Loops

= | oops permit us to execute a sequence
of statements more than once

= We will learn:
= while loop
= for loop

= They differ in how the repetition is
controlled

“while” Loop

= Statements are
executed indefinitely
as long as the
condition is satisfied

false
while (condition),
true statement 1 °
statement 2 \statement
statement group
group |
end

n

Example: “"Average computation

= Compute the average of n values entered by the
user. The number of values (n) will be specified by
the user.

= n = input('Enter the number of values: ');
counter = 0;
total = 0;
while (counter < n)
X = input('Enter a value: ');
total = total + x;
counter = counter + 1;
end
if (n > 0)
avg = total / counter;
disp(['The average is ' num2str(avg)]);
end

Example: “"Average computation”

= Compute the average of values entered by the user.
A negative value indicates the end of the input.

= counter = 0;

total = 0;
X = input('Enter the first value: ');
while (x >=0)

counter = counter + 1;

total = total + x;

X = input('Enter the next value:),
end
if (counter > 0)

avg = total / counter;

disp(['The average is ' num2str(avg)]);
end

Example: “"Change case”

= Change the case of letters in a sentence.

= s = input('Enter a sentence: ','s');
k=1;
while (k <= length(s))
if (s(k) >="A" & (s(k) <="Z")
new_s(k) = char('a' + (s(k) - 'A"));
elseif (s(k) >='a") & (s(k) <="'Z")
new_s(k) = char('A' + (s(k) - 'a"));
else
new_s(k) = s(k);
end
k=k+ 1;
end
new_s

“for” Loop

= Statements are executed a specified number
of times

= No of repetitions is known before the loop starts

for index = expression,
statement 1 }

statement

statement 2 aroup

enéI"

= Expression is usually a vector in shortcut
notation first:increment:last
= for x = 1:3:12 = for x = [3 8 19]
X X
end end

Example: “"Average computation”

= Using “for” loop, compute the average of n values
entered by the user. The number of values (n) will be
specified by the user.

= n = input('Enter the number of values: ');
total = 0O;
for counter =1 : n
X = input('Enter a value: ');
total = total + x;
end
if (counter > 0)
avg = total / counter;
disp(['The average is ' num2str(avg)]);
end

n

Example: “Factorial calculation

= Calculate the factorial (N/) of an integer N,
the factorial of negative integers is not
defined.

= N = input('Enter a non-negative integer: ');

ifN<O

disp(['It is a negative integer']);
else

result = 1;

fori=1:N,

result = result *i;

end

disp([num2str(N) '! = ' num2str(result)]);
end

Example: “Perfect numbers”

= Write a program that finds the first
three perfect numbers.

= A positive integer nis a perfect number if
the sum of its positive divisors excluding n
itself is equal to n.
" e.g., 28 is a perfect number; 1+2+4+7+14=28

= | oops can be nested too.

10

Example: “Perfect numbers”

counter = 1;

no=1;

while counter <=3
total = 0;

forii=1:no/2
if mod(no,ii) ==
total = total + ii;
end
end
if no == total
perfect_nos(counter) = no;
counter = counter + 1;
end
no=no + 1;
end
fprintf("The first three perfect numbers are ')
for counter =1:3
fprintf('%d ', perfect_nos(counter));
end
fprintf("\n");

Example: “"Matrix multiplication”

= Compute the multiplication of two matrices.

= If Ais an m-by-n matrix and B is an n-by-p matrix,

their product is an m-by-p matrix C which is given
by

C, - Z A4, 0B,
21

* The matrix multiplication is defined between two
matrices only if the number of columns of the 1<

matrix is the same as the number of rows of the
2" matrix.

11

Example: “"Matrix multiplication”

[row_A,column_A] = size(A);
[row_B,column_B] = size(B);

if column_A ~=row_B
disp('Matrix dimensions must agree');
else
forii=1:row_A
forjj =1: column_B
C(ii,jj) = 0;
fork=1:column_A
C(ii,j) = C(ii,j) + A(ii,k) * B(k,jj);
end
end
end
end

12

13

Important details

= Use indentation to improve the readability of
your code

= Never modify the value of a loop index inside
the loop

= To have faster programs in Matlab:

= Allocate all arrays used in a loop before executing
the loop

= If it is possible to implement a calculation either
with a loop or using vectors, always use vectors

= Use built-in MATLAB functions as much as possible
instead of reimplementing them

14

Comparison of the execution times

= A =rand(100,200); B = rand(200,50); = tic
ti forii=1:100
- e forjj=1:50
foril =1: 1000 C3(i i) = A1) * BC: i)
Cl =A*B; end
end end
t1 = toc / 1000; t3 = toc;
= tic " e
N _ C4 = zeros(100,50);
forii = 1100 for ii = 1 : 100
forjj=1:50 forjj = 1:50
C2(ii,jj) = 0; fork =1:200
fork = 1:200 C4(ii,jj) = CA4(ii,jj) + A(ii,k) * B(k,jj);
C2(ii,jj) = C2(ii,jj) + Aii,k) * B(k,jj); on j”d
end end
end t4 = toc;
end
t2 = toc;

= t1 =0.0020, t2 = 5.0160, t3 = 0.1100, t4 = 4.9060

“"Break/continue” statements

= Break statement terminates the
execution of a loop and passes the
control to the next statement after the
end of the loop

= Continue statement terminates the
current pass through the loop and
returns control to the top of the loop

15

“break” statements

= Example: = Qutput:
forii = 1:5, ii=1
if (ii==3), i = 2
break; End of loop
end
fprintf('ii = %d\n', ii);
end

disp('End of loop');

16

“continue” statement

Example:

for ii = 1:5,
if (ii==3),
continue;
end
fprintf('ii = %d\n', ii);
end
disp('End of loop');

= Qutput:

i=1
i = 2
ii=4
ii=5
End of loop

17

Example: "Number guessing”

Write a program in which the user tries to guess a number
picked by the computer. The number is picked between 1 and
10 and the user has at most three tries.

= num = fix(10 * rand + 1);
if num == 11, num = 10; end

for tries = 1:3,
guess = input('Your guess? ');
if (guess == num),
disp('Congratulations!");
break;
end
end
if (guess ~= num),
disp("You could not guess correctly');
end

18

Example: “Perimeter of a polygon”

= Compute the perimeter of a polygon whose size is specified by
the user.

* N = input('Enter the polygon size: ');
if N <3
disp('It is not a polygon');
else
ii = 1; perimeter = 0;
while (ii <= N)
edge_length = input([‘Length of edge ' num2str(ii) ': ']);
if edge_length <=0
disp('The length should be positive');

continue;
end
perimeter = perimeter + edge_length;
i=ii + 1;
end
end

disp(['Perimeter: ' num2str(perimeter)]);

19

