AN EFFICIENT QUERY OPTIMIZATION
STRATEGY FOR SPATIO-TEMPORAL
QUERIES IN VIDEO DATABASES

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTER ENGINEERING
AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE

By
Giilay Unel
July, 2002

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Ozgiir Ulusoy(Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Attila Giirsoy

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Ibrahim Korpeoglu

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

i

ABSTRACT

AN EFFICIENT QUERY OPTIMIZATION STRATEGY
FOR SPATIO-TEMPORAL QUERIES IN VIDEO
DATABASES

Giilay Unel
M.S. in Computer Engineering
Supervisors: Assoc. Prof. Dr. Ozgiir Ulusoy and
Assist. Prof. Dr. Ugur Giidiikbay
July, 2002

The interest for multimedia database management systems has grown rapidly
due to the need for the storage of huge volumes of multimedia data in computer
systems. An important building block of a multimedia database system is the
query processor, and a query optimizer embedded to the query processor is needed
to answer user queries efficiently. Query optimization problem is widely studied
for conventional database systems, however it is a new research area for multime-
dia database systems. Due to the differences in query processing strategies, query
optimization techniques used in multimedia database systems are different from
those used in traditional databases. In this thesis, query optimization problem in
video database systems is outlined and a query optimization strategy is proposed
as a solution to this problem. Reordering algorithms, to be applied on query
execution tree, are also described. Finally, the performance results obtained by

testing the proposed algorithms are presented.

Keywords: video databases, query optimization, query tree, querying of video
data.

il

OZET

VIDEO VERITABANLARINDA YERLESIM ZAMAN
SORGULARI ICIN ETKILI BIR SORGU
OPTIMIZASYON STRATEJISI

Giilay Unel
Bilgisayar Miihendisligi, Yiiksek Lisans
Tez Yoneticileri: Dog. Dr. Ozgﬁr Ulusoy and
Yrd. Dog. Dr. Ugur Giidiikkbay
Temmuz, 2002

Miiltimedya veritabani yonetim sistemlerine olan ilgi biiyiik hacimlerde
miiltimedya verilerini saklama ihtiyacindan dolay1 hizla artmigtir. Sorgu iglemcisi,
bir miiltimedya veritabani sisteminin 6nemli yap1 taglarindan biridir ve sorgu-
lar1 verimli bir gekilde yanitlayabilmek icin sorgu islemcisine yerlestirilmig bir
sorgu eniyileyicisine ihtiyac vardir. Sorgu optimizasyonu problemi konvansi-
yonel veritabanlari icin kapsamli olarak arasgtirilmig olup, miiltimedya verita-
bani sistemleri icin yeni bir aragtirma alanidir. Sorgu isleme stratejilerindeki
farkliliklardan dolay1 miiltimedya veritabani sistemlerinde kullanilan sorgu opti-
mizasyon teknikleri, geleneksel veritabanlarinda kullanilanlardan farkhidir. Bu
tezde, video veritabani sistemlerindeki sorgu optimizasyon problemi ana hat-
lariyla ele alinmig ve bu probleme ¢oziim olarak bir sorgu optimizasyon stratejisi
onerilmistir. Ayrica, sorgu calisma agacina uygulanacak siralama algoritmalar:
tanimlanmigtir. Son olarak, oOnerilen algoritmalarin test edilmesi sonucu elde

edilmis olan performans sonuclar: sunulmustur.

Anahtar sozcikler: video veritabanlari, sorgu optimizasyonu, sorgu agaci, video

verilerini sorgulama.

v

Acknowledgement

I would like to express my special thanks and gratitude to my supervisors
Assoc. Prof. Dr. Ozgiir Ulusoy and Assist. Prof. Dr. Ugur Giidiikbay for their

concern in the supervision of the thesis.

I would like to express my gratitude to Assist. Prof. Dr. Attila Giirsoy and
Assist. Prof. Dr. Ibrahim Korpeoglu for their interest to the subject matter and

spending their time for reading and reviewing the thesis.

I would like to acknowledge the support of Turkish Scientific and Technical
Research Council (TUBITAK).

I would like to express my special thanks to Mehmet Emin Donderler for his

support and patience in all stages of the thesis research.

I thank to my spouse Ciineyt, my brother Semih, my mother and father for
their support.

Finally, I would like to express my special thanks and gratitude to my manager

Dr. Seyit Kocberber for all his support in my master’s study.

Contents

1 Introduction

1.1

3.1

3.2

3.3

3.4

4.1

4.2

4.3

Organization of the Thesis

Related Work

BilVideo: A Video DBMS

Video Database System Architecture
Video Query Language

Query Types

Query Processing

Query Optimization

Structure of the Query Tree
Internal Node Reordering Algorithm
4.2.1 Examples

Leaf Node Reordering Algorithm

vi

10

11

12

15

CONTENTS

4.3.1 Examples

5 Performance Results
5.1 Fact Base Statistics
5.2 Performance Results

5.3 Examples

6 Conclusions and Future Work

References

Appendices

A Sample Fact Base for an Example Video

B Query Sets

vii

27

31

32

32

36

39

41

44

44

51

List of Figures

3.1 BilVideo database system architecture. 9
3.2 Web client - query processor interaction. 13
3.3 Query processing phases. L. 13
4.1 Query optimization process 15
4.2 Internal node reordering algorithm 18
4.3 (a) Initial query tree for Query 1 and (b) Query tree for Query 1

after internal node reordering L 20
4.4 (a) Initial query tree for Query 2 and (b) Query tree for Query 2

after internal node reordering oL 20
4.5 Leaf node reordering algorithm 22
4.6 The function that finds subquery tree of a leaf node 22
4.7 The function that reorders the located subquery tree 24
4.8 The function that finds if there is a ‘NOT-OR’ type node in a tree 25
4.9 The function that orders leaf nodes 25
4.10 The function that gets leaf nodes 26

viil

LIST OF FIGURES ix

4.11 The function that sorts leaf nodes 27
4.12 The function that puts the elements to the leaf nodes 28

4.13 (a) Initial subquery tree for Query 1 and (b) Subquery tree for
Query 1 after leaf node reordering 29

5.1 (a) Initial query tree for Query 1 and (b) Query tree for Query 1

after optimization L oL 37

5.2 (a) Initial query tree for Query 2 and (b) Query tree for Query 2

after optimization L oL 38

List of Tables

5.1

5.2

5.3

5.4

3.5

5.6

The statistics of the fact base 32
Leaf node reorder algorithm test results (msecs) 33
Query optimization algorithm test results (msecs) 34
Convergence to the optimal query tree; first test results (msecs) . 35

Convergence to the optimal query tree; second test results (msecs) 35

Query result set size parameter test results (msecs) 36

Chapter 1

Introduction

The interest for multimedia database systems has grown rapidly with the ad-
vances in computer technology. The research on content-based image retrieval
by visual features (color, shape and texture) and keywords [4, 5] has progressed
in time towards video databases dealing with spatio-temporal and semantic fea-
tures of video data. First, the techniques devised for image retrieval were used
for supporting content-based video retrieval. These techniques assumed the video
as a consecutive sequence of images ordered in time. Some video database sys-
tems such as VideoQ, KMED, QBIC and OVID [6, 7, 5, 8] were implemented.
Querying video objects by motion properties has also been studied [16, 17, 18, 19].

Building blocks for multimedia database systems are multimedia data model,
multimedia storage management, query interface, and query processing and
retrieval. Data models used in multimedia Database Management Systems
(DBMSs) are different from those used in conventional DBMSs, so new modeling
techniques are required to represent the semantics of multimedia data. Besides,
a multimedia storage manager is needed and storage devices capable of storing
large volumes of data must be supported to achieve better performance. Query
interface in a multimedia database system must enable the user to construct
well-defined queries easily. Query processing and retrieval is also important since
providing powerful querying facilities on multimedia data is a very crucial issue.

The conventional query paradigm of traditional database systems only deals with

1

CHAPTER 1. INTRODUCTION 2

exact queries on conventional types of data but querying multimedia databases
requires additional techniques to support multimedia data types, like image, au-
dio and video. Extensions to the conventional query languages are required that
take into account of the particular characteristics of multimedia data. In addition
to these, different query optimization techniques are required to be implemented

and integrated to the system.

Success of a database system depends on the effectiveness of the query op-
timization module of the system. The input to this module is some internal
representation of a query given by the user. This representation is the query tree
in our case. The aim of query optimization is to select the most efficient strategy
to access the relevant data and answer the query. Let S be the set of all strategies
(query trees) that can be used to answer a given query. Each member s of S has
a cost c(s). The goal of any optimization algorithm is to find a member of S that

has the minimum cost.

Query optimization has been a challenging research area starting from the
beginning of the relational database management systems. A summary of the
research efforts on query optimization and other related concepts in database

systems can be found in [10].

In this thesis, we study the query optimization problem in multimedia
database systems. Our work concentrates on reordering of query trees in pro-
cessing queries in a multimedia database system to achieve the minimum cost.
We propose algorithms used for reordering query trees. The goal of the optimiza-
tion algorithms is to change the order of processing subqueries contained in the
query tree in order to execute the parts that are more selective (i.e., result in
fewer frames and/or objects) first. The query optimization module contains two
types of reorderings for query trees to ensure more efficient processing of queries.
The first type is internal node reordering, which reconstructs the query tree by
reordering the children of internal nodes. The second type is leaf node reordering,
which restructures the query contents of the leaf nodes of the query tree. The
query optimization algorithms are implemented as a part of the query processor

of a video database system and tested using sample videos.

