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Outline

• Syntax
• Semantics



Bayesian networks
• A simple, graphical notation for conditional 

independence assertions and hence for compact 
specification of full joint distributions

• Syntax:
– a set of nodes, one per variable
– a directed, acyclic graph (link ≈ "directly influences")
– a conditional distribution for each node given its parents:

P (Xi | Parents (Xi))

• In the simplest case, conditional distribution represented 
as a conditional probability table (CPT) giving the 
distribution over Xi for each combination of parent values

–



Example
• Topology of network encodes conditional independence 

assertions:

• Weather is independent of the other variables
• Toothache and Catch are conditionally independent 

given Cavity



Example
• I'm at work, neighbor John calls to say my alarm is ringing, but neighbor 

Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a 
burglar?

• Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

• Network topology reflects "causal" knowledge:
– A burglar can set the alarm off
– An earthquake can set the alarm off
– The alarm can cause Mary to call
– The alarm can cause John to call



Example contd.



Compactness
• A CPT for Boolean Xi with k Boolean parents has 2k rows for the 

combinations of parent values

• Each row requires one number p for Xi = true
(the number for  Xi = false is just 1-p)

• If each variable has no more than k parents, the complete network requires 
O(n · 2k) numbers

• I.e., grows linearly with n, vs. O(2n) for the full joint distribution

• For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25-1 = 31)



Semantics
The full joint distribution is defined as the product of the local 

conditional distributions:
P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi))

e.g., P(j ∧ m ∧ a ∧ ¬b ∧ ¬e)
= P (j | a) P (m | a) P (a | ¬b, ¬e) P (¬b) P (¬e)

•

n



Constructing Bayesian networks
• 1. Choose an ordering of variables X1, … ,Xn

• 2. For i = 1 to n
– add Xi to the network
– select parents from X1, … ,Xi-1 such that

P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1)

This choice of parents guarantees:
P (X1, … ,Xn) = πi =1 P (Xi | X1, … , Xi-1)

= πi =1P (Xi | Parents(Xi))

(by construction)
(chain rule)

–

n

n



• Suppose we choose the ordering M, J, A, B, E

P(J | M) = P(J)?

•

Example



• Suppose we choose the ordering M, J, A, B, E

P(J | M) = P(J)?
P(A | J, M) = P(A | J)? P(A | J, M) = P(A)?

No
•

Example



• Suppose we choose the ordering M, J, A, B, E

P(J | M) = P(J)?
P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No
P(B | A, J, M) = P(B | A)? 
P(B | A, J, M) = P(B)?

No
•

Example



• Suppose we choose the ordering M, J, A, B, E

P(J | M) = P(J)?
P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No
P(B | A, J, M) = P(B | A)? Yes
P(B | A, J, M) = P(B)? No
P(E | B, A ,J, M) = P(E | A)?
P(E | B, A, J, M) = P(E | A, B)?

No
•

Example



• Suppose we choose the ordering M, J, A, B, E

P(J | M) = P(J)?
P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No
P(B | A, J, M) = P(B | A)? Yes
P(B | A, J, M) = P(B)? No
P(E | B, A ,J, M) = P(E | A)? No
P(E | B, A, J, M) = P(E | A, B)? Yes

No 
•

Example



Example contd.

• Deciding conditional independence is hard in noncausal directions
• (Causal models and conditional independence seem hardwired for 

humans!)
• Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed

•
•



Summary

• Bayesian networks provide a natural 
representation for (causally induced) 
conditional independence

• Topology + CPTs = compact 
representation of joint distribution

• Generally easy for domain experts to 
construct


