details of video, and the semantic layer, which deals

with the meaning perceived by humans. We have to map this data into an

internal representation to capture semantic data from video. In this way, we can

develop efficient methods for storing and retrieving this data. We need a model

that defines semantic data to be able to make such a mapping. To this end, a

hierarchical semantic video model was designed in [3] that captures the events,

subevents, objects of interest and the bibliographic data about videos.

Event is an instance of an activity that may involve many different objects

over a time period. Subevents are used to model the relations between objects

and also to detail the activity into actions which are the acts performed by living

objects. The information related to the video other than its context like name,

producer, director, etc. are considered as bibliographic data [3].

In this chapter, main aspects of the semantic video model of BilVideo is

explained. In Section 4.1, we explain the internal representation of the semantic

video data. In Section 4.2, we explain how this data is stored. In Section 4.3,

we present the video annotation tool called Video Annotator which is used for

extracting semantic information from video clips. In Section 4.4, we present

the semantic query language and in Section 4.5, we present the graphical user

20

CHAPTER 4. SEMANTIC VIDEO MODEL 21

interface (GUI) designed for entering semantic queries.

4.1 The Data Model

In a video, many different types of activities can be seen like business or political

meeting, war or peace talks. To be able to distinguish the same type of activities

in one video or among many videos, we need to identify these activities more

specifically.

In our model, events are used for that purpose. If we think of activities as

classes, then events are the instances of these classes. Extra information is held in

events to make them distinguish among others like the objects that take place in

the event, start and end time in video, roles of the objects in the event, location

and time of the event. Suppose we have a news video in which it is talked about

the political meetings held on that date. In this video, there are many video

sequences that are about the activity type political meeting, but political meeting

between USA and China is different than political meeting between France and

Germany in many different ways like the attendees, location of the meeting,

start and end time of the meeting sequences. In this example, it is seen that

political meeting is an activity but USA-China political meeting and France-

Germany political meeting are two events and in these events the delegations are

the objects with attendee role, which is a role defined for meeting activity type.

Subevents are used to detail the events and to model the relations between

objects of interest. For example USA-China meeting is an event and press con-

ference held by USA delegation is a subevent of the main event. One event can

contain many subevents in it.

In an event, there may be many objects of interest and each object may have

some attributes that distinguish object from other objects. Thus, a model should

also be able to capture those attributes.

The information that can be captured by our model can be categorized into

CHAPTER 4. SEMANTIC VIDEO MODEL 22

three main groups:

• Bibliographic or metadata : Data about video

• Object data : Data about objects of interest in video

• Event data : Activities and actions taking place in video

Video name, duration, producer, director, video types, audience and subject

of video are considered as bibliographic data. The attributes of the objects of

interests in a video are considered as object data and the data about the events

and subevents are considered as event data. The location and time of the event,

the activity type, the objects that take place in event and the begin-end times

are considered as event specific data. The subactivity type, begin and end times

and the objects in subevent are considered as subevent specific data.

A video consists of activities, an activity consists of actions and objects take

place in both activities and actions. This depicts a hierarchical structure. By

associating activities with events and actions with subevents, we carry out this

hierarchical structure into our semantic model. In our model, we also use this hi-

erarchy for segmentation of video into sequences and scenes by associating events

with sequences and subevents with scenes.

4.2 The Database Schema

A database schema is needed for storing data captured by our semantic video

model. According to the needs of our semantic video model, a relational database

schema was developed which has fourteen database tables shown in Figure 4.1.

The detailed table specifications can be found in Appendix A.

The database tables can be categorized into four groups:

• Video metadata table: TVIDEO is the one that holds bibliographic infor-

mation about videos.

CHAPTER 4. SEMANTIC VIDEO MODEL 23

Figure 4.1: The Database Schema

• Event tables : TEVENT, TPLAYER, TSUBEVENT, TSUBPLAYER are

the ones that hold the data related to events and subevents.

• Object tables : TOBJECT and TOBJECTATTRIBUTE are the ones that

hold data about objects of interest in a video.

• Utility tables : TAUDIENCE, TVIDEOTYPE, TACTIVITY, TROLE,

TSUBACTIVTY, TATTRIBUTE are the ones that hold utility data such

as audiences, video types, activity types, roles for activity types and sub-

activity types.

4.3 Video Annotator

A tool called the Video Annotator was developed To extract semantic data from

videos [3], which is a database application coded in Java. The tool has two

major functionalities; the first one is to play videos and the other is annotation

CHAPTER 4. SEMANTIC VIDEO MODEL 24

of video according to its semantic context. The video playing functionality of

the tool is implemented using the Java Media Framework (JMF) API, which is

a framework for adding time based media like audio and video functionality to

Java applications and applets.

Features like playing all or part of the video and getting the details about the

video file like the length, format and frame-rate of the video, are added to the

tool by the help of JMF API. The annotation functionality of the tool lets users

to extract semantic data from video clips according to our semantic model and

also to view, edit and delete the extracted semantic data. Besides the extracted

data is displayed by using a hierarchical tree structure and the users are also

able to view the results of annotation by watching the parts that the event and

subevents occur. The semantic data that the users can extract from a video can

be categorized into five major groups:

• Metadata about a video: Video specific data such as video name, length of

video, year of production, etc.

• Object data: Detailed information about the objects of interest in a video.

• Event data: Information related to the activities that take place in a video.

• Subevent data: Information related to the actions in activities.

• Utility data: Information about audiences, video types, activities, activity

roles, subactivities and object attributes.

The Video Annotator tool is developed for extracting semantic data from

videos according to our hierarchical semantic video model. The tool achieves this

by forcing users for a specific annotation order that is basically based on our

hierarchical model. During the annotation process, the users have to first start

with annotation of the video metadata, then they have to annotate the events

and subevents. The users can annotate objects whenever needed. Utility data

annotation can be done anytime, as it is needed during annotation of other data

types.

CHAPTER 4. SEMANTIC VIDEO MODEL 25

The main window of the Video Annotator tool shown in Figure 4.2. It has

three major parts: the video player on the left, hierarchical video tree in the

middle and the annotation control buttons on the right. Using the video player

part, the users are able to open a new video which will be annotated or load

a previously annotated video with its previously extracted semantic data. The

input order of the annotation control buttons reflects the annotation order.

Figure 4.2: Video Annotator Main Window

For annotating a newly opened video, the users should click on the video,

object, event, subevent and utilities button, which are located on the annotation

control buttons part of the main window and which are corresponding to the

semantic data types described above, to extract semantic data. After finishing

the annotation, the users are able to see the result of the annotation by clicking

the hierarchy button located at the top of hierarchical video tree part of the main

window and then the tool constructs and displays the hierarchical structure of

the extracted information. The users are able to watch the events and subevents

of an annotated video by selecting them from the tree structure and clicking

the play button located at the bottom of the annotation control buttons part of

the main window and extracted data can be updated or deleted using the “De-

tail/Edit/Update” and “Delete” buttons. The users are also able to extend the

CHAPTER 4. SEMANTIC VIDEO MODEL 26

extracted data by adding new events, subevents and objects using the annotation

control buttons. The details of the Video Annotator Tool can be found in [3].

4.4 The Query Language

Retrieval of the needed parts of a video by manually looking at the extracted

semantic data can be possible for several number of videos but when the amount

of data increases, a query language becomes a crucial need for efficient retrieval.

Because of that reason, a query language was defined for semantic queries, which

is a SQL-like language and which can be easily integrated into the existing SQL-

like query language of BilVideo System [3]. This language makes it possible to

query the system according to the video metadata, object attributes, event and

subevent information. The main format of a query in the query language of

BilVideo System is as follows:

select target from range where condition ;

The output type of the query is defined using target, the search domain is

defined using range in the from clause and the conditions for the query is defined

in the where clause. The possible output types are list of videos, list of segments

in videos and variables. Two new output types were added that are sequences

which are associated with events and scenes which are associated with subevents

for the semantic query language of BilVideo. The possible values for range in

BilVideo System are a list of videos or all of the videos in the database.

The conditions given in the where clause can be joined with logical (and, or,

not) and temporal operators to create more complex conditions. The possible

condition types supported in our semantic query language and their explanations

are as follows:

• Metadata conditions are used for querying according to the video meta-

data such as length, title, producer or director of the video. These type of

conditions are specified using the meta keyword as follows:

CHAPTER 4. SEMANTIC VIDEO MODEL 27

meta (meta conditions)

meta conditions can be joined to create more complex conditions by using

logical operators. The output type of metadata conditions is a list of videos

where the specified meta conditions hold.