CHAPTER 1. INTRODUCTION 3

The work done in this thesis constitutes a part of a video database system,
BilVideo, developed by Doénderler et al. [1, 2, 3]. In this system, a rule-based
spatio-temporal model for videos and a video query processor, which can answer
spatial, temporal, trajectory, motion and object queries for videos, are proposed.

The work done in this thesis is integrated into the query processor of BilVideo.

1.1 Organization of the Thesis

The remainder of the thesis is organized as follows. In Chapter 2, related work
on multimedia query optimization is discussed. The video database system, into
which query optimization module is integrated, is described in Chapter 3. In
Chapter 4, our query optimization algorithms are presented. Performance results
are discussed in Chapter 5. Conclusions of our work and future research directions
are given in Chapter 6. Fact base of the example database and the query sets

used in the experiments are given in Appendices A and B, respectively.

Chapter 2

Related Work

Basic principles of query optimization in database systems are explained by Jarke
and Koch [10]. In their paper, a wide variety of approaches are proposed to im-
prove the performance of query processing that include logic-based and semantic
transformations, fast implementation of basic operations, and combinatorial or
heuristic algorithms for generating alternative access plans and choosing among
them. These methods are presented in the framework of a general query evalu-
ation procedure using relational calculus representation of queries. In addition
to these methods, nonstandard query optimization issues are also discussed in
the paper. According to Jarke and Koch, the goals of query transformation
are: (1) the construction of a standardized starting point for query optimization
(standardization), (2) the elimination of redundancy (simplification), and (3) the
construction of expressions that are improved with respect to evaluation perfor-
mance (amelioration). The transformation rules for the general query expressions

referenced in the paper are also valid for our query expressions.

Chaudhuri [13] focuses primarily on the optimization of SQL queries in rela-
tional database systems. According to the paper, the two key components of the
query evaluation component of an SQL database system are the query optimizer
and the query execution engine. The paper discusses the System-R optimization
framework, search space that is considered by optimizers, cost estimation and

enumerating the search space. The basic cost estimation framework in System-R

4

CHAPTER 2. RELATED WORK Y

uses statistical summaries of data that have been stored. It also determines the
statistical summary of the output data stream and estimated cost of executing
the operation given an operator and the statistical summary for each of its input
data streams. The idea of collecting statistical summaries for cost estimation is

also used in our query optimization module.

The survey of query evaluation techniques for large databases by Graefe [11]
describes query evaluation techniques for both relational and postrelational
database systems, including iterative execution of complex query execution plans,
the duality of sort- and hash- based set-matching algorithms, types of parallel
query execution and their implementation, and special operators for emerging
database application domains. According to the survey, query optimization is
a special form of planning, and employing techniques from artificial intelligence
such as plan representation, search including directed search and pruning, dy-

namic programming, branch-and-bound algorithms, etc.

Semantic query optimization for tree and chain queries by Sun and Yu [9] pro-
vides an effective and systematic approach for optimizing queries by appropriately
choosing semantically equivalent transformations. Basically, there are two differ-
ent types of transformations: transformations by eliminating unnecessary joins,
and transformations by adding/eliminating redundant beneficial /nonbeneficial se-
lection operations (restrictions). An algorithm is proposed by Sun and Yu to
minimize the number of joins in tree queries. They claim that the important op-
erations in semantic query optimization are the detection of a contradiction, the
elimination of as many unnecessary joins as possible, and the addition/elimination

of beneficial /nonbeneficial redundant restrictions.

Alternative plan generation methods for multiple query optimization by
Menekse et al. [12] focus on generating a number of alternative plans in such
a way that the sharing between queries is maximized and an optimal execution
plan with minimal cost is obtained. They state that a global execution plan can
be constructed by choosing one plan for each query and then merging these plans
together. Two algorithms for alternative plan generation have been implemented,

which are pairwise transformation and complete transformation. A new plan for

CHAPTER 2. RELATED WORK 6

alternative plan generation is also proposed to eliminate useless alternative plans

by introducing a sharing factor concept.

The paper by Soffer and Samet [14] presents optimization methods for pro-
cessing of pictorial queries specified by pictorial query trees. Their optimization
strategy for computing the result of the pictorial query tree is to change the order
of processing individual query images in order to execute the parts that are more
selective. The selectivity of a pictorial query is based on matching selectivity,
contextual selectivity, and spatial selectivity. Matching and contextual selectiv-
ity are computed based on the statistics stored as histograms in the database
that indicate the distribution of classifications and certainty levels in the images.
These histograms are constructed when populating the database. Selectivity of
an individual pictorial query (leaf) is computed by combining these three selectiv-
ity factors. The query language used in their system has different characteristics
from the query language that we used. Their query language includes only spatial
relations in the pictorial query tree and they reorder the tree according to the
statistics stored for these spatial relations. Our query language has more com-
plex features, enabling the user to query spatio-temporal relations that will be
described in the next section. In the query optimization module of our system,
fact base statistics are used to reorder spatial relations. In addition to this, re-
ordering algorithms for other types of nodes such as internal nodes that contain

operators are added.

Mahalingam and Candan propose techniques for performing query optimiza-
tion in different types of databases, such as multimedia and Web databases, which
rely on top-k predicates [15]. Top-k predicates are the k predicates that return
the most relevant portion of all possible results. They propose an optimization
model that takes into account different binding patterns associated with query
predicates and considers the variations in the query result size, depending on the
execution order. Their optimization model assigns a value (to be minimized) to
all partial or complete plans in the search space. It also determines the output
size of the data stream for every operator and predicate in the plan. So, the
proposed optimization algorithm tries to find the best plan considering the out-

put size of the data stream for operators and predicates, which is also used in

CHAPTER 2. RELATED WORK 7

our optimization algorithm. The major difference of their optimization algorithm
from ours is that the number of query results can also change depending on the
query execution order in their work, whereas it is independent from the query

execution order in our work.

Chapter 3

BilVideo: A Video DBMS

In this chapter, a video database system, BilVideo [1, 2, 3] to which the work
in this thesis is integrated, is described. BilVideo is a video database man-
agement system that supports spatio-temporal and semantic queries on video
data. A spatio-temporal query may contain any combination of spatial, temporal,
object-appearance, external-predicate, trajectory-projection and similarity-based
object trajectory conditions. The system handles spatio-temporal queries using a
knowledge-base, which consists of a fact base and comprehensive set of rules im-
plemented in Prolog, while utilizing an object-relational database to respond to
semantic (keyword, event/activity, and category-based), color, shape and texture
video queries. The organization of this chapter is as follows: The architecture
of BilVideo is given in Section 3.1. The video query language of BilVideo is
described in Section 3.2. The query types are presented in Section 3.3. Query

processing issues in BilVideo are discussed in Section 3.4.

3.1 Video Database System Architecture

Figure 3.1 illustrates the overall architecture of BilVideo. The system is built
on a client-server architecture and the users access the video database on the

Internet through its visual query interface developed as a Java client Applet.

CHAPTER 3. BILVIDEO: A VIDEO DBMS 9

Video Clips Extracted Facts
»| Fact—Extractor »| Knowledge—-Base
WEB Cli : |
ient
Users Query Y
»| Visual Query Interface | Query Processor
\ Results \
Y Y
_ Raw Yideo Database Feature Database
(File System) >

A i

Object—Relational DBM$

\

Video Annotator

A

Figure 3.1: BilVideo database system architecture.

Query processor lies in the heart of the system. It is responsible for answering
user queries in a multi-user environment. Query processor communicates with
the object-relational database Oracle! and the knowledge base. Semantic data is
stored in the Oracle database and fact-based meta data is stored in the knowledge
base. Video data and raw video data are stored separately. Semantic properties of
videos used for keyword, activity/event and category-based queries on video data
are stored in the feature database. These features are generated and maintained
by a video annotator tool. The knowledge-base is used to answer spatio-temporal

queries. The facts-base is generated by the fact-extractor tool.

The rules used for querying the video data, called query rules, have associated
frame numbers. A second set of rules, called extraction rules, was also created to
work with frame intervals to extract spatio-temporal relations from video data.
Extracted spatio-temporal relations are converted to facts with frame numbers
of the keyframes in the knowledge-base. These facts are used by the query rules

for query processing.

!Oracle is a registered trademark of Oracle Corporation.

CHAPTER 3. BILVIDEO: A VIDEO DBMS 10

3.2 Video Query Language

The query language has four basic statements for retrieving information:

select video from all [where condition];
select video from videolist where condition;
select segment from range where condition;

select variable from range where condition;

The target of a query is specified in select clause. A query may return
videos (video), segments of videos (segment), or values of variables (variable)
with/without segments of videos where the values are obtained. Variables might
be used for object identifiers and trajectories. If the target of a query is video
(video), the users may also specify the maximum number of videos to be returned
as a result. The range of a query is specified in from clause. The range may be
either the entire video collection or a list of specific videos. Query conditions are

given in the where clause.

e Supported operators: The query language supports logical and temporal op-
erators to be used in query conditions. Logical operators are and, or and
not. Temporal operators are before, meets, overlaps, starts, during, finishes
and their inverse operators. In addition to these, the query language has a
trajectory-projection operator, project, which is used to extract subtrajecto-
ries of video objects on a given spatial condition. The language also has the

operators ‘=" and ‘!=", which can be used for assignment and comparison.

e Aggregate functions: The aggregate functions of the query language are
average, sum and count. They take a set of intervals (segments) as input
and return a time value in minutes for each video clip satisfying given

conditions.

e Frternal predicates: The query language has a condition type external,
which is defined for application-dependent predicates, called external pred-

icates. External predicates are processed using the same methods with the

CHAPTER 3. BILVIDEO: A VIDEO DBMS 11

spatial predicates. If an external predicate is to be used, facts and/or rules

related to the predicate should be added to the knowledge-base.

