
CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

1

Chapter 6
Adversarial Search

CS 461 – Artificial Intelligence
Pinar Duygulu

Bilkent University, Spring 2008

Slides are mostly adapted from AIMA and MIT Open Courseware

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

2

Outline

• Games
• Optimal decisions
• Minimax algorithm
• α-β pruning
• Imperfect, real-time decisions

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

3

Games

• Multi agent environments : any given agent will need to
consider the actions of other agents and how they affect
its own welfare.

• The unpredictability of these other agents can introduce
many possible contingencies

• There could be competitive or cooperative environments

• Competitive environments, in which the agent’s goals are
in conflict require adversarial search – these problems are
called as games

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

4

Games

• In game theory (economics), any multiagent environment
(either cooperative or competitive) is a game provided
that the impact of each agent on the other is significant

• AI games are a specialized kind - deterministic, turn
taking, two-player, zero sum games of perfect
information

• In our terminology – deterministic, fully observable
environments with two agents whose actions alternate
and the utility values at the end of the game are always
equal and opposite (+1 and –1)

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

5

Games – history of chess playing

• 1949 – Shannon paper – originated the ideas
• 1951 – Turing paper – hand simulation
• 1958 – Bernstein program
• 1955-1960 – Simon-Newell program
• 1961 – Soviet program
• 1966 – 1967 – MacHack 6 – defeated a good player
• 1970s – NW chess 4.5
• 1980s – Cray Bitz
• 1990s – Belle, Hitech, Deep Thought,
• 1997 - Deep Blue - defeated Garry Kasparov

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

6

Game Tree search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

7

Partial Game Tree for Tic-Tac-Toe

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

8

Game tree (2-player, deterministic, turns)

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

9

Optimal strategies

• In a normal search problem, the optimal solution would be a
sequence of moves leading to a goal state - a terminal state that is
a win

• In a game, MIN has something to say about it and therefore MAX
must find a contingent strategy, which specifies

– MAX’s move in the initial state,
– then MAX’s moves in the states resulting from every possible response by

MIN,
– then MAX’s moves in the states resulting from every possible response by

MIN to those moves
– …

• An optimal strategy leads to outcomes at least as good as any other
strategy when one is playing an infallible opponent

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

10

Minimax

• Perfect play for deterministic games
• Idea: choose move to position with highest minimax value

= best achievable payoff against best play
• E.g., 2-ply game:

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

11

Minimax value

• Given a game tree, the optimal strategy can be
determined by examining the minimax value of
each node (MINIMAX-VALUE(n))

• The minimax value of a node is the utility of being
in the corresponding state, assuming that both
players play optimally from there to the end of the
game

• Given a choice, MAX prefer to move to a state of
maximum value, whereas MIN prefers a state of
minimum value

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

12

Minimax algorithm

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

13

Minimax

MINIMAX-VALUE(root) = max(min(3,12,8), min(2,4,6), min(14,5,2))
 = max(3,2,2)
 = 3

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

14

Properties of minimax

• Complete? Yes (if tree is finite)
• Optimal? Yes (against an optimal opponent)
• Time complexity? O(bm)
• Space complexity? O(bm) (depth-first exploration)

• For chess, b ≈ 35, m ≈100 for "reasonable" games
 exact solution completely infeasible

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

15

Tree Player and Non-zero sum games

(+1 +2 +3) (+6 +1 +2) (-1 +5 +2) (+5 +4 +5)

(+1 +2 +3) (-1 +5 +2)

(+1 +2 +3)

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

16

α-β pruning

• It is possible to compute the correct minimax
decision without looking at every node in the game
tree

MINIMAX-VALUE(root) = max(min(3,12,8), min(2,x,y), min(14,5,2))
 = max(3,min(2,x,y),2)
 = max(3,z,2) where z <=2
 = 3

X Y

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

17

α-β pruning example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

18

α-β pruning example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

19

α-β pruning example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

20

α-β pruning example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

21

α-β pruning example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

22

Properties of α-β

• Pruning does not affect final result

• Good move ordering improves effectiveness of pruning

• With "perfect ordering," time complexity = O(bm/2)
 doubles depth of search

• A simple example of the value of reasoning about which computations
are relevant (a form of metareasoning)