• Event conditions are used for querying according to the information ex-

tracted for the activities that take place in videos. This type of conditions

are specified using the etype keyword as follows:

etype : event name with (event conditions)

As an event condition the users can give location, time, objects of interest

with/without their role in the event and also the subevents that take place

in the event. event conditions can be joined to create more complex

conditions by using logical and temporal operators. The output type of

event conditions are a list of sequences in videos where the specified event

conditions hold.

• Subevent conditions are used for querying according to the information ex-

tracted for the actions that take place in activities. This type of conditions

are specified using the setype keyword as follows:

setype : subevent name with player list

As player list, users can give the list of objects that appear in the video.

The output type of subevent conditions is a list of sequences in videos where

the specified players present.

• Object conditions are used for querying the objects (living or nonliving) of

interest in videos. These type of conditions are specified using the odata

keyword as follows:

odata (object attributes)

where object attribute := <attribute name> : <attribute value>

object attributes can be joined using logical operators. The output type

of object conditions is a list of videos where the specified object attributes

hold.

CHAPTER 4. SEMANTIC VIDEO MODEL 28

• Temporal conditions are used for querying the system according to the order

of occurrences of events in a video. This type of conditions are specified by

joining event and subevent conditions with temporal connectors. The query

language implements all temporal relations as temporal operators defined by

Allens temporal interval algebra. The output types for temporal queries are

decided according to the event condition types that are temporally joined.

4.5 The Semantic User Interface

The web based query interface of BilVideo [4] was developed using Java as an

applet. It was developed in a tabbed manner in which a separate tab is designed

for each query type and also a tab for combining different types of queries to

form more complex and mixed queries. Following this tabbed structure of the

original interface, we have also designed the GUI for entering semantic queries as

a separate tab that can be easily integrated into the original one. We have devel-

oped semantic query tab GUI as a totally separate standalone Java application

(Figure 4.3). The tab is composed of two main parts. These parts are the tree

structure located on the left and the control buttons located on the right. The

tree structure is used for representing the structure of the query hierarchically,

and control buttons are used for adding or removing query items such as events,

subevents, objects and video metadata to the query. After the development of

the semantic query tab, it was integrated into the original web based query in-

terface as a separate tab (Figure 4.4). After this integration, the users are now

able to enter spatio-temporal, trajectory and semantic queries both visually and

textually in different tabs, and also they are able to merge those queries to form

more complex queries. The details of the semantic GUI are explained in Section

6.2.

CHAPTER 4. SEMANTIC VIDEO MODEL 29

Figure 4.3: Standalone Semantic User Interface

Figure 4.4: Integrated Semantic User Interface

Chapter 5

Semantic Query Processing

5.1 Query Processing in BilVideo

A SQL-like textual query language is designed for BilVideo to query the video

data. The earlier version of the system supports spatio-temporal, trajectory, and

low-level feature (color, shape, texture) queries. A Web based query interface

is also implemented to support the entrance of spatio-temporal and trajectory

queries both visually and textually. The GUI converts the entered visual and

textual queries into the BilVideo’s query language and sends it to the query

processor of the system for execution. The first thing done by the query processor

is to create a syntactic parse tree for the query to check the syntax of it and to

create a basis for the query tree creation phase.

For handling the queries formed by using the GUI, a query processor is de-

veloped, which is currently the heart of the BilVideo System.

By traversing the parse tree, a query tree is formed in which the Prolog

equivalents of the subqueries of the original query and the way that their results

will be merged is held as an information in the nodes of it. The constructed query

tree is used as a guideline for executing the original query.

30

CHAPTER 5. SEMANTIC QUERY PROCESSING 31

In the execution phase, the query tree is traversed in such a way that the

Prolog subqueries are sent to the Prolog engine to be executed over the knowledge

base and then the results coming from the Prolog engine are merged according

to the policies defined in the query tree. The final results are sent back to the

web based query interface to be displayed to the end user. This whole process is

shown in Figure 3.2.

5.2 Semantic Query Execution

The semantic query execution capability is an important feature for a video

database management system to increase the querying power of the system. To

support semantic queries, some parts of BilVideo need to be modified and also

some new tools are needed.

For the spatio-temporal relations modelled by BilVideo, more information

can be deduced from the extracted information. For example, for a specific frame

suppose that we have the following information:

• object A is on the right of object B

• object B is on the right of object C

From this extracted information, we can deduce the following information:

• object A is on the right of object C

• object B is in the middle of object A and object C

• object B is on the left of object A

• object C is on the left of object A

• object C is on the left of object B

CHAPTER 5. SEMANTIC QUERY PROCESSING 32

This example shows that by defining necessary inference rules, we can hold

much more data than we actually have for spatio-temporal relations. In this

way, it is also possible to save storage space by not holding the data that can be

deduced from the available data. Inference rules can also be used for trajectory

rules easily. Doing this manually is a very hard job because making deductions

according to the inference rules is a very complex task. All of these functionalities

are present in Prolog. So instead of writing an engine for that, it was decided

to use Prolog for inference. Because of this decision, currently the extracted

information is converted to Prolog facts. The relations that can be deduced from

the existing ones by using the inference rules are eliminated and then the rest are

stored in a knowledge base. To answer the queries, this knowledge base and the

inference rules are used to check if the query condition is satisfied or not.

The nature of spatio-temporal relations is very suitable for Prolog but it is

not suitable for semantic data. It is not easy to deduce new semantic informa-

tion from the available ones because it is very hard to define inference rules for

semantic data. The relational database features are more suitable for handling

semantic information. Thus, a new semantic video model was designed for han-

dling semantic data, and a relational database was used for storing the data. As

a relational database management system, we are currently using Oracle8i 8.1.7

Database Server. However, other database server products can be also used with

our system when needed since our design is platform independent.

The major information extraction tool of the BilVideo System is the Fact

Extractor. It was originally designed for extracting spatio-temporal and trajec-

tory relations from videos. It processes video clips frame by frame and also its

main concern among these frames is the selection of keyframes whenever a change

occurs in the relations among objects. However, the main concern of semantic

information is the identification of sequences and scenes in video clips. Because

of this difference, adding the semantic information extraction capabilities to the

Fact Extractor tool is very hard and also it will make the Fact Extractor tool so

complex to be used by naive users whose only job is the information extraction.

Thus, a new tool for semantic information extraction was needed, which is ca-

pable of extracting information according to the sequences and scenes in video

CHAPTER 5. SEMANTIC QUERY PROCESSING 33

clips. For this purpose, the tool called the Video Annotator tool was developed

[3]. The main difference between the Fact Extractor and the Video Annotator

tools is the way they store the extracted information. Fact Extractor converts

the extracted information to Prolog facts and stores them in a knowledge base.

Video Annotator tool stores the extracted information in a relational database

according to the database designed for the semantic video model.

The query execution steps of the earlier version of BilVideo design are shown

in Figure 3.2. A user starts to interact with BilVideo System by forming a query

visually and/or textually using the web based query interface of the system. Then,

the user submits this query to system. The system first creates a parse tree for

the query, which is used both for checking the syntax of the query and for storing

the information that will be needed during the creation of the query tree. Then,

the system creates a query tree, which is used as a guideline during the execution

of the query. The subtrees of the parse tree are converted to plain Prolog queries

and stored as nodes in the query tree.

During the query tree construction, subqueries of the original query are con-

verted into plain Prolog queries using the information stored in the parse tree.

These plain Prolog queries are stored as nodes in the query tree and these nodes

are connected with nodes that hold the information of how the results of those

Prolog queries will be merged. In the next phase, constructed query tree is

traversed in a depth-first manner. The Prolog queries are sent to the Prolog

engine and the results coming from the Prolog engine are merged according to

the information stored in the query tree. The Prolog engine computes the results

according to the facts that are stored in the knowledge base. When the traver-

sal of the query tree is finished, we end up with the result of the original query

submitted by the user. This result is sent back to the web based query interface

and it is shown to the user visually.

In order to extend the querying capability of BilVideo with semantic queries,

some modifications need to be involved in the query execution cycle shown in

Figure 3.2. The modified query execution process is displayed in Figure 5.1.

The first modification is in the web based query interface of the system. The

CHAPTER 5. SEMANTIC QUERY PROCESSING 34

Figure 5.1: New query processing steps

users should be able to enter semantic queries both visually and textually as well

as the spatio-temporal and trajectory queries. Thus, a new GUI is developed for

semantic queries for entering queries visually and this new GUI is fully integrated

into the web based query interface. By using this new version of the query inter-

face, the users are able to enter spatio-temporal, trajectory and semantic queries

separately and then they are able to combine these subqueries into one complex

and mixed query. The first part of the system that encounters with the submitted

query is the parser that was not able to handle semantic queries in the original

design. Because of that we made necessary modifications in the parser to make it

handle spatio-temporal, trajectory and semantic queries at the same time. In the

query construction phase, the system takes the parse tree and constructs the cor-

responding query tree for it by using the information stored in the parse tree. In

the new scheme, the parse tree not only holds the information for spatio-temporal

and trajectory queries but also for semantic queries. Thus, some modifications

are needed in the query tree construction phase for handling semantic queries. In

the original design, subqueries are converted into plain Prolog queries because the

extracted information is kept as Prolog facts in a knowledge base. However, the

extracted semantic information is kept in a relational database in the new design.

