Chapter 4 Informed search and Exploration

CS 461 – Artificial Intelligence Pinar Duygulu Bilkent University, Spring 2008

Slides are mostly adapted from AIMA and MIT Open Courseware

Outline

Informed search strategies use problem specific knowledge beyond the definition of the problem itself

- Best-first search
- Greedy best-first search
- A* search
- Heuristics
- Local search algorithms
- Hill-climbing search
- Simulated annealing search
- Local beam search
- Genetic algorithms

Best-first search

- Idea: use an evaluation function f(n) to select the node for expansion
 - estimate of "desirability"
 - → Expand most desirable unexpanded node
- Implementation:

Order the nodes in fringe in decreasing order of desirability

• A key component in best-first algorithms is a heuristic function, h(n), which is the estimated cost of the cheapest path from n to a goal node

Best-first search

Best-first:

Pick "best" (measured by heuristic value of state) element of Q

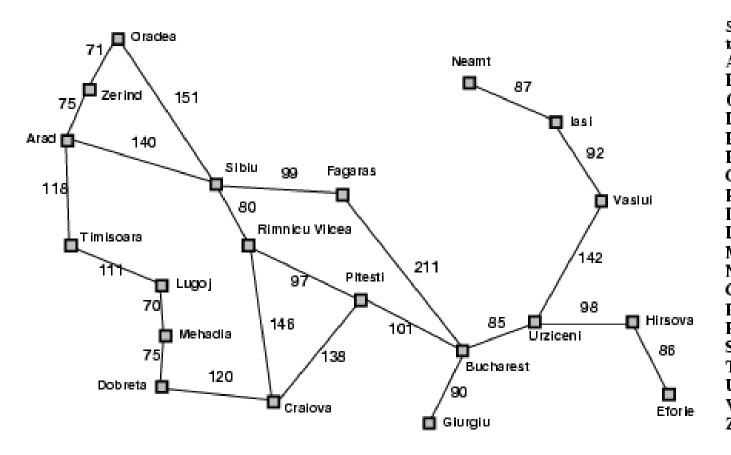
Add path extensions anywhere in Q (it may be more efficient to keep the Q ordered in some way so as to make it easier to find the "best" element).

There are many possible approaches to finding the best node in Q.

- Scanning Q to find lowest value
- Sorting Q and picking the first element
- Keeping the Q sorted by doing "sorted" insertions
- Keeping Q as a priority queue

Romania with step costs in km

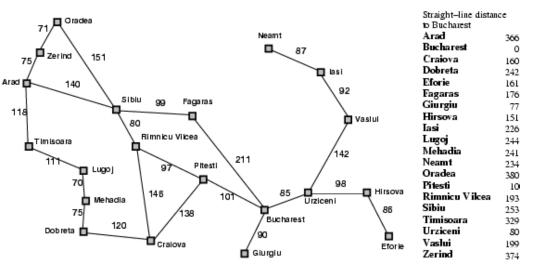
e.g. For Romania, cost of the cheapest path from Arad to Bucharest can be estimated via the straight line distance

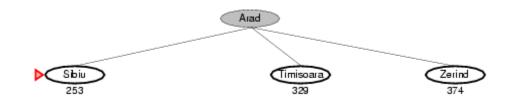


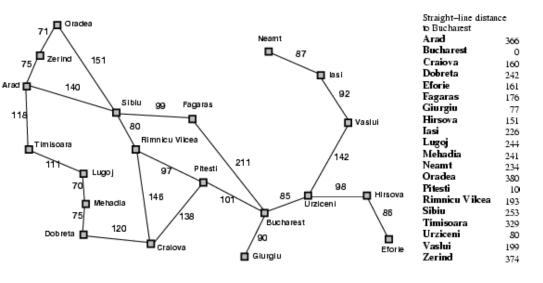
Straight-line distant	36
o Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Sagaras	176
Giurgiu	77
Hirsova	151
asi	226
Lugoj	244
Mehadia	241
Veamt	234
Oradea	380
Pitesti	10
Rimnicu V ilcea	193
Sibiu	253
l'imi s oara	329
Urziceni	80
Vashui	199
Zerind	374