3.3 Query Types

The query language supports spatio-temporal, semantic and low-level queries.

Different query types that can be specified by the query language are as follows:

e Object queries: This type of queries may be used to retrieve objects, along

with video segments where the objects appear.

e Spatial queries: This type of queries may be used to query videos by spa-
tial properties of objects defined with respect to each other. Supported
spatial properties for objects can be grouped into mainly three categories:
topological relations that describe neighborhood and incidence in 2D-space,
directional relations that describe order in 2D- space, and 3D-relations that
describe object positions on z-axis of the three dimensional space. There are
eight distinct topological relations: equal, cover, covered-by, inside, touch,
disjoint, overlap and, contains. Directional relations are west, south, north,
east, northwest, northeast, southwest and, southeast. 3D relations are in-
frontof, behind, strictlyinfrontof, strictlybehind, touchfrombehind, touched-

frombehind and samelevel.

e Similarity-based object-trajectory queries: This type of queries may be used
to query videos to find out the object and/or time interval of an object

having a trajectory in the video to a given direction.

e Temporal queries: This type of queries is used to specify the order of oc-

currence for conditions in time.

e Aggregate queries: This type of queries may be used to retrieve statistical
data about objects and events in video data. The three aggregate func-
tions are average, sum, and count. These functions are useful in collecting

statistical data for such applications as sports event analysis systems.

CHAPTER 3. BILVIDEO: A VIDEO DBMS 12

e Low-level queries: This type of queries is used to query video data by visual

properties such as color, shape and texture.

e Semantic queries: This type of queries is used to query video data by se-
mantic features. In the system, videos are partitioned into semantic units,
which form a hierarchy. This semantic video hierarchy contains three lev-
els: wvideo, sequence and scene. Videos consist of sequences, and sequences
consist of scenes that need not be consecutive in time. With this seman-
tic data model, three types of queries will be answered which are wvideo,

event/activity and object.

3.4 Query Processing

Figure 3.2 illustrates how the query processor communicates with Web clients
and the underlying system components to answer user queries. Figure 3.3 shows
the phases of query processing for spatio-temporal queries. Web clients make
a connection request to the query request handler, which creates a process for
each request passing a new socket for communication between the process and
the Web client. Then, user queries are sent to the processes created by the
query request handler. The queries are transformed into SQL-like textual query
language expressions before being sent to the server if they are specified visually.
After receiving the query from the client, each process calls the query processor
with a query string and waits for the query answer. When the query processor
returns, the process communicates the answer to the Web client issuing the query
and exits. The query processor first groups spatio-temporal, semantic, color,
shape and texture query conditions into proper types of sub-queries. Spatio-
temporal subqueries are reconstructed as Prolog-type knowledge-base queries.
Semantic, color, shape and texture sub-queries are sent as SQL queries to an
object relational database. QQuery processor integrates the intermediate results
and returns them to the query request handler, which communicates the final
results to Web clients. The phases of query processing for spatio-temporal queries

can be briefly described as follows.

CHAPTER 3. BILVIDEO: A VIDEO DBMS 13

User Query User Query
Web Client > Query Request - Query
(Java Applet) | < Handler - Processor
Query Result (C++) Query Result (C++)
Set Set

Figure 3.2: Web client - query processor interaction.

Query
LEXER Tokens PARSER Parse Tree QUERY Query Tree QUERY Result Se
~"| DECOMPOSER ~| EXECUTOR ——>
Query Recognition Phase Query Decomposition Phase Query Execution Phase

Figure 3.3: Query processing phases.

1. Query recognition: The lexical analyzer partitions a query into tokens,

which are passed to the parser with possible values for further process-
ing. The parser assigns structure to the resulting pieces and creates a parse
tree to be used as a starting point for query processing. This phase is called

query recognition phase.

. Query decomposition: The parse tree generated after the query recogni-
tion phase is traversed in a second phase, which is called query decomposi-
tion phase, to construct a query tree. The query tree is constructed from
the parse tree decomposing a query into three basic types of subqueries
which are Prolog subqueries (directional, topological, 3D-relation, external
predicate and object-appearance) that can be directly sent to the inference
engine Prolog, trajectory-projection subqueries that are handled by the tra-
jectory projector, and similarity-based object-trajectory subqueries that are
processed by the trajectory processor. Maximal subqueries are subqueries
that are formed by grouping prolog type predicates. A query is decomposed

in such a way that minimum number of subqueries are formed.

. Query execution: The input for the query execution phase is a query tree.
This query tree is traversed in postorder in query execution phase, executing
each subquery separately and performing interval processing so as to obtain

the final set of results. Intermediate results returned by Prolog are further

CHAPTER 3. BILVIDEO: A VIDEO DBMS 14

processed in this phase and final answers to user queries are formed after

interval processing.

Chapter 4

Query Optimization

The aim of the query optimization algorithms designed and implemented for
BilVideo is to process more selective subqueries earlier than the others. The
algorithms restructure the initial query tree and construct an optimal query tree
in which the more selective subqueries are executed earlier by the query processor.

The query optimization process is outlined in Figure 4.1.

The query optimization process implemented during query execution has two
basic parts, which are internal node reordering and leaf node reordering. In addi-
tion to these parts, the statistics collected for the video is read from a file before
executing the leaf node reordering algorithm. These statistics are used to deter-
mine the selectivities of relations in the condition part of the query. Selectivity
of a relation is inversely proportional to the number of facts stored for that rela-
tion. Internal node reordering algorithm reorders the children of internal nodes by
placing right children of ‘AND’ nodes which are more selective than left children
to the left of their parents. Leaf node reordering algorithm deals with the leaf

InternalNodeReorder (querytree) ;
ReadStatistics();
LeafNodeReorder (querytree) ;

Figure 4.1: Query optimization process

15

CHAPTER 4. QUERY OPTIMIZATION 16

nodes. Every leaf node in the query tree has a content which stores the subquery
to be executed. Leaf node reordering algorithm restructures these contents. It
uses the subquery trees constructed for each of these contents in the construction
of the initial query tree. This algorithm sorts the relations in the contents of the
leaf nodes which are connected by ‘AND’ operators according to their selectivity.
More selective operations are executed earlier than the others by the reorderings

of this algorithm.

This chapter is organized as follows: In Section 4.1, our query tree structure
is explained. In Section 4.2, the internal node reordering algorithm is described.

Finally, the leaf node reordering algorithm is presented in Section 4.3.

4.1 Structure of the Query Tree

In our multimedia database model, a query is represented by a query tree con-
taining the spatio-temporal relationships between the data that is to be selected.
The condition in the where clause of the query is kept in this query tree. The
condition part can contain spatial relationships. Other functions that can take
place in the condition part are object trajectory and project type query functions.
Trajectory queries find out the object and/or time interval of an object having a
trajectory in the video to a given direction. Project queries are used to extract
sub-trajectories of video objects on a given spatial condition. The boolean (logi-
cal) operators of the query language are and, or, not, The operators that can be

included in a query are categorized into three types:

1. AND: and
2. NOT-OR: not, or

3. TEMPORAL: before, during, meets, overlaps, starts, finishes, and
their inverse operators, ibefore, iduring, imeets, ioverlaps, istarts,

ifinishes.

CHAPTER 4. QUERY OPTIMIZATION 17

There are two types of nodes in the query tree: internal nodes that contain the
operators defined above and leaf nodes that contain spatio-temporal subqueries.

These subqueries have three types:

1. Plain Prolog Queries (PPQ): Spatial subqueries processed by Prolog,
2. Trajectory Queries (TRQ): Object-trajectory subqueries, and

3. Project Queries (PRQ): Project subqueries.

4.2 Internal Node Reordering Algorithm

In the query tree, the internal nodes are reordered first. Internal node reordering
algorithm places the more selective nodes as left children of their parents, since
the left child of a parent is processed first. The proposed algorithm iterates on the
query tree and restructures the tree to get the optimal internal node structured

query tree. The internal node reordering algorithm is given in Figure 4.2.

The internal node reordering algorithm iterates on the query tree and reorders
the children of ‘AND’ typed nodes such that:

e The ‘AND’, ‘TEMPORAL’, ‘PPQ’, ‘PRQ’, ‘TRQ’ type child nodes must
be on left if the other child is ‘NOT-OR’ type. Since ‘NOT-OR’ type nodes
combine results from two different result sets, they are found out to be the

least selective compared to the other nodes.

e The ‘AND’ type child nodes must be on left if the other child is “TEMPO-
RAL’ type. This is because of the fact that ‘AND’ type nodes are processed
faster than the “TEMPORAL’ type nodes.

e The ‘PPQ’ type child nodes with zero global variables must be on left if
the other child is ‘PRQ’ or ‘TRQ’ type. This is because of the fact that
‘PPQ’ type nodes with zero global variables are processed faster and they
are more selective than ‘PRQ’ and ‘“TRQ’ type nodes.