Hence, the semantic subqueries should be converted into plain SQL queries. For

this purpose, the necessary code was added to the system for converting semantic

queries into SQL queries. In the original design, instead of merging the results of

the subqueries, the subqueries are merged before sending them to Prolog engine

CHAPTER 5. SEMANTIC QUERY PROCESSING 35

to get the merged result directly in some situations. In the new design, such

situations became more complex because if one of the subqueries is semantic and

others are not, then it is not possible to merge subqueries beforehand because

of the fact that semantic subqueries are converted to SQL queries and other are

converted to plain Prolog quieries. Thus, the necessary code for identifying such

problems was added to the system.

In the original design, the query tree is traversed and the subqueries are sent

to Prolog engine after the query tree construction. However, with the edition of

semantic query support, the SQL equivalents of the semantic subqueries should

be directed to the relational database instead of Prolog engine. Thus, necessary

code is added for identifying the subquery type and sending the Prolog and SQL

equivalent of them to the correct location.

Retrieving the result of a SQL query from a relational database can be some-

times a complicated task. Hence, for hiding this complexity and making the

code vendor-independent we have written an interface for it, which we call C++

Database Connectivity Interface (CDBC) that is similar to Java Database Con-

nectivity Interface (JDBC). Using CDBC, the results of the SQL equivalents of

semantic subqueries can be retrieved from the relational database very easily.

In the new design, the system identifies the type of the subquery and sends the

Prolog queries to the Prolog engine and the SQL queries to relational database

using CDBC interface. The system merges the results coming from the Prolog

engine and relational database according to the information stored in the query

tree. After the traversal, we end up with the result of the original query and this

result is sent back to the web based query interface for displaying the result of

the query visually to the user.

After the additions and modifications made to the query execution steps,

BilVideo is now able to handle semantic queries as well. The users are able to

construct complex mixed queries and the system is able to handle them.

The semantic query execution process can be explained comprehensively with

a sample query.

CHAPTER 5. SEMANTIC QUERY PROCESSING 36

Query: “Retrieve all news videos produced in 2003 that have “USA - CHINA

Meeting” event in which one of the attendees “James Kelly”, the US Assistant

Secretary of State, is giving a press conference behind microphones.”

The equivalent of the query in BilVideo System’s query language is as follows:

select video

from all

where meta(vtype:news and pyear:2003)

and etype:‘USA - CHINA Meeting’

with (‘James Kelly’:role = Attendee

and setype:‘Press Conference’)

and odata(‘James Kelly’(Title:‘US Assistant Secretary of State’))

and behind(‘James Kelly’,Microphones);

The query processor of BilVideo first extracts the target and range information

from this query. According to this information, it retrieves all videos in the

database that satisfy the conditions in the where clause. Then, it creates a parse

tree for the query. During the creation of the parse tree, the query processor

identifies different condition types included in the where clause and creates a

subtree for each condition type of the condition types. Then, these subtrees are

connected using the nodes created for representing connectors employed in the

query. The where clause of the sample query contains four major condition types,

which are:

• Meta condition:

meta(vtype:news and pyear:2003)

• Event condition:

etype:‘USA - CHINA Meeting’

with (‘James Kelly’:role = Attendee

and setype:‘Press Conference’)

CHAPTER 5. SEMANTIC QUERY PROCESSING 37

• Object condition:

odata(‘James Kelly’(Title:‘US Assistant Secretary of State’))

• Spatio-Temporal condition:

behind(‘James Kelly’,Microphones)

Figure 5.2: The parse tree for the conditions in the where clause of the sample
query (rectangular nodes represent subparse tree equivalents of the corresponding
condition types)

The parse tree for the conditions in the where clause of the query is shown in

Figure 5.2. After the construction of the parse tree, the query processor creates

a query tree from this parse tree in which the subtrees representing different

types of conditions are converted into nodes representing the Prolog and SQL

equivalents of them. The SQL and Prolog queries corresponding to the sample

query are as follows:

• Meta Condition is converted into one node that contains the following SQL

query.

select videoid into videolist

CHAPTER 5. SEMANTIC QUERY PROCESSING 38

from TVIDEO

where pyear = 2003 and videotype = ‘NEWS’;

• Event Condition is converted into a subtree that contains nodes for rep-

resenting the event name and the conditions specified in the with clause.

This is because different parts of an event condition need querying differ-

ent tables in the relational database. After the creation of the query tree,

an optimizer can traverse this subtree and create one node representing an

efficient equivalent of it. The subtree for the event condition is shown in

Figure 5.3. The corresponding SQL queries are as follows:

Query for event name: etype:‘USA - CHINA Meeting’

select eventid into eventlist

from TEVENT e, TACTIVITY a

where e.activity = a.activityid

and a.activityname = ‘USA - CHINA Meeting’;

Query for subevent: setype:‘Press Conference’

select eventid into eventlist

from TSUBEVENT se, TSUBACTIVITY sa

where se.subactivity = sa.subactivityid

and sa.subactivityname = ‘Press Conference’;

Query for object in event: ‘James Kelly’:role = Attendee

select eventid into eventlist

from TACTIVITYROLE ar, TPLAYER p, TOBJECT o

where ar.roleid = p.roleid

and o.objectid = p.objectid

and o.objectname = ‘James Kelly’

CHAPTER 5. SEMANTIC QUERY PROCESSING 39

and ar.rolename = ‘Attendee’;

Query for Event Condition is as follows:

select videoid into videolist

from TEVENT

where eventid in evenlist;

• Object Condition is converted into one node that contains the following

SQL query:

select video into videolist

from TOBJECT o, TOBJECTATTRIBUTE oa, TATTRIBUTE a

where o.objectid = oa.objectid

and oa.attributeid = a.attributeid

and a.name = ‘Title’

and oa.value = ‘US Assistant Secretary of State’

and o.name = ‘James Kelly’;

• Spatio-Temporal Condition is converted into one node which contains the

following Prolog query:

p behind(‘James Kelly’,Microphones,F);

After the construction of the query tree, the query processor traverses this

tree starting from the leaves for finding the result set. On each query node,

Prolog subqueries are sent to the inference engine and SQL queries are sent to

the relational database. Then, the results are merged according to the connector

nodes. If a connector node contains an AND operator, the intersection of the

results of its child nodes is taken. If the connector node contains an OR operator,

the union of the results of its child nodes is taken. When the query processor

reaches to the root of the query tree, it will end up with the result of the query.

CHAPTER 5. SEMANTIC QUERY PROCESSING 40

Figure 5.3: The subtree for the event condition of the sample query (rectangular
nodes represent subparse tree equivalents of the corresponding condition types)

Chapter 6

Implementation Details

As mentioned before, our main contribution is to add semantic querying capability

to the BilVideo System. The main components of BilVideo and the modifications

we performed on each component can be described as follows:

• Information extraction component is used for collecting information about

videos to be used for indexing and retrieval purposes. Video Annotator

tool was originally developed for Microsoft Access DBMS which is not an

adequate for our project especially in terms of scalability. Thus, necessary

changes were made in the code to make Video Annotator work with Oracle

RDBMS.

• Web based query interface is used for entering queries both visually and

textually. This tool was designed in such a way that there exists a separate

tab for each query type and there is a tab for combining different types of

queries. A new tab was added to it for entering semantic queries visually.

• Parser is used for parsing the query submitted from the web based query

interface for checking it syntactically and also for creating a parse tree for

the query. Necessary additions were made to the code of this component

for adding the capability of parsing semantic queries, and new node types

were introduced to the parse tree for semantic queries.

41

CHAPTER 6. IMPLEMENTATION DETAILS 42

• Query tree constructor is used for constructing a query tree from the parse

tree generated by the parser. Necessary additions were made to the code

of it to support the new node types introduced in parse tree (especially for

constructing SQL equivalents of semantic subqueries) and also for merging

subqueries before sending them to the relational database or the Prolog

engine.

• Database communication component is used for sending SQL queries to the

relational database and receiving the result of them. An interface called

CDBC was developed for easing this process.

