
©The McGraw-Hill Companies, 2006

ARRAYS

(Chapter 5)

©The McGraw-Hill Companies, 2006

Arrays

How to create and handle a very large
number of data items?

©The McGraw-Hill Companies, 2006

How to enter 7 temperature readings?

• No obvious instruction we could write in the for
loop that will allow a value to be entered into a
different variable each time the loop repeats
– Each variable has a distinct name

Try using a for loop?

©The McGraw-Hill Companies, 2006

What is an array?
• An array is a data type that stores a collection

of items
• These items are sometimes referred to as the

elements of the array
• All elements must be of the same type BUT

there is no restriction on which type this is. For
example,
– Arrays can be used to hold a collection of int values
– Or a collection of char values
– But they cannot be used to hold a mixture of int and
char values

©The McGraw-Hill Companies, 2006

How to create an array?

• It is a two-stage process:
– Declare an array variable
– Allocate memory to store the array elements

©The McGraw-Hill Companies, 2006

Declaring an array variable
• In declaration, we use square brackets that

indicate the variable is an array allowing many
elements of the same type to be stored

• To declare an array to hold a collection of integer
variables

int[] someArray;

• To declare an array temperature containing
double values

double[] temperature;

©The McGraw-Hill Companies, 2006

Allocating memory to store the
array elements

double[] temperature;
• It defines temperature to be a variable.

However, the memory that will eventually hold
these double values has not been allocated yet.

• In allocation, it is necessary to state
– the size of the array

– the type of each individual array element

©The McGraw-Hill Companies, 2006

Allocating memory to store the
array elements

arrayName = new int[10];
• new operator creates the space in memory for

an array of the given size and element type
– The array size should not be negative

– Once the size of the array is set it cannot be changed

©The McGraw-Hill Companies, 2006

Returning to the temperature array

• The temperature array holds seven double values

double[] temperature;
temperature = new double[7];

• The two stages of array creation can be combined
into one step as follows:

double[] temperature = new double[7];

©The McGraw-Hill Companies, 2006

The effect on computer memory of
declaring an array

Array allocation has created seven elements and linked the
temperature variable to these seven elements. The temperature
variable is said to hold a reference to the array elements.

©The McGraw-Hill Companies, 2006

Naming the array elements
• The individual elements are uniquely identified by

an index number

• In Java, array indices start from 0 and not from 1
– The first element in the temperature array is

temperature[0], the second element is temperature[1],
the last element is temperature[6]

• If you access an invalid element (such as
temperature[7]), the system generates the
following program error
java.lang.ArrayIndexOutOfBoundsException

©The McGraw-Hill Companies, 2006

Initializing an array

• This is the only instance in which all the
elements of an array can be assigned explicitly
by listing out the elements in a single
assignment statement

• Once an array has been created, elements must
be accessed individually

©The McGraw-Hill Companies, 2006

Accessing array elements
• Array elements can be used like any other

variable of the given type in Java
– You must specify which element to be used

• For example,
System.out.println(temperature[5]);

for (int i = 0; i < 7; i++){
 System.out.println
 ("max temp for day " + (i+1));
 temperature[i] = sc.nextDouble();
}

©The McGraw-Hill Companies, 2006

The length attribute

• The length attribute returns the size of
an array

for (int i = 0; i < temperature.length; i++){
 System.out.println
 ("max temp for day " + (i+1));
 temperature[i] = sc.nextDouble();
}

©The McGraw-Hill Companies, 2006

Passing arrays as parameters

• Arrays can be used both as parameters
and as return values

• Suppose, we want to write a program that
uses two helper methods to take 7
temperatures from the user and display
them on the screen, respectively

©The McGraw-Hill Companies, 2006

import java.util.*;

public class TemperatureReadings2{

 private static void displayTemps(double[] T){
 for (int i = 0; i < T.length; i++)
 System.out.println
 ("day " + (i+1) + ": " + T[i]);
 }
 private static void enterTemps(double[] T){
 Scanner sc = new Scanner(System.in);
 for (int i = 0; i < T.length; i++){
 System.out.println
 ("temperature for day " + (i+1));
 T[i] = sc.nextDouble();
 }
 }

©The McGraw-Hill Companies, 2006

 public static void main(String[] args){
 double[] temperature = new double[7];
 enterTemps(temperature);
 displayTemps(temperature);
 }
}

©The McGraw-Hill Companies, 2006

The effect on computer memory of
passing an array as a parameter

• We mentioned that a parameter just
receives a copy of the original variable
– The original variable is unaffected outside a

method even though the corresponding
parameter is altered within that method

• So how can enterTemps method fill in the
original array?