CHAPTER 4. QUERY OPTIMIZATION

18

InternalNodeReorder (QueryNode gnode)
// Process the nodes which have children both on left and right
if (qgnode->Left != NULL and gnode->Right != NULL)
begin
type=qnode->Type
ltype=qnode->Left->Type
rtype=qnode->Right->Type
// Reorder the children of ‘AND’ nodes
if (type==AND)
begin
// ‘AND’, ‘TEMPORAL’, ‘PPQ’, ‘PRQ’, ‘TRQ’ type child
// nodes must be on left if the other child is
// ‘NOT-OR’ type
if (1type==NOT-OR and
(rtype==AND or rtype==TEMPORAL or rtype==PPQ
or rtype==PRQ or rtype==TRQ))
exchange (qnode->Left, qnode->Right)
// ‘AND’ type child nodes must be on left
// if the other child is ‘TEMPORAL’ type
else if (1type==TEMPORAL and rtype==AND)
exchange (qnode->Left, qnode->Right)
// ‘PPQ’ type child nodes with zero global variables
// must be on left if the other child is
// ‘PRQ’ or ‘TRQ’ type
else if ((ltype==PRQ or ltype==TRQ) and
((rtype==PPQ) and (gvcount(qnode->Right)==0)))
exchange (qnode->Left, qnode->Right)
// ‘PRQ’, ‘TRQ’ type child nodes must be on left if
// other child is ’PPQ’ type with global variables
else if (((1type==PPQ) and (gvcount(qnode->Left)>0))
and (rtype==PRQ or rtype==TRQ))
exchange (qnode->Left, gnode->Right)
// ‘PRQ’ type child nodes must be on left
// if the other child is ‘TRQ’ type
else if (ltype==TRQ and rtype==PRQ)
exchange (qnode->Left, gnode->Right)
// ‘TRQ’ type child nodes with zero global
// variables must be on left if the other
// child is ‘TRQ’ type with global variables
else if ((ltype==TRQ) and (gvcount(gnode->Right)>0)
and (rtype==TRQ) and (gvcount(qnode->Right)==0))
exchange (qnode->Left, gnode->Right)
end
end
// call the function recursively for left and right subtrees
InternalNodeReorder (qnode->Left)
InternalNodeReorder (qnode->Right)

Figure 4.2: Internal node reordering algorithm

CHAPTER 4. QUERY OPTIMIZATION 19

e The ‘PRQ’, ‘TRQ’ type child nodes must be on left if the other child is
‘PPQ’ type with global variables. This is because of the fact that ‘PRQ’
and ‘TRQ’ type nodes are found out to be more selective than ‘PPQ’ type

nodes with global variables.

e The ‘PRQ’ type child nodes must be on left if the other child is “TRQ’ type.
This is because of the fact that the subquery in the ‘PRQ’ node can have a
variable to be used by the subquery contained in the “TRQ’ node.

e The ‘TRQ’ type child nodes with zero global variables must be on left if
the other child is ‘TRQ’ type with global variables. This is due to the fact
that ‘TRQ’ type nodes with zero global variables are more selective than

‘TRQ’ type nodes with global variables.

The query tree is restructured using the above rules because the nodes that
are being placed to left found out to be more selective in the experiments. The
gucount function in the algorithm finds out the global variable count of a particular

node.

4.2.1 Examples

Some query tree examples are given in this part. In each example, the initial

query tree and the query tree after internal node reordering are shown.

Query 1:
select segment, X, Y
from video
where ((west(X,Y) and disjoint(X,Y) and X !'= Y)
or Z=project(X, [west(X,a)])) and
(west(X,Y) and X=carl and appear(Y) and south(Y,X))

In the query tree, the children of the root ‘AND’ node are exchanged since
the type of the left child is ‘NOT-OR’ and the type of the right child is ‘PPQ’ in

the initial query tree.

CHAPTER 4. QUERY OPTIMIZATION 20

west(X,Y) and X=carl | | [\yest(X,Y) and X=car]

and appear(Y) and
south(Y,X) and appear(Y) and

south(Y,X)
west(X,Y) and Z = project (X, west(X,Y) and Z = project (X
disjoint (X,Y) and | [west(X,a)] disjoint (X,Y) ang [Wespt&’a)] (
Xl=Y X!I=Y

(a) (b)

Figure 4.3: (a) Initial query tree for Query I and (b) Query tree for Query 1 after
internal node reordering

Query 2:

select segment, X, Y

from video

where ((west(X,Y) before disjoint(X,Y)) and
((appear(Y) before touch(X,Y)) and
(X '= carl and Z=project(X, [west(X,a)])))

BEFORE

disjoint(X,Y) ‘

BEFORE

west(X,Y

BEFORE

‘ touch(X,+)

west(X,Y) ‘

appear(Y, Z=project(X, Z=project(X, X1=carl

[west(X,carl)]) [west(X,carl)])

appear(Y)

touch(X,Y# ‘ X !=carl

(a) (b)

Figure 4.4: (a) Initial query tree for Query 2 and (b) Query tree for Query 2 after
internal node reordering

In the query tree, the children of the root ‘AND’ node are exchanged since the
type of the left child is ‘“TEMPORAL’ and the type of the right child is ‘AND’ in
the initial query tree. The children of the ‘AND’ node which is a child of the root
node are also exchanged since the type of the left child is ‘TEMPORAL’ and the
type of the right child is ‘“AND’ in the initial query tree.

CHAPTER 4. QUERY OPTIMIZATION 21

4.3 Leaf Node Reordering Algorithm

After the internal node reordering, the leaf nodes are reordered for each deep-
est internal node. Fact base statistics for each video is kept in a separate file.
The number of each spatio-temporal relation in the video is stored in this file.
So the numbers of south, northwest, southwest, equal, cover, inside, touch, dis-
joint, overlap, infrontof, behind, strictlyinfrontof, strictlybehind, touchfrombehind,
touchedfrombehind and samelevel facts are included in the file. These fact base
statistics are used in leaf node reordering algorithm. In this algorithm, the facts
in the leaf nodes are sorted starting from the fact with the least number in fact
base statistics file to the fact with the largest number. ‘PPQ’ and ‘PRQ’ type leaf
nodes are reordered according to these statistics. These leaf nodes contain max-
imal subqueries that can be directly sent to the inference engine. So subquery
trees for these maximal subqueries must be constructed to reorder leaf nodes.
This construction is implemented within the query tree construction part. As a
result, subquery trees for each maximal subquery in the ‘PPQ’ and ‘PRQ’ type
leaf nodes are built and kept in a list data structure. The leaf node reordering

algorithm is given in Figure 4.5.

This algorithm iterates on the query tree. Steps of the algorithm are as follows:

1. Find the ‘PPQ’ and ‘PRQ’ type leaf nodes.
2. Find the subquery trees of these nodes in the subquery list.
3. Reorder these subquery trees.
4. Get the content of the reordered subqueries.
5. Replace the contents of the leaf nodes with this content.
As it can be seen from the algorithm, the condition parts of the ‘PRQ’ type leaf

nodes are replaced only. The functions used in the algorithm are explained in the

sequel.

CHAPTER 4. QUERY OPTIMIZATION

22

LeafNodeReorder (QueryNode gnode,QueryTree qtree)
// Iterate on the tree if node is not null
if (qnode !'= NULL)
begin
type=qnode->Type ()
queryid=gnode->getQID (INORDER)
// locate ‘PPQ’ and ‘PRQ’ leaf nodes
if (type==PPQ or type==PRQ)
begin
// find the subquery tree of
// the nodes in subquery list
tmpppq=FindPPQinList (qtree, queryid)
// reorder the subquery tree
reorderAlg (tmpppq->ppqnode)
// get the reordered subquery
getSubquery (tmpppg->ppqnode)
// set the content of the node
if (type==PPQ)
set content of gnode as subquery
else if type==PRQ
set content of the condition part of
gnode as subquery
end
end
// call the function recursively for left and right subtrees
if (qnode->Left != NULL)
LeafNodeReorder (qnode->Left,qtree)
if (qnode->Right != NULL)
LeafNodeReorder (qnode->Right,qtree)

Figure 4.5: Leaf node reordering algorithm

FindPPQinList (QueryTree qtree, int queryid)
// locate the subquery tree of the leaf node with
// id=queryid in the subquery list tmpppq
tmpppg=qtree->headppq
for (int i=1; i<qtree->ppqcount ; i++)
if (queryid !'= tmpppg->queryid)
tmpppq=tmpppq->nextppq
else Dbreak

Figure 4.6: The function that finds subquery tree of a leaf node

CHAPTER 4. QUERY OPTIMIZATION 23

FindPPQinList function is used for locating the subquery tree of a particular

leaf node in the subquery list (see Figure 4.6).

The reorderAlg function iterates on the subquery tree which is located in
the subquery tree list and restructures this query tree (see Figure 4.7). This
algorithm first locates the highest ‘AND’ type node in the subquery tree, if this
node has left and right children and the left child is ‘NOT-OR’ typed and the
right one is ‘AND’ typed, it exchanges the left and right nodes. If children are
‘PPQ’ or ‘AND’ typed and there is no ‘NOT-OR’ type node below these children,
this subtree is called mazimal AND subtree and it is reordered according to fact
base statistics. If children are ‘PPQ’ or ‘AND’ typed and there is at least one
‘NOT-OR’ type node below these children, the algorithm finds out if the right
child is a mazimal AND subtree or not. If it is a mazimal AND subtree then it
exchanges the child with the left child. If the algorithm locates a mazimal AND
subtree it does not recurse because it has already reordered all the nodes in the

subtree, otherwise it recurses.

ThereIsNoOrNot function returns 0 if there is a ‘NOT-OR’ type node in a
tree and returns 1 if all the nodes are ‘AND’ typed (see Figure 4.8).

OrderLeafNodes function orders a mazimal AND subtree. It first puts the leaf
nodes into an array structure, sorts the array according to the fact base statistics

and puts the leaf nodes back to the tree (see Figure 4.9).

GetLeafNodes function gets leaf nodes of a tree and puts the contents and
global variable counts of the nodes to an array structure to be used in the sorting

procedure (see Figure 4.10).