• Query tree traversal component is used for traversing the query tree for exe-

cuting the query and constructing the result of it. Necessary additions were

made to the code of it to handle the nodes for both Prolog and SQL equiv-

alents of the subqueries. Also, this component was extended for calculating

the results of SQL equivalents of the subqueries connected by temporal

connectors.

• Subquery result merge component is used for merging the results coming

from the Prolog engine and the database for subqueries according to the

information stored in the query tree. In the query tree construction phase,

the code for connector nodes were written in such a way that the connector

nodes don’t have to know the subquery types for merging. This gives us

the chance to use the result merging code as is.

The main additions and modifications made on each part of the BilVideo

System are explained in detail in the following sections. In Section 6.1, the

changes made in the Video Annotator tool are explained. In Section 6.2, the

details of the semantic query interface added to the web based query interface are

described. In Section 6.3, extensions made on the parser of the BilVideo System

are presented. The new properties on query tree construction are presented in

Section 6.4. The modifications made in the execution of the queries by traversing

the query tree are explained in Section 6.5, and lastly the details of the interface

that is used for communicating with the Oracle RDBMS server are described in

Section 6.6.

CHAPTER 6. IMPLEMENTATION DETAILS 43

6.1 Information Extraction

The tool developed for semantic information extraction is called Video Annotator

[3]. The tool was implemented in Java language and it uses JDBC for connecting

to the database. Because of the fact that Microsoft Access and Oracle RDBMS

require different versions of JDBC drivers, we first changed the JDBC driver

used by the tool to the Oracle’s driver. This is done by changing the driver

package that is delivered with the tool and the code for defining the JDBC driver

to be used before opening a connection to the database. We didn’t need to

change the code for opening a connection, sending the queries to the database and

receiving the results. Because JDBC provides a generic interface for all of these

operations that doesn’t need to be changed when the database system changes.

The only problem that we encounter was the use of automatic increment facility

of Microsoft Access database. In Microsoft’s databases, there is an automatic

increment facility that can be used for automatically assigning unique values for

primary key columns when user doesn’t give a value for it in insert statements.

This feature doesn’t exist in Oracle RDBMS, instead there is a structure called

“sequence” to be used for that purpose. Sequence is like a variable which provides

the next available unique number for a column. In Oracle, sequences can not be

associated with columns of a table automatically. It should be handled manually

in the code. During creation of sequences a start point, max value and increment

amount is specified. Whenever a new row is to be inserted to a table, the values

of the columns that need to be associated with a sequence are retrieved from

those sequences and put into the insert statement manually. When the next

available value is requested from a sequence, it increments its current value by

the increment amount and returns this new value. So it always provide a unique

value. In the data model, realized with Microsoft Access, all of the primary key

columns were created with automatic increment. So, for the data model created

in Oracle, a sequence is created for each primary key column of the tables. In the

source code of Video Annotator, before each insert statement, the necessary code

for getting a unique value and putting it in the insert statement for the primary

key columns is added.

CHAPTER 6. IMPLEMENTATION DETAILS 44

After changing the JDBC driver and the addition of sequence structures to

the data model, the Video Annotator tool became fully functional and ready to

be used with Oracle RDBMS.

6.2 Semantic GUI

The earlier version of the web based query interface of BilVideo was initially

handling only spatio-temporal and trajectory queries. Creating a textual query

using a query language can become a very complex task when the number of

conditions increases. To make the querying process easier, we designed a GUI

for entering semantic queries (Figure 4.3). The users are able to enter semantic

queries using this GUI without knowing the semantic query language. They enter

their queries visually according to our hierarchical semantic model by using a tree

structure similar to the one used in the Video Annotator tool, which is used for

showing the results of annotation process. The GUI was developed in Java as a

standalone application considering the fact that it would be integrated into the

web based query interface of the BilVideo System.

The main window of the semantic GUI is composed of two main parts which

are the tree structure located at the left for showing the entered query visually

and the query control buttons for entering the query target, range and conditions.

The ways of specifying semantic condition types are as follows:

• Event conditions : The user should open the dialog designed for entering the

event name of the event condition by clicking on the “Add Event” button.

In this dialog, enter the event name either manually or by selecting from

the event names stored in the database.

• Subevent conditions : The user should open the dialog designed for enter-

ing the subevent name of the subevent condition by clicking on the “Add

Subevent” button. In this dialog, enter the subevent name either manually

or by selecting from the subevent names stored in the database.

CHAPTER 6. IMPLEMENTATION DETAILS 45

• Constraints : There are four types of constraints that can be entered using

the GUI. These are:

– Meta conditions

– Object conditions

– Event conditions

– Subevent conditions

For entering these constraints, the users have to first select the correspond-

ing nodes in the tree structure that the constraint will be located into. Then

they have to click on the “Add Constraint” button. After that, a dialog is

opened for entering the constraint that are available for the selected node.

• Logical operators : These are used for combining different types of condi-

tions and constraints for creating more complex ones. For adding a logical

operator to the semantic query, users have to first select the place to put

the logical operator from the tree structure, and then select the type of the

logical operator, and lastly press the “Add Operator” button.

After the condition part of the query is constructed, the users click the “Sub-

mit Query” button for finishing the query specification by specifying the target

and the range of the query in the opened dialog.

While integrating the semantic GUI, slight modifications were done to the

query interface as summarized below:

• Removal of logical operator addition buttons : In the original web based

query interface, there exists a separate tab called “Relations” for combining

subconditions using logical and temporal operators. Users first form their

desired subconditions using corresponding tabs, and the textual equivalents

of those subconditions are passed to the Relations tab to be combined using

logical and temporal operators. Thus, after the integration of the semantic

GUI, buttons for logical operators became useless. Because of this reason,

they were removed from the semantic tab.

CHAPTER 6. IMPLEMENTATION DETAILS 46

• Functionality change of submit button: In the standalone version, the sub-

mit button was used for sending the query directly to the query processor.

In the web based interface, it is used for passing the conditions defined in

the tab to the Relations tab.

• Multiple query support : As the original query interface supports submission

of multiple queries of the same type at the same time for spatio-temporal

and trajectory queries, we also added this functionality to the semantic tab

by showing the tree structure of each entered semantic query in a separate

tab.

6.3 Parser

The parser of BilVideo has two major functionalities. The first functionality

is to check the syntax of the submitted query whether it is syntactically and

grammatically correct or not. The second functionality is to construct a parse

tree for the submitted query that represents the main structure of the query and

holds the necessary information to be used during the construction of the query

tree.

The parser code was written in C++ language and it uses the Lex and Yacc

utilities for constructing the parse tree. Lex is used for decomposing the sub-

mitted query into smaller tokens according to the predefined lexical rules. If it

encounters a problem during this decomposition, it is understood that there is a

syntactical error in the submitted query. Yacc takes the tokens created by the

Lex utility as an input and it uses them for constructing a parse tree for the

submitted query according to predefined grammatical rules. If it encounters a

problem during the construction of the parse tree, this means that there is a

grammatical error in the submitted query.

The BilVideo system already has a Lex file for defining lexical rules and a Yacc

file for defining grammatical rules for the query language of the system. Hence,

we integrated the lexical and grammatical rules of the semantic query language

CHAPTER 6. IMPLEMENTATION DETAILS 47

Figure 6.1: Parser of the BilVideo System

into those files.

Since the new semantic query language that we are integrating into the original

query language has introduced several new token types, lexical rules for those

token types were added to the Lex file of the system. Major semantic token types

and the keywords that are associated with them are as follows:

• Target types : sequence, scene

• Semantic conditions : meta, odata, event, sevent

• Metadata conditions : vtype, audience, title, length, pyear, producer, direc-

tor, subject

• Event conditions : location, time, role

Grammatical rules of the semantic query language were integrated into the

original rules specified in the Yacc file. Major modifications in the grammatical

rules are as follows:

• Main query definitions : In the BilVideo query language a query is defined

using the following grammatical rule:

Query : SELECT target FROM range WHERE condition;

To be able to support the new target types introduced by the semantic

query language, following two query definitions are added:

CHAPTER 6. IMPLEMENTATION DETAILS 48

Query : SELECT SEQUENCE FROM range WHERE condition

| SELECT SCENE FROM range WHERE condition

• Main condition types : The condition types already supported in BilVideo

are the spatio-temporal and trajectory conditions. Other than these, the

following semantic condition types and their corresponding subqueries were

added to the grammar specification:

– Metadata conditions :

metaconditions : META ‘(’ metaconditionlist ‘)’ ;

– Object conditions :

objectconditions : ODATA ‘(’ objectconditionlist ‘)’ ;

– Event conditions :

eventcondition : ETYPE ‘:’ strvalue

WITH ‘(’ eventconditionlist ‘)’ ;

| ETYPE ‘:’ strvalue ;

– Subevent conditions :

subeventcondition : SETYPE ‘:’ strvalue WITH playerlist ;

| SETYPE ‘:’ strvalue

These modifications in the grammatical rules also yield some changes in the

resulting parse trees. New node types and subparse tree structures were intro-

duced for semantic subqueries. With the use of these new node types, for each

semantic query type different subparse tree structures are constructed by the

system. These subparse trees are shown in Figure 6.2.