©The McGraw-Hill Companies, 2006

The effect on computer memory of
passing an array as a parameter

• In the case of arrays, the value sent as a
parameter is not a copy of each array element,
but instead a copy of the array reference

©The McGraw-Hill Companies, 2006

What is the output?
public class arrayParameters{
 public static void main(String[] args){
 double[] temperature = {5, 5, 5};
 System.out.println("before enterTemps");
 displayTemps(temperature);
 enterTemps(temperature);
 System.out.println("after enterTemps");
 displayTemps(temperature);
 }
 private static void enterTemps(double[] T){
 for (int i = 0; i < T.length; i++)
 T[i] = i;
 System.out.println("in enterTemps");
 displayTemps(T);
 }
 private static void displayTemps(double[] T){
 for (int i = 0; i < T.length; i++)
 System.out.println(T[i]);
 }
}

©The McGraw-Hill Companies, 2006

What is the output?
before enterTemps
5.0
5.0
5.0
in enterTemps
0.0
1.0
2.0
after enterTemps
0.0
1.0
2.0

©The McGraw-Hill Companies, 2006

What is the output?
public class arrayParameters{
 public static void main(String[] args){
 double[] temperature = {5, 5, 5};
 System.out.println("before enterTemps");
 displayTemps(temperature);
 enterTemps(temperature);
 System.out.println("after enterTemps");
 displayTemps(temperature);
 }
 private static void enterTemps(double[] T){
 T = new double[4];
 for (int i = 0; i < T.length; i++)
 T[i] = i;
 System.out.println("in enterTemps");
 displayTemps(T);
 }
 private static void displayTemps(double[] T){
 for (int i = 0; i < T.length; i++)
 System.out.println(T[i]);
 }
}

©The McGraw-Hill Companies, 2006

What is the output?
before enterTemps
5.0
5.0
5.0
in enterTemps
0.0
1.0
2.0
3.0
after enterTemps
5.0
5.0
5.0

©The McGraw-Hill Companies, 2006

Returning an array from a method

• A method can return an array as well

• Suppose that we want to create an array with
the specified size within a method and fill this
array with values

private static double[] enterValues(int no){
 double[] T = new double[no];
 for (int i = 0; i < T.length; i++)
 T[i] = i;
 return T;
}

©The McGraw-Hill Companies, 2006

How to call it?

• We need to modify the caller method so
that the returned array value is used to
set the value of the original array

 double[] myArray;
 myArray = enterValues(7);

©The McGraw-Hill Companies, 2006

The enhanced “for” loop
• The enhanced for loop iterates through elements of an

array without the need for an array index

• For example, suppose that we want to display on the
screen each value from the temperature array

• Java 5.0 provides an enhanced version of the for loop

• Which is equivalent to

for (int i = 0; i < temperature.length; i++)
 System.out.println(temperature[i]);

for (double item: temperature)
 System.out.println(item);

The loop header is
to be read as “for
each item in the
temperature array”

©The McGraw-Hill Companies, 2006

When to use the enhanced “for” loop?

• You should use an enhanced for loop
only when

– You wish to access the entire array (and not
just part of the array)

– You wish to read the elements in the array,
not modify them

– You do not require the array index for
additional processing

©The McGraw-Hill Companies, 2006

Some useful array methods

• Apart from the length feature, an array
does not come with any useful built in
routines

• We will develop some of our own methods
for processing an array

• In this example, we will use a simple
integer array

©The McGraw-Hill Companies, 2006

import java.util.*;
public class arrayMethods{
 public static void main(String[] args){
 Scanner sc = new Scanner(System.in);
 int [] someArray = read();
 System.out.println("Max is " + max(someArray));
 System.out.println("Sum is " + sum(someArray));

 System.out.print("Enter a value: ");
 int value = sc.nextInt();
 if (contains(someArray,value))
 System.out.println(value + " is in the array");
 else
 System.out.println(value + " is not in the array");
 int index = search(someArray,value);
 if (index == -1)
 System.out.println(value + " is not in the array");
 else
 System.out.println(value + " is at index " + index);
 }
 // implement the helper methods here
 // ...
}

©The McGraw-Hill Companies, 2006

 // it reads the elements of an array from the user
 private static int [] read(){
 Scanner sc = new Scanner(System.in);
 int [] A;
 int size;

 System.out.print("Enter the size: ");
 size = sc.nextInt();

 A = new int[size];
 for (int i = 0; i < A.length; i++){
 System.out.print("Enter a value: ");
 A[i] = sc.nextInt();
 }
 return A;
 }

©The McGraw-Hill Companies, 2006

 // it finds the maximum element in an array
 private static int max(int [] A){
 int result = A[0];

 for (int item: A)
 if (item > result)
 result = item;
 return result;
 }

 // it finds the sum of the elements in an array
 private static int sum(int [] A){
 int total = 0;

 for (int item: A)
 total += item;
 return total;
 }

©The McGraw-Hill Companies, 2006

 // it checks whether or not an item is in an array
 private static boolean contains(int [] A, int value){
 // enhanced "for" loop can be used here
 for (int item: A)
 if (item == value)
 return true;
 return false;
 }

 // it returns the position of an item; if the item
 // is not in the array it returns -1
 private static int search(int [] A, int value){

 // enhanced "for" loop should not be used here
 for (int i = 0; i < A.length; i++)
 if (A[i] == value)
 return i;
 return -1;
 }