SortLeafNodes function sorts the leaf nodes according to the fact base statis-
tics. It orders the relations in the increasing number of statistics (see Figure 4.11).
The getnum function gets the statistics of a particular relation from the statistics
file of the video. After sorting the relations according to the statistics, the func-
tion puts the relations that query an inequality between any two objects in the
video to the end of the order.

CHAPTER 4. QUERY OPTIMIZATION

24

reorderAlg(QueryNode gnode)
// Iterate on the subquery tree located
// in the subquery tree list
norecurse=0
if (qnode!= NULL)
begin
type=gqnode->Type
// locate the highest ‘AND’ node on the subquery tree
if (type==AND)
if (qnode->Left != NULL and gnode->Right != NULL)
begin
ltype=qnode->Left->Type
rtype=qnode->Right->Type
// exchange left and right children
// if the left child is ‘NOT-O0R’ type
// and the right child is ‘AND’ type
if (1type==NOT-OR and rtype==AND)
exchange (qnode->Left, qnode->Right)
// If children are ‘PPQ’ and ‘AND’ typed and
// there is no ‘NOT-OR’ type node below these
// children order the leaf nodes of this subtree
// else if there is no ‘NOT-OR’ type node in the
// right subtree put this subtree to left
else if ((ltype==AND and rtype==AND)
or (1type==AND and rtype==PPQ)
or (1type==PPQ and rtype==AND)
or (1type==PPQ and rtype==PPQ))

if (ThereIsNoOrNot(gnode)==1)
begin
OrderLeafNodes (qnode)
norecurse=1
end
else if (ThereIsNoOrNot(qnode->Right)==1)
exchange (qnode->Left, qnode->Right)
end
// call the function recursively for left and right
// subtrees if a maximal ‘AND’ subtree is not located
if (norecurse != 1)
begin
reorderAlg(qnode->Left)
reorderAlg(qnode->Right)
end
end

Figure 4.7: The function that reorders the located subquery tree

CHAPTER 4. QUERY OPTIMIZATION

25

ThereIsNoOrNot (QueryNode root)
// return O if there is at least one ‘NOT-OR’
// type node in the tree return 1 otherwise
if (root->Left != NULL)
begin
if (root->Left->Type==NOT-0R)
return 0O
if (ThereIsNoOrNot(root->Left)==0)
return O
end
if (root->Right != NULL)
begin
if (root->Right->Type==NOT-0R)
return O
if (ThereIsNoOrNot(root->Right)==0)
return O
end
return 1

Figure 4.8: The function that finds if there is a ‘NOT-OR’ type node in a tree

OrderLeafNodes (QueryNode gnode)

// put the leaf nodes back to the tree
leafcounter=0

GetLeafNodes (gqnode,nodesarr)
SortLeafNodes (nodesarr)

leafcounter=0

PutLeafNodes (qnode,nodesarr)

// get the leaf nodes of the maximal AND subtree
// sort the leaf nodes according to the fact base statistics

Figure 4.9: The function that orders leaf nodes

CHAPTER 4. QUERY OPTIMIZATION

26

GetLeafNodes (QueryNode gnode,nodedata nodesarr[])
// get the leaf nodes of the tree and put their contents
// and global variable counts to the array nodesarr
if (gnode->Left != NULL)
if (qnode->Left->Type==PPQ)
begin
nodesarr[leafcounter] .ncontent=qnode->Left->Content
nodesarr[leafcounter] .ppqflag=gvcount (qnode->Left)
leafcounter++
end
if (qnode->Right != NULL)
if (qnode->Right->Type==PPQ)
begin
nodesarr[leafcounter] .ncontent=qnode->Right->Content
nodesarr[leafcounter] .ppqflag= gvcount(qnode->Right)
leafcounter++
end
// call the function recursively for left and right subtrees
if (gnode->Left != NULL)
GetLeafNodes (gqnode->Left, nodesarr)
if (qgnode->Right !'= NULL)
GetLeafNodes (qnode->Right, nodesarr)

Figure 4.10: The function that gets leaf nodes

CHAPTER 4. QUERY OPTIMIZATION 27

SortLeafNodes(nodedata nodesarr[])
// sort the leaf nodes according to the fact base
// statistics
for (i=1; i<leafcounter; i++)
begin
for (j=i; j>0 and getnum(nodesarr[j])
<getnum(nodesarr[j-1]);j--)
exchange (nodesarr[j],nodesarr[j-1])
// put the relations that query an inequality
// between any two objects in the video
// to the end of the order
for (i=0; i<leafcounter; i++)
if ((nodesarr[i].ncontent.find("!=")) and
(nodesarr[i] .ppqflag>1))
begin
shift nodesarr left starting from i+l to j
put nodesarr[i] to the end of the array nodesarr
end

end

Figure 4.11: The function that sorts leaf nodes

PutLeafNodes function puts the elements of an array structure to the leaf
nodes of a tree. So, the nodes of the unsorted tree are replaced with the sorted

nodes. (see Figure 4.12)

4.3.1 Examples

Some query examples are given in this part. The initial queries and the queries
after leaf node reordering according to the fact base statistics are shown. The rela-
tions in the query examples are reordered assuming that (south facts < samelevel
facts < west facts < overlap facts < disjoint facts < appear facts) in the fact

base.

Query 1:

select segment, X, Y

from video

CHAPTER 4. QUERY OPTIMIZATION

28

PutLeafNodes (QueryNode qgnode,nodedata nodesarr[])
// put the elements of the array nodesarr to the
// leaf nodes of the tree with the root gnode
if (qnode->Left != NULL)

begin
if (qnode->Left->Type==PPQ)
begin
gnode->Left->setContent (nodesarr[leafcounter] .ncontent)
leafcounter++
end
PutLeafNodes (qnode->Left ,nodesarr)
end
if (qnode->Right != NULL)
begin
if (qnode->Right->Type==PPQ)
begin
gnode->Right->setContent (nodesarr[leafcounter] .ncontent)
leafcounter++
end
PutLeafNodes (qnode->Right ,nodesarr)
end

Figure 4.12: The function that puts the elements to the leaf nodes

CHAPTER 4. QUERY OPTIMIZATION 29

where (samelevel(X,Y) and appear(X) and overlap(X,Y))
or (appear(X) and west(X, Y) and disjoint(X,Y))

Query 1 after leaf node reordering:

select segment, X, Y

from video

where (samelevel(X,Y) and overlap(X,Y)
and appear (X)) or (west(X,Y) and
disjoint(X,Y) and appear (X))

Initial subquery tree for Query I and subquery tree for Query 1 after leaf node

reordering, which are located in the subquery tree list, are shown in Figure 4.13.

disjoint(X,Y) appear(X)

‘samelevel(X,Y)‘ ‘ appear(X) ‘ ‘appear(x) ‘ ‘ west(X,Y) ‘ ‘samelevel(X,Y)Hoverlap(X,Y)‘ ‘west(X,Y) ‘ ‘disjoinl(X,Y)‘

(a) (b)

Figure 4.13: (a) Initial subquery tree for Query I and (b) Subquery tree for
Query 1 after leaf node reordering

The relations in Query 2 are reordered in the second query, since samelevel
facts < overlap facts < appear facts and west facts < disjoint facts < appear
facts.

Query 2:

select segment, X, Y

from video

where disjoint(X,Y) and X != Y and west(X,Y)
and X=carl and appear(Y) and south(Y,X)

CHAPTER 4. QUERY OPTIMIZATION 30

Query 2 after leaf node reordering:

select segment, X, Y
from video
where X=carl and south(Y,X) and west(X,Y)
and disjoint(X,Y) and appear(Y) and X != Y

The relations in Query 1 are reordered as it can be seen from the second
query, since south facts < west facts < disjoint facts < appear facts. The equality
relations are executed at the beginning of the condition part and the inequality

relations between variable objects are executed at the end.

Chapter 5

Performance Results

In this chapter, the performance results obtained for the query optimization al-
gorithm are presented. Performance tests have been conducted on an example
video that is extracted from television news. Performance tests have been carried
out on Linux environment using the query processor of BilVideo implemented in

C++. The performance parameters that affect query optimization are as follows:

1. Size of the query: While the size of the query is being increased, the perfor-
mance gain obtained by our strategy also increases. For small sized queries,
there will be small number of reorderings between the nodes, so the perfor-

mance gain will be less compared to that with the large sized queries.

2. Size of the video: Size of the video is another parameter affecting query
optimization since the size of the fact base is directly related with the size
of the video. The performance gain will increase if the size of the video

increases.

The organization of this chapter is as follows: In Section 5.1 statistics of the
fact base used are provided. Example facts from this fact base can be found in
Appendix A. The performance test results are presented Section 5.2. Example

queries used in the experiments are discussed in Section 5.3.

31

CHAPTER 5. PERFORMANCE RESULTS 32

5.1 Fact Base Statistics

The fact base of the example video is created using the fact extractor tool of
BilVideo. The statistics of the video are given in Table 5.1. These statistics are

used in the optimization algorithm to reorder the leaf nodes.

Table 5.1: The statistics of the fact base

Type of relation | Number
west, 1055
east 1055
south 206
northwest 0
southwest 0
disjoint 1682
overlap 1235
inside 0
appear 10234
touch 9
touchfrombehind 37
strictlyinfrontof 184
infrontof 276
samelevel 487

5.2 Performance Results

Five query sets are used in the performance tests. The first query set is used for
testing the Leaf Node Reordering algorithm. The second set is used for testing
the whole optimization algorithm. The third and fourth sets are constructed for
testing the algorithm on different reorderings of the same query. Finally, the fifth
set is used for testing the same query on different sizes of fact bases and result
sets. The query sets can be found in Appendix B. Optimization overhead given in

the results specifies the time that the optimization process takes and performance

CHAPTER 5. PERFORMANCE RESULTS 33

gain is defined in Formula 5.1. The first set of results are given in Table 5.2.