6.4 Query Tree Construction

The parser of BilVideo constructs a parse tree for the submitted query, which

corresponds to the main structure of its condition part given in the where clause.

CHAPTER 6. IMPLEMENTATION DETAILS 49

Figure 6.2: Subparse Trees for Semantic Query Types (dotted nodes represent
subparse trees that have more child nodes than the nodes with solid lines)

In Figure 6.3, a sample query and its corresponding parse tree are shown.

The parse tree generated by the parser is then traversed and a query tree is

constructed from it, which is used for executing the submitted query over the

previously extracted information.

In a query tree, there can be mainly two types of nodes. These are:

• Subquery nodes : In the earlier version of BilVideo, these are the nodes

created for holding the plain Prolog query equivalents of the subqueries of

the submitted query which represents a specific condition type like spatio-

temporal or trajectory conditions. There are a certain number of such

subquery types and for each of these there exists a specific subparse tree

structure. Hence, while traversing the parse tree, the system detects those

subquery types by identifying the corresponding subparse tree structures

CHAPTER 6. IMPLEMENTATION DETAILS 50

Figure 6.3: A sample query and its corresponding parse tree (dotted nodes rep-
resent condition types)

and creates a subquery node for each subquery. For example, in the sample

query shown in Figure 6.3, there are two subqueries, which are left(a,b)

and behind(a,c). The subparse tree equivalents of them are shown in

Figure 6.4.

Figure 6.4: Subparse tree structures of the subqueries for the sample query (dot-
ted nodes represent condition types)

During the traversal of the query tree, when the system detects these sub-

parse tree structures, it creates two subquery nodes for each that holds the

plain Prolog queries p left(a,b,F) and p behind(a,c,F) respectively.

• Connector nodes : These are the nodes that hold the necessary information

CHAPTER 6. IMPLEMENTATION DETAILS 51

to merge the results coming from child nodes. During the traversal of the

parse tree, when a node representing a connector of the submitted query is

encountered, the system checks the child nodes that are created beforehand.

If it is possible to write a single plain Prolog query for representing the two

child query tree nodes and the connector, then two child nodes are removed

from the query tree and a single subquery node is created for representing

them. If it is not possible to write a single Prolog query equivalent, then a

connector query tree node is created and the child nodes are connected to

this node. The type of the connector determines the methods for merging

the results coming from its child nodes.

In the earlier version of BilVideo, which supports only spatio-temporal and

trajectory queries, the possible subquery types, their corresponding query tem-

plates and their plain Prolog equivalents are, as follows:

• Appearance Queries

– Query template

appear(object_list)

Objects in the object_list appears in the video.

– Prolog equivalent

p_appear(object_list, F)

• Directional Queries Possible directions that can be specified is left, right,

above, below, west, east, south, north, swest(southwest), seast(southeast),

nwest(northwest), neast(northeast).

– Query template

direction(object1, object2)

object1 is on the specified direction of the object2.

– Prolog equivalent

p_direction(object1, object2, F)

CHAPTER 6. IMPLEMENTATION DETAILS 52

• Topological Queries Possible topologies that can be specified is equal, over-

lap, disjoint, touch, inside, cover, coveredby, contains.

– Query template

tpred(object1, object2)

object1 and object2 are located in the specified topology.

– Prolog equivalent

p_tpred(object1, object2, F)

• Queries for 3D Relations Possible 3D relations are infrontof, behind, sin-

frontof(strictly infrontof), sbehind (strictly behind), tfbehind, tdfbehind,

samelevel.

– Query template

tdpred(object1, object2)

Specified 3D relation (tdpred) holds for object1 and object2.

– Prolog equivalent

p_tdpred(object1, object2, F)

• Trajectory Queries

– Query template

tr(object1, path)

object1’s movement is similar to the given path.

– Prolog equivalent

p_tr(object1, path, F)

During the construction of the query tree, the parse tree is traversed recur-

sively in a depth first manner. During the traversal, the system tries to match

the query tree with a subparse tree structure. Then, the system finds the Prolog

equivalent of the subparse tree and returns this query. On the connector nodes

of the parse tree, the system checks the results coming from the traversal of its

CHAPTER 6. IMPLEMENTATION DETAILS 53

child nodes and it decides to form a single Prolog query or to create a connector

query node according to the rules defined for that connector. The pseudo-code

for the parse tree traversal for constructing the query tree is as follows:

In the query tree construction algorithm (Figure 6.5), some rules are applied

when a parse tree node representing a connector is encountered. These rules are

explained below:

• Parenthesis rules : If the child node is a query node, then enclose the query

that is held in the query node with parenthesis and return this query node.

Otherwise, create a connector node for representing parenthesis, make this

the parent of the child node and return this newly created node. The

detailed explanation of Parenthesis rules is given in Appendix D.

• Not rules : These rules create a connector node for representing not, make

this the parent of the child node and return this newly created node. The

detailed explanation of Not rules is given in Appendix E.

• Temporal connector rules : These rules create a connector node for repre-

senting the temporal connector, make this the parent of the child nodes and

return this newly created node.

• And-Or rules : These are the most complex rules. There many different

possible child node combinations which we have to deal with. All of these

combinations are explained in Appendix B in detail. The rules for the major

combinations are as follows:

– If both child nodes are query nodes, then the system creates one query

node for representing these two child nodes and the connector, and

then returns the query node.

– If both of the child nodes are connector nodes of the same type with the

current connector and each has one child query node, then the system

restructures the nodes in such a way that a query node is created by

combining query nodes, a connector node is created by merging the

remaining parts of the child subtrees, and then a parent connector

node is created for those newly created child nodes.

CHAPTER 6. IMPLEMENTATION DETAILS 54

constructQueryTree
input = pnode (parse tree node)
output = data

// Take the results coming from the child nodes
if pnode->leftchild != null

dataleft = constructQueryTree(pnode->leftchild)
if pnode->rightchild != null

dataright = constructQueryTree(pnode->rightchild)

// If node is not a connector, then
// try to match it with a subparse tree type
if pnode->type != connector

if match with a subparse tree type
data->content = prolog equivalent of the subparse tree
return data

// If node is a connector, then
// apply corresponding connector rules
if pnode->type is a connector

if pnode->type = "()"
data = apply parenthesis rules

else if pnode->type = "Not"
data = apply not rules

else if pnode->type in (temporal_connectors)
data = apply temporal connector rules

else if pnode->type in (and, or)
data = apply and-or rules

return data

// The structure used for holding results for nodes.
struct data {

string content
querynode qnode

}

Figure 6.5: The algorithm for query tree construction

CHAPTER 6. IMPLEMENTATION DETAILS 55

– If both of the child nodes are connector nodes, then a connector node is

created for representing the current connector type, this node is made

the parent of the child nodes and it is returned.

With the addition of the semantic query capability to the parser of BilVideo,

new subparse tree structures are introduced for new semantic subquery types. As

the semantic information extracted from videos is stored in a relational database,

the subparse trees for semantic subquery types should be converted to the SQL

queries. The possible semantic query types whose corresponding subparse trees

are shown in Figure 6.2 and their SQL query equivalents are as follows:

• Event queries

– Query template

etype : <event_name> with (<event_conditions>)

– SQL equivalent

select begintime, endtime, videoid

from TEVENT

where eventid in (select te.eventid

from TEVENT te, TACTIVITY ta

where te.activity = ta.activity

and ta.activityname = <event_name>)

and eventid in (<event_conditions>);}

• Subevent queries

– Query template

setype : <subevent_name> with <player_list>

– SQL equivalent

select tse.begintime, tse.endtime, tsp.videoid

from TSUBEVENT tse ,

(select tsp.subeventid subeventid, to.videoid videoid

CHAPTER 6. IMPLEMENTATION DETAILS 56

from TSUBPLAYER tsp , TOBJECT to

where tsp.subplayerid = to.objectid

and tsp.subeventid in

(select tse.subeventid

from TSUBEVENT tse, TSUBACTIVITY tsa

where tse.subactivity = tsa.subactivityid

and tsa.subactivityname = <subevent_name>)

and to.name in (<player_list>)) tsp

where tse.subeventid = tsp.subeventid;

• Meta condition

– Query template

meta (<meta_conditions>)