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

23

Why is it called α-β?
• α is the value of the

best (i.e., highest-
value) choice found so
far at any choice point
along the path for max

• If v is worse than α,
max will avoid it
 prune that branch

• Define β similarly for
min

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

24

The α-β algorithm

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

25

The α-β algorithm

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

26

The α-β algorithm

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

27

α-β pruning

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

28

α-β pruning example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

29

α-β pruning example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

30

α-β pruning example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

31

α-β pruning example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

32

α-β pruning example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

33

α-β pruning example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

34

α-β pruning example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

35

α-β pruning example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

36

α-β pruning example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

37

α-β pruning example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

38

α-β pruning example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

39

α-β pruning example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

40

α-β pruning example

41

H I

A

B C

D E

6 5 8

MAX

MIN

6 >=8

MAX

<=6

J K

= agent = opponent

MIN

42

H I

A

B C

D E F G

6 5 8

MAX

MIN

6 >=8

MAX

 6

H I J K L M

= agent = opponent

2 1

 2

<=2

 >=6

MIN

43

H I

A

B C

D E F G

6 5 8

MAX

MIN

6 >=8

MAX

 6

H I J K L M

= agent = opponent

2 1

 2

 2

 >=6

MIN

44

H I

A

B C

D E F G

6 5 8

MAX

MIN

6 >=8

MAX

 6

H I J K L M

= agent = opponent

2 1

 2

 2

 6

alpha
cutoff

beta
cutoff

Alpha-beta Pruning

MIN

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

45

Move generation

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

46

Resource limits

Suppose we have 100 secs, explore 104 nodes/sec
 106 nodes per move

Standard approach:
• cutoff test:

e.g., depth limit (perhaps add quiescence search)
• evaluation function

= estimated desirability of position

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

47

Evaluation function

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

48

Min-Max

3

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

49

Evaluation functions

• A typical evaluation function is a linear function in which some set of
coefficients is used to weight a number of "features" of the board
position.

• For chess, typically linear weighted sum of features
Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s)

• e.g., w1 = 9 with

f1(s) = (number of white queens) – (number of black queens), etc.

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

50

Evaluation function

• "material", : some measure of which pieces one has on the
board.

• A typical weighting for each type of chess piece is shown
• Other types of features try to encode something about the

distribution of the pieces on the board.

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

51

Cutting off search

MinimaxCutoff is identical to MinimaxValue except
1. Terminal? is replaced by Cutoff?
2. Utility is replaced by Eval

Does it work in practice?
bm = 106, b=35 m=4

4-ply lookahead is a hopeless chess player!
– 4-ply ≈ human novice
– 8-ply ≈ typical PC, human master
– 12-ply ≈ Deep Blue, Kasparov

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

52

• The key idea is that the more lookahead we can do, that is,
the deeper in the tree we can look, the better our
evaluation of a position will be, even with a simple
evaluation function. In some sense, if we could look all the
way to the end of the game, all we would need is an
evaluation function that was 1 when we won and -1 when
the opponent won.

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

53

• it seems to suggest that brute-force search is all
that matters.

• And Deep Blue is brute indeed... It had 256
specialized chess processors coupled into a 32
node supercomputer. It examined around 30
billion moves per minute. The typical search
depth was 13ply, but in some dynamic situations
it could go as deep as 30.

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

54

Practical issues

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

55

Other games

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

56

Deterministic games in practice

• Checkers: Chinook ended 40-year-reign of human world champion Marion
Tinsley in 1994. Used a precomputed endgame database defining perfect play
for all positions involving 8 or fewer pieces on the board, a total of 444 billion
positions.

• Chess: Deep Blue defeated human world champion Garry Kasparov in a six-
game match in 1997. Deep Blue searches 200 million positions per second,
uses very sophisticated evaluation, and undisclosed methods for extending
some lines of search up to 40 ply.

• Othello: human champions refuse to compete against computers, who are too
good.

• Go: human champions refuse to compete against computers, who are too bad.
In go, b > 300, so most programs use pattern knowledge bases to suggest
plausible moves.

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

57

Summary

• Games are fun to work on!
• They illustrate several important points about AI
• perfection is unattainable must approximate
• good idea to think about what to think about