(proc. time w/o opt. — proc. time with opt.)

per formance gain =

(5.1)

proc. time w/o opt.

Table 5.2: Leaf node reorder algorithm test results (msecs)

query | time time | optimization | performance
without | with overhead gain
opt. opt.

1 310 263 1.0 0.15
2 1002 609 1.0 0.39
3 512 264 1.0 0.48
4 490 291 1.0 0.41
5t 508 217 1.0 0.57
6 423 261 1.0 0.38
7 2027 259 1.0 0.87
8 752 708 2.0 0.06
9 303 258 1.0 0.15
10 2030 | 1603 3.0 0.21
11 225 214 1.0 0.05
12 270 215 1.0 0.20

These results show that leaf node reordering algorithm increases the perfor-
mance of the query processor. There are different performance gains for each
query in the set. This is because the performance gain depends on the size of the
query and the difference between the initial query tree and the optimal query tree.
The sizes of the first, ninth, eleventh and twelfth queries are small so their perfor-
mance gains are at most 0.21. If the size of the query is small, the performance

gain is also small compared to the larger queries.

Leaf node reordering algorithm reduces the processing cost, because the rela-
tions in the leaf nodes are ordered starting from the relation with the smallest size
of output to the relations with larger sized outputs. So the unbound variables in
the nodes are first bound with smaller sets of values and relations with constant
parameters are executed earlier. This results in an increase in performance. The

second set of results are given in Table 5.3.

CHAPTER 5. PERFORMANCE RESULTS 34

Table 5.3: Query optimization algorithm test results (msecs)

query | time | time | optimization | performance
without | with overhead gain
opt. opt.

1 690 212 1.0 0.69
2 958 530 2.0 0.45
3 532 270 1.0 0.49
4 327 267 1.0 0.18
5 644 283 2.0 0.56
6 639 344 1.0 0.46
7 045 337 1.0 0.38
8 274 214 1.0 0.22
9 261 211 1.0 0.19
10 985 286 1.0 0.71
11 302 213 2.0 0.29
12 845 283 2.0 0.67

These results show that the overall query optimization algorithm increases the
query processing performance. The factors that affect the results obtained with
the the leaf node reordering algorithm discussed above also affect those with the

whole optimization algorithm.

The query optimization algorithm reduces the processing cost, because the
subqueries with larger selectivities are processed before the subqueries with
smaller selectivities. For example, if children of an ‘and’ node are ‘or’ and ‘and’
type internal nodes, the ‘and’ type child is processed before the other which

results in a considerable gain in performance.

As it is mentioned previously, performance gain depends on the size and com-
plexity of the query. Another factor affecting the performance is the difference
between the initial query tree and the optimal query tree. The third and fourth
performance tests are done using different reorderings of the same query. The
query tree converges to the optimal query tree starting from the first query. The
third result set that uses a simple Prolog query is given in Table 5.4. The fourth

result set that uses a larger query tree is given in Table 5.5.

CHAPTER 5. PERFORMANCE RESULTS

Table 5.4: Convergence to the optimal query tree; first test results (msecs)

query | time | time | optimization | performance
without | with overhead gain
opt. opt.
1 1327 256 2.0 0.81
2 341 256 2.0 0.25
3 305 255 1.0 0.16
4 253 253 1.0 0.00

Table 5.5: Convergence to the

35

optimal query tree; second test results (msecs)

query | time time | optimization | performance
without | with overhead gain
opt. opt.

1 1306 218 2.0 0.83
2 1213 220 1.0 0.82
3 663 218 2.0 0.67
4 647 219 3.0 0.66
) 063 220 2.0 0.61
6 345 222 2.0 0.36
7 324 219 2.0 0.32
8 219 219 2.0 0.00

These two result sets show that when the query tree converges to the optimal
query tree, the performance gain of the optimization algorithm decreases. This

also justifies the correctness of the optimization algorithm.

The last performance test is done for investigating the effect of the query
result set size on performance gain. A query is selected and its result set size is
decreased by decreasing the fact base size at each step. The results of this test

are given in Table 5.6.

As it can be seen from the performance results, when the size of query result
set decreases, the performance gain of the query does not change much, and it is
within the range of 0.64-0.71.

CHAPTER 5. PERFORMANCE RESULTS 36

Table 5.6: Query result set size parameter test results (msecs)

size of | time | time | performance

result | without | with gain
set opt. opt.
133 2533 786 0.69
120 2259 713 0.68
105 2067 | 665 0.68
94 2013 632 0.69
85 1960 616 0.69
74 1673 538 0.68
65 1399 | 449 0.68
45 1275 379 0.70
34 1209 353 0.71
27 830 281 0.66
20 688 251 0.64
11 669 231 0.65
2 650 208 0.68

The performance test results prove that the query optimization method imp-
lemented for BilVideo improves the performance of the query processor. Since
the performance gain is observed to decrease when the query tree converges to
the optimal query tree, it can be said that the reordering heuristics used by the
algorithm are correct. As a conclusion, it is shown that processing more selective
subqueries contained in the internal nodes and leaf nodes of the query tree earlier
than the others is very useful in optimizing query processing times in multimedia

database systems.

5.3 Examples

Some queries selected from the set of queries used in the performance tests are dis-
cussed in this part. The initial query trees and the query trees after optimization

are shown for each query.

CHAPTER 5. PERFORMANCE RESULTS 37

Query 1:

select segment, X, Y

from video

where (west(X,Y) and disjoint(X,Y) and X != carl
or Z = project(X, [west(X, car1)])) and (west(X,Y)
and T = project(X, [west(X, car1)]))

west(X,Y) and Z = project (X, || west(X,Y) T = project (X, T = project (X west(X,Y) west(X,Y) and Z = project (X,
disjoint (X,Y) and| | [west(X,carl)] [west(X,carl)] [west(X carl)]' ! disjoint (X,Y) and| | [west(X,carl)]
X 1= carl ’ X 1= carl

(a) (b)

Figure 5.1: (a) Initial query tree for Query I and (b) Query tree for Query 1 after
optimization

The initial query tree of Query 1 (Figure 5.1 (a)) is processed in 985 millisec-
onds and the optimized query tree (Figure 5.1 (b)) is processed in 286 millisec-

onds. So, the performance gain is 71%.

Query 2:

select segment, X, Y
from video
where (samelevel(X,Y) before disjoint(X,Y)) and
(infrontof (X,Y) and X != carl and tr(X, [[west]l, [1]1]1))

The initial query tree of Query 2 (Figure 5.2 (a)) is processed in 845 millisec-
onds and the optimized query tree (Figure 5.2 (b)) is processed in 283 millisec-

onds. So, the performance gain is 67%.

CHAPTER 5. PERFORMANCE RESULTS 38
| e
samelevel (X,Y] disjoint(X,Y)| | infrontof (X,Y) and|| tr(X, [[west],[1]]) tr(X, [[west],[1]])) | | X = carland samelevel (X,Y) disjoint(X,Y)

X !=carl

infrontof (X,Y)

(a)

(b)

Figure 5.2: (a) Initial query tree for Query 2 and (b) Query tree for Query 2 after
optimization

Chapter 6

Conclusions and Future Work

Query processing is essential for retrieving data from database management sys-
tems and has been explored in the last 30 years in the contest of relational and
object-oriented database management systems. Query optimization constitutes
an important part of query processing, and it is a promising research area since
the amount of data that can be managed by database systems is growing rapidly
and new data types are becoming widely used. Also, new database management
systems such as multimedia databases require new techniques for query processing

and query optimization.

In this thesis, we have presented a query optimization method for video
database systems, which was implemented on a particular system, BilVideo. The
proposed optimization method has two parts: internal node reordering and leaf
node reordering. The children of the internal nodes of the query tree of a given
query are reordered using the internal node reordering algorithm which places
more selective children to the left of their parents. The contents of the prolog
and project type leaf nodes are reordered using the leaf node reordering algo-
rithm which makes use of statistical information to sort the relations forming
the contents of the leaf nodes. Therefore, our optimization method reorders the
query tree along two dimensions that results in a considerable improvement in
performance. The performance tests conducted on the query processor justifies

the efficiency and correctness of the query optimization algorithms, internal node

39

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 40

reordering and leaf node reordering.

Currently, the proposed optimization algorithms are used by a query proces-
sor which uses linear processing methods. The algorithms can be adapted to
a parallel query processor as a future work which can result in an even better
performance. Another future work can be the use of genetic algorithms in query
optimization of BilVideo, as they are becoming widely used and accepted method
for new and difficult optimization problems. This method must propose a fitness
value function for the query trees in the solution space and adapt cross-over and

mutation operations to produce efficient query trees.

Bibliography

1]

[5]

M. E. Dénderler, O. Ulusoy, U. Giidiikbay, A Rule-based Approach to Rep-
resent Spatio-Temporal Relations in Video Data, International Conference
on Advances in Information Systems (ADVIS’2000), Izmir, Turkey, Lecture

Notes in Computer Science (Springer Verlag), eds. T. Yakhno, vol. 1909,
pp- 409-418, October 2000.

M. E. Donderler, O. Ulusoy, U. Giidiikbay, A Rule-Based Video Database
System Architecture, Information Sciences, vol. 143, no.1-4, pp. 13-45, 2002.

M. E. Dénderler, O. Ulusoy, U. Giidiikbay, Rule-Based Spatio-Temporal
Query Processing for Video Databases (Submitted to the VLDB journal).