– SQL equivalent

select 0, length, videoid

from TVIDEO

where <meta_conditions>;

• Object condition

– Query template

odata (<object_conditions>)

– SQL equivalent (when target is video)

select 0, length, videoid

from TOBJECT

where objectid in (<object_conditions>);

– SQL equivalent (when target is segments of a video)

select te.begintime, te.endtime, te.videoid

from TEVENT te, TPLAYER tp

where te.eventid = tp.eventid

and objectid in (<object_conditions>);

CHAPTER 6. IMPLEMENTATION DETAILS 57

The addition of new subparse tree types for semantic conditions yields some

changes in query tree construction algorithm. In the earlier version of the al-

gorithm, when the system matches a subparse tree rooted by the current parse

tree node with a subparse tree type, then it directly converts it to Prolog. For

supporting subparse tree types representing semantic conditions, this part of the

algorithm is changed as follows:

if pnode->type != connector

if match with a subparse tree type for semantic condition

data->content = SQL equivalent of the subparse tree

else

data->content = Prolog equivalent of the subparse tree

return data

The earlier version of the query tree construction algorithm of BilVideo as-

sumes that all the child query nodes hold Prolog equivalents of conditions given

in the where clause of the original query. However, with the addition of seman-

tic querying capability, the query nodes can also hold SQL equivalents of the

conditions. This situation creates a problem in the connector rules for And-Or

connectors. To handle this problem, the system should check before merging the

condition types if they are of the same type or not. Thus, taking this situation

into consideration, we updated the connector rules for the And-Or connectors.

According to these changes, the system currently checks for the condition types

and if they are of the same type, it applies the original rules. However, if they are

different type or at least one of them is of mixed type, then the system applies

the updated rules (The details of the changes in the And-Or connector rules are

presented visually in Appendix C).

CHAPTER 6. IMPLEMENTATION DETAILS 58

6.5 Query Tree Traversal

After the construction of the query tree, the system traverses it recursively in

a depth first manner for executing the submitted query over the previously ex-

tracted information. The pseudo-code for the algorithm that is used for traversing

the query tree is as follows:

processQTree

input = qnode (query tree node)

output = result (keyframe intervals)

if qnode->type is a connector node

if qnode has a left child

resultOfLeft = processQTree(qnode->leftChild)

if qnode has a right child

resultOfRight = processQTree(qnode->rightChild)

// Call corresponding interval processing method

result = processInterval(resultOfLeft, resultOfRight,

qnode->getType)

else if qnode is a query node

if qnode holds a prolog query

// Send query to the Prolog Engine

result = prologQuery(qnode->content)

if qnode holds a SQL query

// Send query to the relational database

result = sqlQuery(qnode->content)

return result

During traversal of the query tree, when the system encounters a connector

node, it gets the results form its child nodes. Then, it invokes the interval pro-

cessing algorithm corresponding to the type of the connector node. At this point,

CHAPTER 6. IMPLEMENTATION DETAILS 59

the system doesn’t have to know about the types of its child nodes, because it

gets the results from its child nodes in a specific format which doesn’t depend on

the type of the child nodes. Thus, we didn’t have to modify the code for interval

processing.

When the system encounters a query node, it checks if its content is a plain

Prolog or a SQL query. If it is a Prolog query, then the system sends it to the

Prolog engine, and if it is a SQL query, the system sends this to the relational

database.

6.6 Database Connection

As it is explained before, we chose the Oracle RDBMS for storing the extracted

semantic information. As our query processor code was written in C++, there

are 3 possibilities for sending a SQL query to Oracle:

• OCI (Oracle Call Interface)

• ODBC driver

• ODBC Bridge

To be able to use the first two of those, it is needed to install a software

called Oracle Client on the machine which runs the query processor. The size of

the Oracle Client software is approximately 200MB and it is not an easy task to

install it on a Linux or Unix server. The third option requires installation of a

bridge software on both the client side where the query processor runs and the

server side where Oracle RDBMS is installed. When we need to send a query in

this architecture, it is first sent to the local bridge. The local bridge passes this

query to the bridge located on the server side, and it is then sent to Oracle. Then

the result of the query is sent back in the reverse path. This process is shown in

Figure 6.6.

CHAPTER 6. IMPLEMENTATION DETAILS 60

Figure 6.6: ODBC Bridge Solution

There are two problems about this architecture. One is the increased com-

munication cost by the communication between bridges and the other is the

installation of a bridge software on the server side which is not a desired thing

because most of the database administrators will not allow to install a software

on the server side due to the security concerns. Because of the problems of those

choices, we develop our own solution for providing a connection from C++ code

to Oracle. We wrote our own bridge software which only needs to be installed on

the client side and which has a size of 4KB. We implemented the bridge software

in Java language and it uses JDBC interface for connecting to Oracle. The java

bridge is written as a multi threaded application so that it can serve more than

one query processor at the same time. For sending the queries to this bridge we

implemented an interface called CDBC in C++. This interface was implemented

in such a way very similar to that of the JDBC interface which is very easy to

use and very efficient in terms of the resource management. The architecture of

this solution is shown in figure Figure 6.7 and a sample code for sending a query

from C++ using the CDBC interface is presented in Figure 6.8.

CHAPTER 6. IMPLEMENTATION DETAILS 61

Figure 6.7: JDBC Bridge Solution

void main(){
// Connect to Bridge
Connection *conn = new Connection(4444,"100.100.100.4");

// Connect to DB
conn->createConnection("100.100.100.6","1521","PCVIDEO",

"annotator","annotator");
// Create a statement for sending query to the DB
Statement *stmt = conn->createStatement();

// Sample query = Get the names of the Videos in the DB
// Send the query to the DB and get the result of the query
ResultSet *rset = stmt->executeQuery("SELECT name FROM tvideo");

// Print the results
while(rset->next()){

cout<<"Video Name="<<rset->getString("1");
}

// Release the resources
rset->close();
stmt->close();
conn->close();

}

Figure 6.8: Sample code for sending a query to the database and getting the
result of it

Chapter 7

Conclusion

As the attention on the video as a multimedia data type has increased by the

time, the amount of research on it has also increased very rapidly. Semantic

analysis of video data is one of the major topics investigated by the researchers

in multimedia systems field. The main aspects that we have to deal with while

working on semantic issues of video data can be given as follows:

• Defining a semantic video model for describing the contents of a video

semantically.

• Extraction of semantic information from videos.

• Storing the extracted information.

• Querying the videos stored in the database.

In Bilkent Multimedia Database Group, a solution for each of these aspects

was developed. First, a semantic model was defined. According to this model, a

video is composed of events, events consist of subevents and there exist objects

of interest that takes place in both events and subevents. A data model was

also defined, which lets us keep the details of events, subevents and objects like

the location and time of occurrence of an event, the objects that involved in an

event or subevent, the details of an object such as the name, height or title of a

62

CHAPTER 7. CONCLUSION 63

person and so on. By defining the video in such a comprehensive and detailed

fashion, we increased the querying capabilities of the system considerably and in

this work, we fully integrated the semantic querying capability to BilVideo.

There exist many automatic semantic information extraction methods pro-

posed in the literature. But most of these methods do not perform good enough.

It is also very hard to extract information automatically in the detail level of our

model. Therefore, we have developed a semi-automatic information extraction

tool. As a future work, we are planning to involve the automatic extraction tech-

niques in our system such as automatic shot detection for easing the process of

manual annotation.

By analyzing the detail level of the extracted semantic information and the

relational nature of it, we decided to use a relational database to store this infor-

mation. We designed a database model for storing the extracted data. We use

a SQL-like query language for formulating semantic queries, which is integrated

into the query language of BilVideo. Besides, we designed and integrated a GUI

into the web based query interface of BilVideo for the specification of semantic

queries visually.

Currently the semantic querying capability was fully integrated into BilVideo.

The system is now capable of executing spatio-temporal, trajectory and seman-

tic queries together. The users are able to submit complex, mixed and detailed

queries to the system both visually and textually through we based query inter-

face.

Bibliography

[1] M.E. Dönderler, Ö. Ulusoy and U. Güdükbay. A Rule-based Video Database

System Architecture. Information Sciences, Vol. 143, No. 1-4, pp. 13-45,

2002.

[2] M.E. Dönderler, Ö. Ulusoy and U. Güdükbay. Rule-based Spatiotemporal

Query Processing for Video Databases. the VLDB Journal, Vol. 13, No. 1,

pp. 86-103, January 2004.

[3] U. Arslan. A Semantic Data Model and Query Language for Video

Databases. Masters Thesis, 2002.

[4] E. Saykol. Web-Based User Interface for Query Specification in a Video

Database System. Masters Thesis, 2001.

