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Outline

• Games
• Optimal decisions
• Minimax algorithm
• α-β pruning
• Imperfect, real-time decisions
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Games

• Multi agent environments : any given agent will need to 
consider the actions of other agents and how they affect 
its own welfare.

• The unpredictability of these other agents can introduce 
many possible contingencies

• There could be competitive or cooperative environments

• Competitive environments, in which the agent’s goals are 
in conflict require adversarial search – these problems are 
called as games
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Games

• In game theory (economics), any multiagent environment 
(either cooperative or competitive) is a game provided 
that the impact of each agent on the other is significant

• AI games are a specialized kind - deterministic, turn 
taking, two-player, zero sum games of perfect 
information

• In our terminology – deterministic, fully observable 
environments with two agents whose actions alternate 
and the utility values at the end of the game are always 
equal and opposite (+1 and –1)
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Games – history of chess playing

• 1949 – Shannon paper – originated the ideas
• 1951 – Turing paper – hand simulation
• 1958 – Bernstein program 
• 1955-1960 – Simon-Newell program
• 1961 – Soviet program
• 1966 – 1967 – MacHack 6 – defeated a good player
• 1970s – NW chess 4.5
• 1980s – Cray Bitz
• 1990s – Belle, Hitech, Deep Thought, 
• 1997 - Deep Blue - defeated Garry Kasparov
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Game Tree search
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Partial Game Tree for Tic-Tac-Toe
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Game tree (2-player, deterministic, turns)
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Optimal strategies

• In a normal search problem, the optimal solution would be a 
sequence of moves leading to a goal state - a terminal state that is 
a win

• In a game, MIN has something to say about it and therefore MAX 
must find a contingent strategy, which specifies 

– MAX’s move in the initial state, 
– then MAX’s moves in the states resulting from every possible response by 

MIN,
– then MAX’s moves in the states resulting from every possible response by 

MIN to those moves
– …

• An optimal strategy leads to outcomes at least as good as any other 
strategy when one is playing an infallible opponent
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Minimax

• Perfect play for deterministic games
• Idea: choose move to position with highest minimax value 

= best achievable payoff against best play
• E.g., 2-ply game:
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Minimax value

• Given a game tree, the optimal strategy can be 
determined by examining the minimax value of 
each node (MINIMAX-VALUE(n))

• The minimax value of a node is the utility of being 
in the corresponding state, assuming that both 
players play optimally from there to the end of the 
game

• Given a choice, MAX prefer to move to a state of 
maximum value, whereas MIN prefers a state of 
minimum value
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Minimax algorithm
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Minimax

MINIMAX-VALUE(root) = max(min(3,12,8), min(2,4,6), min(14,5,2))
                                            = max(3,2,2)
                                            = 3
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Properties of minimax

• Complete? Yes (if tree is finite)
• Optimal? Yes (against an optimal opponent)
• Time complexity? O(bm)
• Space complexity? O(bm) (depth-first exploration)

• For chess, b ≈ 35, m ≈100 for "reasonable" games
 exact solution completely infeasible
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Tree Player and Non-zero sum games

(+1 +2 +3) (+6 +1 +2) (-1 +5 +2) (+5 +4 +5)

(+1 +2 +3) (-1 +5 +2)

(+1 +2 +3)
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α-β pruning

• It is possible to compute the correct minimax 
decision without looking at every node in the game 
tree

MINIMAX-VALUE(root) = max(min(3,12,8), min(2,x,y), min(14,5,2))
                                            = max(3,min(2,x,y),2)
                                            = max(3,z,2)      where z <=2
                                            = 3

X Y
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α-β pruning example
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α-β pruning example
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α-β pruning example
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α-β pruning example
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α-β pruning example
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Properties of α-β

• Pruning does not affect final result

• Good move ordering improves effectiveness of pruning

• With "perfect ordering," time complexity = O(bm/2)
 doubles depth of search

• A simple example of the value of reasoning about which computations 
are relevant (a form of metareasoning)
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Why is it called α-β?
• α is the value of the 

best (i.e., highest-
value) choice found so 
far at any choice point 
along the path for max

• If v is worse than α, 
max will avoid it
 prune that branch

• Define β similarly for 
min
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The α-β algorithm
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The α-β algorithm
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The α-β algorithm
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α-β pruning
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α-β pruning example
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α-β pruning example
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α-β pruning example
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α-β pruning example
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α-β pruning example



CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

33

α-β pruning example
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α-β pruning example
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α-β pruning example
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α-β pruning example
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α-β pruning example
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α-β pruning example
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α-β pruning example
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α-β pruning example
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Move generation
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Resource limits

Suppose we have 100 secs, explore 104 nodes/sec
 106 nodes per move

Standard approach:
• cutoff test: 

e.g., depth limit (perhaps add quiescence search)
• evaluation function 

= estimated desirability of position
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Evaluation function 
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Min-Max

3
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Evaluation functions

• A typical evaluation function is a linear function in which some set of 
coefficients is used to weight a number of "features" of the board 
position. 

• For chess, typically linear weighted sum of features
Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s)

• e.g., w1 = 9 with 

f1(s) = (number of white queens) –  (number of black queens), etc.
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Evaluation function

• "material", : some measure of which pieces one has on the 
board. 

• A typical weighting for each type of chess piece is shown 
• Other types of features try to encode something about the 

distribution of the pieces on the board. 
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Cutting off search

MinimaxCutoff is identical to MinimaxValue except
1. Terminal? is replaced by Cutoff?
2. Utility is replaced by Eval

Does it work in practice?
bm = 106, b=35  m=4

4-ply lookahead is a hopeless chess player!
– 4-ply ≈ human novice
– 8-ply ≈ typical PC, human master
– 12-ply ≈ Deep Blue, Kasparov



CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

52

• The key idea is that the more lookahead we can do, that is, 
the deeper in the tree we can look, the better our 
evaluation of a position will be, even with a simple 
evaluation function. In some sense, if we could look all the 
way to the end of the game, all we would need is an 
evaluation function that was 1 when we won and -1 when 
the opponent won. 
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• it seems to suggest that brute-force search is all 
that matters. 

• And Deep Blue is brute indeed... It had 256 
specialized chess processors coupled into a 32 
node supercomputer. It examined around 30 
billion moves per minute. The typical search 
depth was 13ply, but in some dynamic situations 
it could go as deep as 30. 
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Practical issues
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Other games
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Deterministic games in practice

• Checkers: Chinook ended 40-year-reign of human world champion Marion 
Tinsley in 1994. Used a precomputed endgame database defining perfect play 
for all positions involving 8 or fewer pieces on the board, a total of 444 billion 
positions.

• Chess: Deep Blue defeated human world champion Garry Kasparov in a six-
game match in 1997. Deep Blue searches 200 million positions per second, 
uses very sophisticated evaluation, and undisclosed methods for extending 
some lines of search up to 40 ply.

• Othello: human champions refuse to compete against computers, who are too 
good.

• Go: human champions refuse to compete against computers, who are too bad. 
In go, b > 300, so most programs use pattern knowledge bases to suggest 
plausible moves.
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Summary

• Games are fun to work on!
• They illustrate several important points about AI
• perfection is unattainable  must approximate
• good idea to think about what to think about