N.S. Chang, K.S. Fu. Query by pictorial example. IEEE Transactions on
Software Engineering, SEG, vol. 6, pp. 519-524, 1980.

M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M.
Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query
by image and video content: The QBIC System. IEEE Computer, vol. 28,
pp- 23-32, 1995.

S. Chang, W. Chen, H. J. Meng, H. Sundaram, and D. Zhong. VideoQ: An
automated content-based video search system using visual cues. In Proc. of
ACM Multimedia, pp. 313-324, Seattle, Washington, USA, 1997.

W. W. Chu, A. F. Cardenas, and R. K. Taira. A knowledge-based multimedia
medical distributed database system - KMED. Information Systems, vol. 20,
no. 2, pp. 75-96, 1995.

41

BIBLIOGRAPHY 42

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

E. Oomoto and K. Tanaka. Semantic Query Optimization for Tree and Chain
Queries. IEEE Transactions on Knowledge and Data Engineeering, vol. 6,
no. 1, February 1994.

W. Sun and C. T. Yu. OVID: Design and implementation of a video object
database system. IEEE Transactions on Knowledge and Data Engineeering,
vol. 5, pp. 629-643, 1993.

M. Jarke and J. Koch. Query optimization in database systems. ACM Com-
puting Surveys, vol. 16, no. 2, pp. 111-152, June 1984.

G. Graefe. Query evaluation techniques for large databases. ACM Computing
Surveys, vol. 25, no. 2, pp. 73-170, June 1993.

G. Menekse, F. Polat, A. Cosar. Alternative Plan Generation Methods for
Multiple Query Optimization, ISCIS’98, Advances in Computer and Infor-
mation Sciences’98, eds. U. Giidiikbay et al., pp. 246-253, 1998.

S. Chaudhuri. An Overview of Query Optimization in Relational Systems,
In Proc. of Principles of Database Systems’98, pp. 34-43, 1998.

A. Soffer, H. Samet. Query Processsing and Optimization for Pictorial Query
Trees, Visual Information and Information Systems - VISUAL99 (D. P. Hui-
jsmans and A. W. M. Smeulders, Eds.), Lecture Notes in Computer Science
1614, Springer, Berlin, 1999, pp. 60-67.

L. P. Mahalingam, K. S. Candan. Query Optimization in the Presence of
Top-k Predicates, Multimedia Information Systems 2001, pp. 31-40.

R. H. Guting, M. H. Bohlen, M. Ervig, C. S. Jensen, N. A. Lorentzos, M.
Schneider, M. Vazirgiannis. A foundation for representing and querying mov-
ing objects, ACM Transactions on Database Systems, vol. 25, no. 1, pp. 1-42,
2000.

J. Z. Li, M. T. Ozsu, D. Szafron. Modeling of moving objects in a video
database, In Proc. of IEEE Multimedia Computing and Systems, pp. 336-
343, Ottawa, Canada, 1997.

BIBLIOGRAPHY 43

[18] M. Nabil, A. H. Ngu, J. Shepherd. Modelig and retrieval of moving objects,
Multimedia Tools and Applications, vol. 13, pp. 35-71, 2001.

[19] A. P. Sistla, O. Wolfson, S. Chamberlain, S. Dao. Modeling and querying
moving objects, In Proc. of IEEE Data Engineering, pp. 422-432, 1997.

Appendix A

Sample Fact Base for an Example
Video

This is an example video containing 16,351 frames and 98 salient objects. Some
salient objects in the video are tank1, carl, bodyguardl and powell. The video

is extracted from television news.

// Directional Relations
west (tankl,caril,259).
west (carl,car2,259).
west (tankl,carl,272).
west(carl,car2,272).
west(car2,car3,272).
west (tankl,carl,277).
west (carl,car2,277).
west(car2,car3,277).
west (car3,car4,277).
west (tankl,cari1,280).
west(carl,car2,280).
west (car2,car3,280) .
west (car3,car4,280).
west (car4d,car5,280) .

44

APPENDIX A. SAMPLE FACT BASE FOR AN EXAMPLE VIDEO 45

west (tankl,caril,282).

west(carl,car2,282).

west(car2,car3,282).

west(car3,car4,282).

west (card,car5,282).

west(carl,car2,287).

west(car2,car3,287).

west (car3,car4,287).

west (car4d,car5,287).

west(carl,car2,298).

west(car2,car3,298).

west (car3,car4,298).

west(card,car5,298) .

west (carl,car2,303).

west (car2,car3,303).

west(car3,car4,303).

west (car4,car5,303).

west (tank3,tank4,366) .

west (tank3,tank4,386) .

west (tank3,tank4,395).

west (tank3,tank4,408) .

west (tank5,israelisoldier1,409).

west (tank5,israelisoldier1,435).

west (tank5,israelisoldier1,456).

west (palestinianofficer4,bodyguard2,484).
south(palestinianofficerl,officialcar,527).
south(palestinianofficer4,powell,527).
south(palestinianofficer3,officialcar,531).
south(palestinianofficerl,officialcar,531).
south(palestinianofficer4,powell,531).
south(palestinianofficerl,officialcar,535).
south(palestinianofficer4,powell,535).
south(palestinianofficerl,officialcar,542).
south(palestinianofficer4,powell,542).
south(palestinianofficer3,bodyguardl,542).

APPENDIX A. SAMPLE FACT BASE FOR AN EXAMPLE VIDEO

south(palestinianofficerl,officialcar,b547).
south(palestinianofficer4,powell,547).
south(palestinianofficer3,bodyguardl,547) .
south(palestinianofficerl,officialcar,550).
south(palestinianofficer4,powell,550).
south(palestinianofficer3,bodyguardl,550) .
south(palestinianofficer4,officialcar,560).
south(palestinianofficer3,bodyguardl,560) .
south(palestinianofficer4,palestinianofficer1,568).
south(palestinianofficer4,officialcar,568) .
south(palestinianofficer3,bodyguardl,568) .
south(palestinianofficer4,officialcar,572).
south(palestinianofficer3,bodyguardl,572).
south(palestinianofficer4,officialcar,578).
south(palestinianofficer3,bodyguardl,578).

south(palestinianofficer4,officialcar,579).

//Topological Relations

disjoint(car2,car5,303).

disjoint(carl,car5,303).

disjoint (tankb,israelisoldier1,409).

disjoint (tank5,israelisoldier1,435).

disjoint (tankb,israelisoldierl,456).
disjoint(palestinianofficer2,bodyguardl,484) .
disjoint(palestinianofficer3,powell,484).

disjoint (powell,bodyguard2,484) .
disjoint(palestinianofficer2,palestinianofficer4,484).
disjoint(palestinianofficer4,bodyguard2,484) .
disjoint(palestinianofficer2,palestinianofficerl,484).
disjoint (bodyguardl,powell,484).

disjoint (bodyguardl,bodyguard2,484).

disjoint (palestinianofficer2,bodyguard2,484) .
disjoint(palestinianofficer2,powell,484) .
disjoint(palestinianofficerl,bodyguard2,484) .

disjoint (palestinianofficer3,bodyguard2,484) .

46

APPENDIX A. SAMPLE FACT BASE FOR AN EXAMPLE VIDEO

disjoint(palestinianofficer2,bodyguardl,492).
disjoint(palestinianofficer3,powell,492).
disjoint(palestinianofficer3,palestinianofficer4,492).
disjoint (bodyguardl,palestinianofficer4,492).

disjoint (powell,bodyguard2,492) .
disjoint(palestinianofficer2,palestinianofficer4,492).
disjoint (palestinianofficer4,bodyguard2,492).
disjoint(palestinianofficer2,palestinianofficerl,492).
disjoint (bodyguardl,powell,492).

disjoint (bodyguardl,bodyguard2,492).
disjoint(palestinianofficer2,bodyguard2,492) .
disjoint(palestinianofficer2,powell,492).
disjoint(palestinianofficerl,bodyguard2,492).

disjoint (palestinianofficer3,bodyguard2,492).
disjoint(palestinianofficer3,powell,498) .
disjoint(palestinianofficer3,palestinianofficer4,498).
disjoint (bodyguardl,palestinianofficer4,498).

disjoint (powell,bodyguard2,498) .
disjoint(palestinianofficer2,palestinianofficer4,498).
overlap(palestinianofficer4,powell,503).
overlap(palestinianofficerl,powell,503).
overlap(palestinianofficer4,palestinianofficer1,503).
overlap(palestinianofficer4,officialcar,503).
overlap(palestinianofficer3,palestinianofficer1,503).
overlap(palestinianofficer3,bodyguardl,503).
overlap(palestinianofficer3,officialcar,503).
overlap(palestinianofficer2,officialcar,503).
overlap(palestinianofficerl,officialcar,503).
overlap(officialcar,powell,503).
overlap(bodyguardl,officialcar,503).
overlap(palestinianofficerl,bodyguardl,503).
overlap(bodyguard2,officialcar,503).
overlap(palestinianofficer2,bodyguardl,512).
overlap(palestinianofficer3,powell,512).

overlap(palestinianofficer4,powell,512).

47

APPENDIX A. SAMPLE FACT BASE FOR AN EXAMPLE VIDEO 48

overlap(palestinianofficerl,powell,512).
overlap(palestinianofficer4,palestinianofficer1,512).
overlap(palestinianofficer4,officialcar,512).
overlap(palestinianofficer3,palestinianofficerl,512).

overlap(palestinianofficer3,bodyguardl,512).