[5] F. Nack and W. Putz. Saying What it Means: Semi-Automated (News)

Media Annotation. Multimedia Tools and Applications, 22, 263302, 2004.

[6] H. Kosch, A. Mostefaoui, L. Böszörmenyi, and L. Brunei. Heuristics for

Optimizing Multi-Clip Queries in Video Databases. Multimedia Tools and

applications, 22, 235262, 2004.

[7] A. Jain and S. Chaudhuri. A Fast Method for Textual Annotation of Com-

pressed Video. Proceedings of the Indian Conference on Computer Vision,

Graphics and Image Processing (ICVGIP 2002), 2002.

[8] A. Mahindroo, B. Bose, S. Chaudhury and G. Harit. Enhanced Video Rep-

resentation using Objects. Proceedings of the Indian Conference on Vision,

Graphics and Image Processing (ICVGIP 2002), 2002.

64

BIBLIOGRAPHY 65

[9] A. Ekin, A. M. Tekalp, and R. Methrotra. Integrated semantic-syntactic

video event modeling for search and retrieval. Proceedings of 2002 Interna-

tional Conference on Image Processing 2002 (ICIP 2002), Vol. I, pp. I-141 -

I-144, 2002.

[10] C. A. Goble, A. Carole, C. Haul, S. Bechhofer. Describing and classifying

multimedia using the description logic GRAIL, Proceedings of SPIE, Vol.

2670, pp. 132-143, Storage and Retrieval for Still Image and Video Databases

IV, Ishwar K. Sethi; Ramesh C. Jain; Eds. 1996.

[11] R. Hammoud, L. Chen and D. Fontaine. An Extensible Spatial-Temporal

Model for Semantic Video Segmentation. Proceedings of the First Interna-

tional Forum on Multimedia and Image Processing, Anchorage, Alaska, 1998.

[12] T. S. Huang and M. R. Naphade. MARS (Multimedia Analysis and Re-

trieval System): A test-bed for video indexing, browsing, searching, filtering

and summarization. International Workshop on Multimedia Data Storage,

Retrieval, Integration and Applications, Hong Kong Polytechnic University,

2000.

[13] M. R. Naphade, I. Kozintsev, T. S. Huang and K. Ramchandran. A Factor

Graph Framework for Semantic Indexing and Retrieval in Video. Proceedings

of the IEEE Workshop on Content-based Access of Image and Video Libraries

(CBAIVL’00), Page: 35-39, 2000.

[14] M. R. Naphade, T. S. Huang. A Probabilistic Framework for Semantic Index-

ing and Retrieval in Video. Proceedings of the IEEE International Conference

on Multimedia and Expo, pp. 475-478, New York, 2000.

[15] M. R. Naphade, T. S. Huang. Semantic Video Indexing using a probabilistic

framework. Proceedings of the International Conference on Pattern Recogni-

tion (ICPR’00), Vol. 3, p. 3083, Barcelona, Spain, 2000.

[16] A. Bonzanini, R. Leonardi and P. Migliorati. Exploitation of Temporal De-

pendencies of Descriptors to Extract Semantic Information. Proceedings of

VLBV 2001, pp. 177-180, Athens, Greece, 2001.

BIBLIOGRAPHY 66

[17] A. B. Benitez, H. Rising, C. Jorgensen, R. Leonardi, A. Bugatti, K. Hasida,

R. Mehrotra, A. M. Tekalp, A. Ekin and T. Walker. Semantics of Multi-

media in MPEG-7, Proceedings of the International Conference on Image

Processing 2002, Vol. 1, pp. 137 - 140, 2002.

[18] A. Yao and J. Jin. The development of a video metadata authoring and

browsing system in XML. Proceedings of the Pan-Sydney Workshop on Vi-

sualisation, Vol. 2, pp. 39 - 46, Sydney, Australia, 2000.

[19] D. A. Tran, K. A. Hua and K. Vu. Semantics Reasoning Based Video

Database Systems. Proceedings of Database and Expert Systems Applica-

tions, pp. 41-50, 2000.

[20] W. Zhou, A. Vellaikal and C.-C. Jay Kuo. Rule-based Video Classification

System for Basketball Video Indexing. ACM Multimedia 2000 Los Angeles,

CA, USA.

[21] B. L. Tseng, C.-Y. Lin and J. R. Smith. Video Summarization and Personal-

ization for Pervasive Mobile Devices. Proceedings of SPIE Electronic Imaging

2002 - Storage and Retrieval for Media Databases, San Jose, 2002.

[22] J. M. Corridoni and A. D. Bimbo. Film semantic analysis. Proceedings of the

International Conference on Computer Architecture for Machine Perception

(Camp95), Como, Italy, 1995.

[23] A. Yoshitaka, T. Ishii, M. Hirakawa, T. Ichikawa. Content-based retrieval of

video data by the grammar of film. Proceedings of the 1997 IEEE Symposium

on Visual Languages (VL ’97), pp. 310-317, 1997.

[24] A. Yoshitaka, T. Ishii, M. Hirakawa, T. Ichikawa. Content-based retrieval of

video data by the grammar of film. Proceedings of the 1997 IEEE Symposium

on Visual Languages (VL ’97), pp. 310-317, 1997.

[25] J. Assfalg, M. Bertini, C. Colombo, and A. Del Bimbo. Extracting semantic

information from news and sport video. Proceedings of the 2nd International

Symposium on Image and Signal Processing and Analysis (ISPA’2001) pp.

4-11, 2001.

BIBLIOGRAPHY 67

[26] B. Li and M.I. Sezan. Event Detection and Summarization in Sports Video.

Proceedings of the IEEE Workshop on Content-based Access of Image and

Video Libraries (CBAIVL’01) , pp. 132-138, 2001.

[27] N. Nitta, N. Babaguchi and T. Kitahashi. Story Based Representation for

Broadcasted Sports Video and Automatic Story Segmentation. Proceedings

of the IEEE International Conference on Multimedia and Expo (ICME2002),

pp. 813-816, 2002

[28] A. Kojima, T. Tamura and K. Fukunaga. Textual description of human

activities by tracking head and hand motions. Proceedings of the 16th Inter-

national Conference on Pattern Recognition, Vol. 2, pp. 1073- 1077, 2002.

[29] P. H. Meland, J. Austvik, J. Heggland and R. Midtstraum. Using Ontolo-

gies and Semantic Networks with Temporal Media. Proceedings of the SI-

GIR’2003 Semantic Web Workshop, Toronto, Canada, 2003.

[30] World Wide Web Consortium. Resource Description Framework (RDF).

http://www.w3.org/RDF/.

Appendix A

Database Table Specifications

TVIDEO Stores bibliographic information about videos. videotype and

audience values are references to TVIDEOTYPE and TAUDIENCE tables.

Column Name Data Type Constraints

VIDEOID Number(10) Primary Key

NAME Varchar2(20)

LENGTH Number(10) Check(Length ¿= 0)

PYEAR Number(10)

PRODUCER Varchar2(20)

DIRECTOR Varchar2(20)

VIDEOTYPE Number(10) References TVIDEOTYPE(VIDEOTYPEID)

AUDIENCE Number(10) References TAUDIENCE(AUDIENCEID)

SUBJECT Varchar2(20)

VIDEOURL Varchar2(20)

TVIDEOTYPE Stores video type names, like adventure, horror, science-

fiction, romance, etc.

Column Name Data Type Constraints

VIDEOTYPEID Number(10) Primary Key

VIDEOTYPENAME Varchar2(20)

68

APPENDIX A. DATABASE TABLE SPECIFICATIONS 69

TAUDIENCE Stores audience names like, teenager, children, adult, everyone,

etc.

Column Name Data Type Constraints

AUDIENCEID Number(10) Primary Key

AUDIENCENAME Varchar2(20)

TEVENT Stores data about events, like activity type of event, start and end

times of event, location and time of event. videoid field is a reference to

TVIDEO and activity field is a reference to TACTIVITY table.

Column Name Data Type Constraints

EVENTID Number(10) Primary Key

VIDEOID Number(10) References TVIDEO(VIDEOID)

ACTIVITY Number(10) References TACTIVITY(ACTIVITYID)

BEGINTIME Number(10)

ENDTIME Number(10)

LOCATION Varchar2(20)

TIMEOFEVENT Varchar2(20)

TSUBEVENT Stores data about subevents. Subactivity, begin and end times

are stored. eventid and subactivity are references to TEVENT and

TSUBACTIVITY tables.