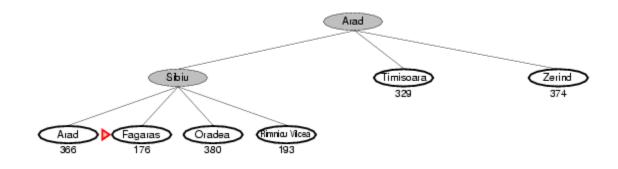
Greedy best-first search

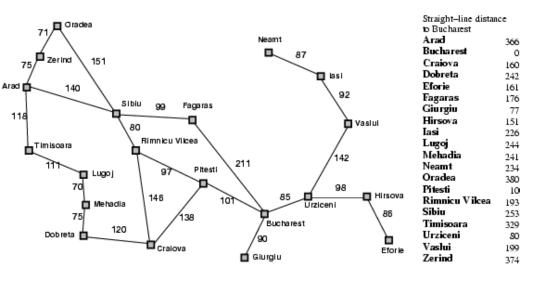
- Greedy best-first search expands the node that appears to be closest to goal
- Evaluation function f(n) = h(n) (heuristic)
- = estimate of cost from *n* to *goal*
- e.g., $h_{SLD}(n)$ = straight-line distance from n to Bucharest
- Note that, h_{SLD} cannot be computed from the problem description itself. It takes a certain amount of experience to know that it is correlated with actual road distances, and therefore it is a useful heuristic

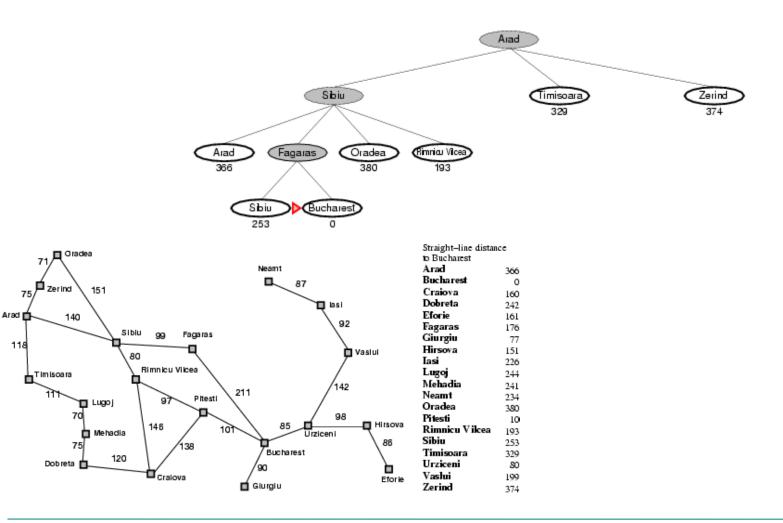








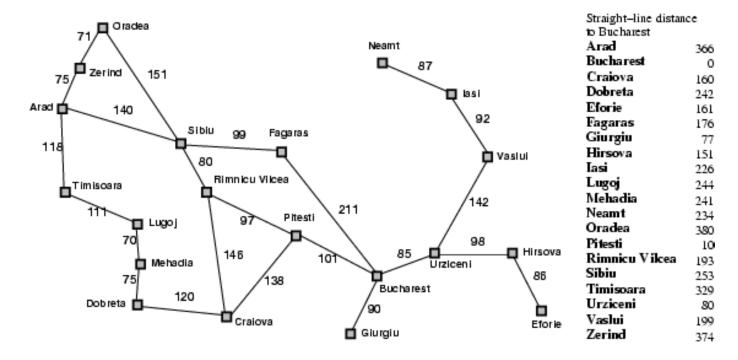




Problems:

Path through Faragas is not the optimal

In getting Iasi to Faragas, it will expand Neamt first but it is a dead end



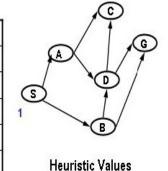
Pick "best" (by heuristic value) element of Q; Add path extensions anywhere in Q

	Tasas	10 m m			ب
	Q	Visited		_/	
1	(10 S)	s	 A	\times	17
2	:		S	*@	\mathcal{O}
3					
4				*(B	y
5			He	uristic Va	alues
			A=2	C=1	S=10
			B=3	D=4	G=0

Added paths in blue; heuristic value of node's state is in front.

We show the paths in reversed order; the node's state is the first entry.

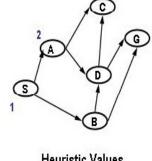
	Q	Visited
1	(10 S)	s
2	(2 A S) (3 B S)	A,B,S
3		
4		
5		



=2 C=1 S=10

B=3 D=4 G=0

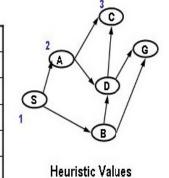
	Q	Visited
1	(10 S)	s
2	(2 A S) (3 B S)	A,B,S
3	(1 C A S) (3 B S) (4 D A S)	C,D,B,A,S
4		
5		