// 3-D Relations

touchfrombehind (handeataizi,erbil, 14079).
touchfrombehind (handeataizi,erbil, 14084) .
touchfrombehind (handeataizi,erbil,14094) .
touchfrombehind (erbil,prizecheck,14434).
touchfrombehind(erbil,prizecheck,14469) .
touchfrombehind (erbil,prizecheck,14474).
touchfrombehind(erbil,prizecheck,14494).
touchfrombehind(erbil,prizecheck,14499).
touchfrombehind (erbil,prizecheck,14569) .
strictlyinfrontof (tank5,israelisoldier1,476).
strictlyinfrontof (tank5,israelisoldier1,483).
strictlyinfrontof (powell,officialcar,484).
strictlyinfrontof (powell,officialcar,492).
strictlyinfrontof (powell,officialcar,498).
strictlyinfrontof (powell,officialcar,503).
strictlyinfrontof (powell,officialcar,512).
strictlyinfrontof (powell,officialcar,518).
strictlyinfrontof (powell,officialcar,520).
strictlyinfrontof (powell,officialcar,527).
strictlyinfrontof (powell,officialcar,531).
strictlyinfrontof (powell,officialcar,535).
strictlyinfrontof (powell,officialcar,542).
infrontof (policevehicle2,tank10,3076).
infrontof (vuralsavas,ozbek,10491).
infrontof (vuralsavas,ozbek,11041).
infrontof (vuralsavas,ozbek,11476) .
infrontof (ecevit,ismailcem,12591).

infrontof (erbil,cemyilmaz,13689) .

APPENDIX A. SAMPLE FACT BASE FOR AN EXAMPLE VIDEO

infrontof (erbil,cemyilmaz,13694) .
infrontof (erbil,cenkeren,14264).
infrontof (erbil,cenkeren,14269).
infrontof (cemyilmaz,cenkeren, 14304).
infrontof (cemyilmaz,cenkeren,14309).
infrontof (cemyilmaz,cenkeren,14324).
infrontof (yelizyesilmen,erbil, 15649) .
samelevel (carl,car2,259).

samelevel (tankl,car3,272).

samelevel (carl,car2,272).

samelevel (tankl,car3,277).

samelevel (carl,car2,277).

samelevel (car3,car4d,277).

samelevel (tankl,car3,280).

samelevel (carl,car2,280).

samelevel (car3,car4,280).

samelevel (tankl,car3,282).

samelevel (carl,car2,282).

samelevel (car3,car4,282).

samelevel (car3,car5,282).

samelevel (carl,car2,287).

samelevel (car3,car4,287).

samelevel (car3,car5,287).

samelevel (carl,car2,298).

// Trajectory Facts

tr(car3, [west,north]l, [177,5], [[272,298],[298,3011]).
tr(car4d, [west], [158],[[277,308]]).

tr(car5, [west ,northwest],[116,8], [[280,303], [303,308]]).
tr (tank4, [west], [12],[[366,386]]).

tr (tank3, [east], [12],[[386,395]]).

// Appear Facts
appear (tanki, [[259,286]1]) .
appear (carl, [[259,365]1) .

49

APPENDIX A. SAMPLE FACT BASE FOR AN EXAMPLE VIDEO 50

appear(car2,[[259,365]]) .

appear (car3, [[272,365]1]) .

appear(car4, [[277,365]]) .

appear (car5, [[280,3651]) .

appear (tank2, [[366,408]]) .

appear (tank3, [[366,408]]) .

appear (tank4, [[366,408]1]) .

appear (tank5, [[409,483]1]) .

appear (israelisoldierl, [[409,483]1]).
appear (palestinianofficer4, [[484,606]]) .
appear (palestinianofficer2, [[484,698]1]).

Appendix B

Query Sets

Query set that is used to test leaf node reorder algorithm:

1. select segment, X, Y
from 1

where disjoint(X,Y) and south(X,Y)

2. select segment, X, Y
from 1
where appear(X) and west(X,Y)
and disjoint(X,Y)

3. select segment, X, Y
from 1
where disjoint(X,Y) and west(X,Y)

and X=carl

4. select segment, X, Y
from 1
where west(X,Y) and disjoint(X,Y)
and south(X,Y)

5. select segment, X, Y

from 1

51

APPENDIX B. QUERY SETS

10.

11.

12,

where disjoint(X,Y) and X !'= Y and
west(X,Y) and X=carl and appear(Y)
and south(Y,X)

. select segment, X, Y

from 1
where disjoint(X,Y) and west(tankl,carl)
and X=carl and appear(Y) and south(Y,X)

. select segment, X, Y

from 1
where appear(Y) and west(X,Y) and south(Y,X)
and X=tankl and west(tankl,carl)

. select segment, X, Y

from 1

where west(X,Y) and appear(X) and overlap(X,Y)

. select segment, X, Y

from 1

where west(A,B) and touch(X,Y)

select segment, X, Y

from 1

where (samelevel(X,Y) and appear(X) and
overlap(X,Y)) or (appear(X) and

west (X, Y) and disjoint(X,Y))

select segment

from all

where Z = project(X, [disjoint(X, carl) and
west (X,tankl) and south(caril,tankl)])

select segment

from all

where Z = project(X, [west(X, carl) and
disjoint (X,tankl) and south(X,car2)])

52

APPENDIX B. QUERY SETS

Query set that is used to test query optimization algorithm:

1.

select segment, X, Y

from 1

where (west(X,Y) and disjoint(X,Y) and

X !'=Y or Z = project(X, [west(X, a)])) and
(west(X,Y) and X=carl and appear(Y) and south(Y,X))

. select segment, X, Y

from 1

where (west(X,Y) and disjoint(X,Y) and

X != carl or Z = project(X, [west(X, carl)]))
and (west(X,Y) before south(Y,X))

. select segment, X, Y

from 1
where (west(X,Y) before disjoint(Y,X))
and (X !'= carl and Z = project(X, [west(X, carl)]))

. select segment

from all
where tr(X, [[west], [1]]) and
Y = project(X, [west(X, carl)])

. select segment, X, Y

from 1
where west(X,Y) and disjoint(X, Y) and
X != carl and Z = project(X, [west(X, car1l)])

. select segment, X, Y

from 1
where west(X,Y) and disjoint(X, Y)
and X != carl and tr(X, [[west],[1]])

. select segment, X, Y

from 1

where west(X,Y) and tr(X, [[west]l,[1]])

53

APPENDIX B. QUERY SETS o4

8. select segment
from all
where Y = project(X, [west(X, carl)]) and
Z = project(X, [south(X,carl) and west(X,tankl)
and disjoint (X, carl)])

9. select segment
from all
where tr(X, [[west], [1]]) and
tr(car3, [[west,north]l, [10,10]11)

10. select segment, X, Y
from 1
where (west(X,Y) and disjoint(X,Y) and X != carl or
Z
T

project (X, [west(X, car1)])) and (west(X,Y) and

project (X, [west (X, car1)]))

11. select segment, X, Y
from 1
where (west(X,Y) and touch(X, Y) and X != carl or
Z = project(X, [west(X, tank1)])) and (disjoint(X,Y)
and overlap(X,Y) and Y != car2)

12. select segment, X, Y
from 1
where (samelevel(X,Y) before disjoint(X,Y)) and
(infrontof (X,Y) and X != carl and tr(X, [[west]l, [111))

First query set that tests the convergence of the initial query tree to

the optimal query tree:

1. select segment, X, Y
from 1

where appear(X) and disjoint(X,Y) and south(X,Y)

APPENDIX B. QUERY SETS %)

2. select segment, X, Y
from 1

where disjoint(X,Y) and appear(X) and south(X,Y)

3. select segment, X, Y
from 1

where disjoint(X,Y) and south(X,Y) and appear(X)

4. select segment, X, Y
from 1

where south(X,Y) and disjoint(X,Y) and appear(X)

Second query set that tests the convergence of the initial query tree

to the optimal query tree:

1. select segment, X, Y
from 1
where (disjoint(X,Y) and west(X,Y) and X != Y or
Z = project(X, [west(X,a)])) and (appear(Y) and
west (X,Y) and south(Y,X) and X=carl)

2. select segment, X, Y
from 1
where (west(X,Y) and disjoint(X,Y) and X != Y or
Z = project (X, [west(X,a)])) and (appear(Y) and
west (X,Y) and south(Y,X) and X=carl)

3. select segment, X, Y
from 1
where (west(X,Y) and disjoint(X,Y) and X != Y or
Z = project (X, [west(X,a)])) and (west(X,Y) and
appear(Y) and south(Y,X) and X=carl)

4. select segment, X, Y

from 1

APPENDIX B. QUERY SETS

where (west(X,Y) and disjoint(X,Y) and X != Y or
Z = project(X, [west(X,a)])) and (west(X,Y) and
south(Y,X) and appear(Y) and X=carl)

5. select segment, X, Y
from 1
where (west(X,Y) and disjoint(X,Y) and X != Y or
Z = project(X, [west(X,a)])) and (X=carl and
south(Y,X) and west(X,Y) and appear(Y))

6. select segment, X, Y
from 1
where (west(X,Y) and appear(Y) and south(Y,X) and
X=carl) and (west(X,Y) and disjoint(X,Y) and
X !'=Y or Z = project(X, [west(X,a)]))

7. select segment, X, Y
from 1
where (west(X,Y) and south(Y,X) and X=carl and
appear(Y)) and (west(X,Y) and disjoint(X,Y) and
X !'=Y or Z = project(X, [west(X,a)]))

8. select segment, X, Y
from 1
where (X=carl and south(Y,X) and west(X,Y) and
appear(Y)) and (west(X,Y) and disjoint(X,Y) and
X !'= Y or Z = project(X, [west(X,a)]))