Column Name Data Type Constraints

SUBEVENTID Number(10) Primary Key

EVENTID Number(10) References TEVENT(EVENTID)

SUBACTIVITY Number(10) References TSUBACTIVITY(SUBACTIVITYID)

BEGINTIME Number(10)

ENDTIME Number(10)

TPLAYER Stores the objects that appear in events plus their roles in the

events. Objects can have many roles in an event. eventid and objectid

fields are references to TEVENT and TOBJECT tables respectively.

APPENDIX A. DATABASE TABLE SPECIFICATIONS 70

Column Name Data Type Constraints

PLAYERID Number(10) Primary Key

EVENTID Number(10) References TEVENT(EVENTID)

OBJECTID Number(10) References TOBJECT(OBJECTID)

TPLAYERROLE Stores the roles of the players in the events.

Column Name Data Type Constraints

PLAYERID Number(10) Primary Key

ROLEID Number(10) Primary Key

TSUBPLAYER Stores the objects that appear in subevents. subeventid field

is a reference to TSUBEVENT table and subplayerid field is a reference to

TPLAYER table.

Column Name Data Type Constraints

SUBPLAYERID Number(10) Primary Key

SUBEVENTID Number(10) Primary Key

TOBJECT Stores the object names for each video. videoid field is a reference

to TVIDEO table.

Column Name Data Type Constraints

OBJECTID Number(10) Primary Key

VIDEOID Number(10) References TVIDEO(VIDEOID)

NAME Varchar2(20)

TACTIVITY Stores activity names, like party, wedding, murder, war, etc.

Column Name Data Type Constraints

ACTIVITYID Number(10) Primary Key

ACTIVITYNAME Varchar2(20)

TROLE Stores rolenames for each activity. For example, for the murder activity

the role names are murderer and victim; and for the party activity the role

names are host and guest.

APPENDIX A. DATABASE TABLE SPECIFICATIONS 71

Column Name Data Type Constraints

ROLEID Number(10) Primary Key

ACTIVITYID Number(10) References TACTIVITY(ACTIVITYID)

ROLENAME Varchar2(20)

TSUBACTIVITY Stores actions such as talking, eating, dancing, fighting, etc.

Column Name Data Type Constraints

SUBACTIVITYID Number(10) Primary Key

SUBACTIVITYNAME Varchar2(20)

TATTRIBUTE Stores attribute names for video objects like realname, sex,

color, speed, etc.

Column Name Data Type Constraints

ATTRIBUTEID Number(10) Primary Key

NAME Varchar2(20)

TOBJECTATTRIBUTE Stores the attribute values for each attribute defined

for each object. objectid and attributeid are references to TOBJECT and

TATTRIBUTE tables.

Column Name Data Type Constraints

OBJECTID Number(10) References TOBJECT(OBJECTID)

ATTRIBUTEID Number(10) References TATTRIBUTE(ATTRIBUTEID)

AVALUE Varchar2(20)

Appendix B

Earlier Version of AND-OR

Rules without Semantic Queries

for Query Tree Construction

During the traversal of parse tree for query tree construction, when a connector

node representing “AND” or “OR” is encountered, AND-OR rules are applied

for that node by considering the results coming from its child nodes.

AND-OR rules are applied in two phases. In the first phase, the results coming

from the child nodes are reorganized to make the application of the AND-OR rules

easier. In the second phase, AND-OR rules are applied to the reorganized results

coming from child nodes.

B.1 Phase1 - Reorganization

Input to Phase1 is the results coming from the child nodes. The results can be

a root node of a subtree and/or a textual content which contains a subquery.

Output of Phase1 is also a root node of a subtree and/or a textual content which

contains a subquery. There can be six different input combinations. These input

72

APPENDIX B. EARLIER VERSION OF AND-OR RULES WITHOUT SEMANTIC QUERIES FOR QUERY TREE CONSTRUCTION73

combinations and their corresponding outputs are shown in Figures B.1-B.6.

Figure B.1: Only content is coming from left child

Figure B.2: Only content is coming from right child

Figure B.3: Content and node (same with the current operator) coming from left
child

B.2 Phase2 - Query Tree Construction

Input to Phase2 is the reorganized results coming the child nodes. The results can

be a root node of a subtree and/or a textual content which contains a subquery.

Output of Phase2 is also a root node of a subtree and/or a textual content which

contains a subquery. There can be seven different input combinations. These

APPENDIX B. EARLIER VERSION OF AND-OR RULES WITHOUT SEMANTIC QUERIES FOR QUERY TREE CONSTRUCTION74

Figure B.4: Content and node (same with the current operator) coming from
right child

Figure B.5: Content and node (different than the current operator) coming from
left child

input combinations and their corresponding outputs are shown in Figures B.7-

B.15.

APPENDIX B. EARLIER VERSION OF AND-OR RULES WITHOUT SEMANTIC QUERIES FOR QUERY TREE CONSTRUCTION75

Figure B.6: Content and node (different than the current operator) coming from
right child

Figure B.7: Only nodes come from both child

Figure B.8: Content and node coming from left child and content coming from
right child

APPENDIX B. EARLIER VERSION OF AND-OR RULES WITHOUT SEMANTIC QUERIES FOR QUERY TREE CONSTRUCTION76

Figure B.9: Content coming from left child and content and node coming from
right child

Figure B.10: Content and node coming from both children

Figure B.11: Content from left child and node coming from right child (opposite
input yields opposite output)

APPENDIX B. EARLIER VERSION OF AND-OR RULES WITHOUT SEMANTIC QUERIES FOR QUERY TREE CONSTRUCTION77

Figure B.12: Content and node coming from left child and node (left child empty)
coming from right child (opposite child result order for input yields opposite
output)

Figure B.13: Content and node coming from left child and node coming from
right child (opposite child result order for input yields opposite output)

Appendix C

Updated AND-OR Rules with

Semantic Queries for Query Tree

Construction

The AND-OR rules for query tree construction need some modifications, when

the nodes for semantic queries come into the picture. The updated AND-OR

rules for supporting semantic queries are explained in this chapter.

C.1 Phase1* - Different Child Types

Input to Phase1* is the results coming from the child nodes. Child nodes should

belong to different query types. The results can be a root node of a subtree

and/or a textual content which contains a subquery. Output of Phase1* is also a

root node of a subtree and/or a textual content which contains a subquery. The

input combinations and their corresponding outputs are shown in Figure C.1.

78

APPENDIX C. UPDATED AND-OR RULES WITH SEMANTIC QUERIES FOR QUERY TREE CONSTRUCTION79

Figure C.1: Content and node (same with the current operator) coming from left
child (opposite child result order for input yields opposite output)

C.2 Phase2* - Different Child Types

Input to Phase2* is the reorganized results coming the child nodes. Child nodes

should belong to different query types. The results can be a root node of a subtree

and/or a textual content which contains a subquery. Output of Phase2* is also a

root node of a subtree and/or a textual content which contains a subquery. The

input combinations and their corresponding outputs are shown in Figure C.2 and

C.3.

Figure C.2: Content and node coming from left child and content coming from
right child (opposite child result order for input yields opposite output)

APPENDIX C. UPDATED AND-OR RULES WITH SEMANTIC QUERIES FOR QUERY TREE CONSTRUCTION80

Figure C.3: Content and node coming from both children

C.3 Phase2** - At Least One Mixed Child Type

Input to Phase2** is the reorganized results coming the child nodes. Query type

of at least one of the child nodes should be mixed. The results can be a root

node of a subtree and/or a textual content which contains a subquery. Output of

Phase2** is also a root node of a subtree and/or a textual content which contains

a subquery. The input combinations and their corresponding outputs are shown

in Figure C.4 and C.5.

Figure C.4: Content and node coming from left child and content coming from
right child (opposite child result order for input yields opposite output)

APPENDIX C. UPDATED AND-OR RULES WITH SEMANTIC QUERIES FOR QUERY TREE CONSTRUCTION81

Figure C.5: Content and node coming from both children

Appendix D

Parenthesis Rules for Query Tree

Construction

During the traversal of parse tree for query tree construction, Parenthesis rules

are applied for that node by considering the results coming from its child node

when a node representing a parenthesis is encountered. The input combinations

and their corresponding outputs are shown in Figure D.1 and D.2.

Figure D.1: Content coming from child

82

APPENDIX D. PARENTHESIS RULES FOR QUERY TREE CONSTRUCTION83

Figure D.2: Content and node coming from child

Appendix E

NOT Rules for Query Tree

Construction

During the traversal of parse tree for query tree construction, NOT rules are

applied for that node by considering the results coming from its child node when

a node representing a “NOT” operator is encountered. The input combinations

and their corresponding outputs are shown in Figure E.4 and E.5.

Figure E.1: Content coming from child

84

APPENDIX E. NOT RULES FOR QUERY TREE CONSTRUCTION 85

Figure E.2: Content and node coming from child