Heuristic Values

S=10 B=3 D=4 G=0

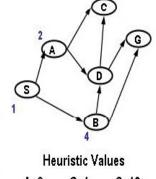
	Q	Visited
1	(10 S)	s
2	(2 A S) (3 B S)	A,B,S
3	(1 C A S) (3 B S) (4 D A S)	C,D,B,A,S
4	(3 B S) (4 D A S)	C,D,B,A,S
5		



=2 C=1 S=1

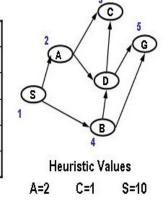
B=3 D=4 G=0

	Q	Visited
1	(10 S)	S
2	(2 A S) (3 B S)	A,B,S
3	(1 C A S) (3 B S) (4 D A S)	C,D,B,A,\$
4	(3 B S) (4 D A S)	C,D,B,A,S
5	(0 G B S) (4 D A S)	G,C,D,B,A,S



B=3 D=4 G=0

	Q	Visited
1	(10 S)	s
2	(2 A S) (3 B S)	A,B,S
3	(1 C A S) (3 B S) (4 D A S)	C,D,B,A,S
4	(3 B S) (4 D A S)	C,D,B,A,S
5	(0 G B S) (4 D A S)	G,C,D,B,A,S

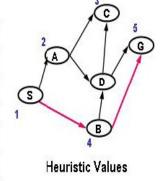


D=4

G=0

B=3

	Q	Visited
1	(10 S)	S
2	(2 A S) (3 B S)	A,B,S
3	(1 C A S) (3 B S) (4 D A S)	C,D,B,A,S
4	(3 B S) (4 D A S)	C,D,B,A,S
5	(0 G B S) (4 D A S)	G,C,D,B,A,S



A=2 C=1 S=10

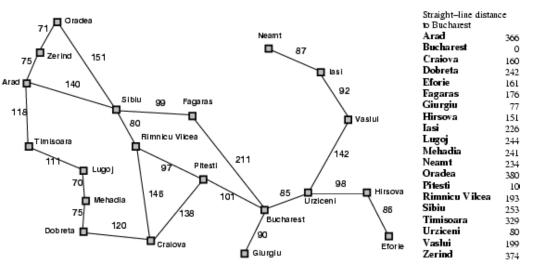
B=3 D=4 G=0

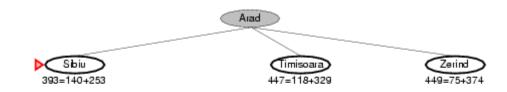
Properties of greedy best-first search

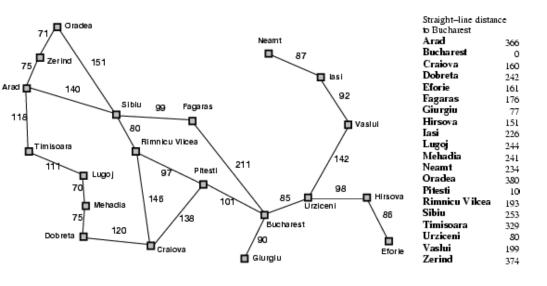
- Complete? No can get stuck in loops,
 e.g., Iasi → Neamt → Iasi → Neamt →
- $\underline{\text{Time?}}\ O(b^m)$, but a good heuristic can give dramatic improvement
- Space? $O(b^m)$ -- keeps all nodes in memory
- Optimal? No

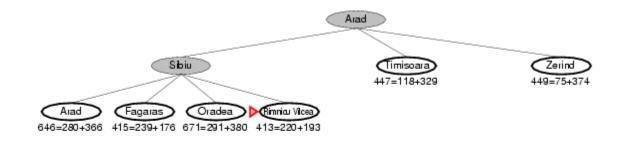
A* search

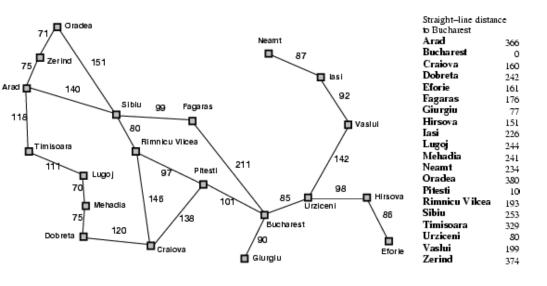
- Idea: avoid expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)
- $g(n) = \cos t$ so far to reach n
- h(n) =estimated cost from n to goal
- f(n) = estimated total cost of path through n to goal

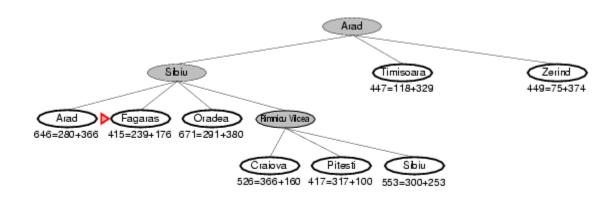


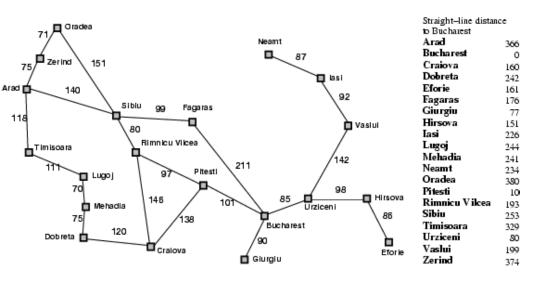


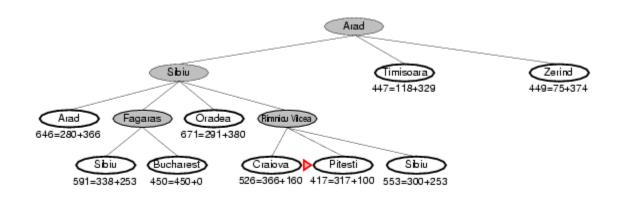


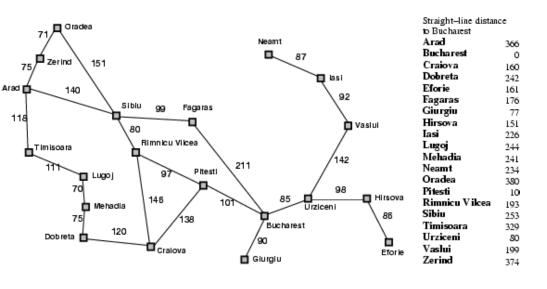


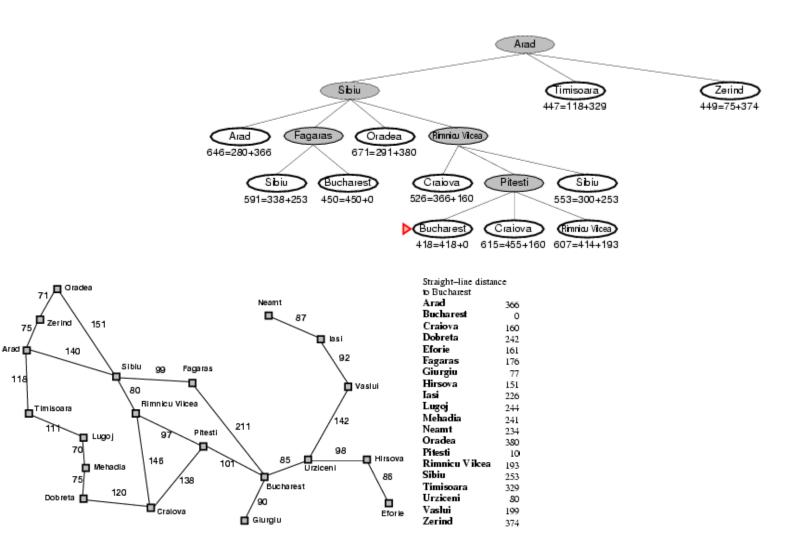




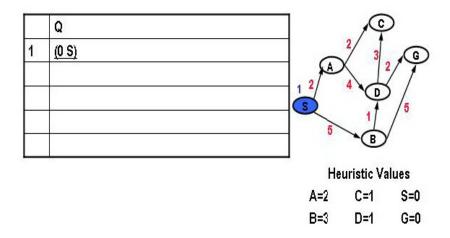




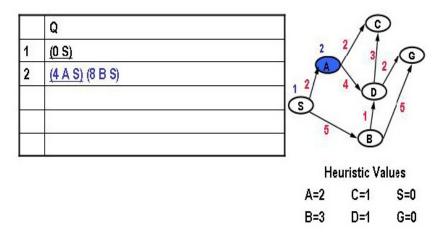


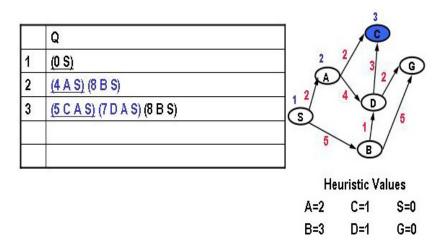


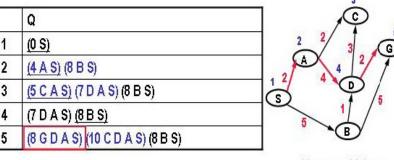
Pick best (by path length+heuristic) element of Q; Add path extensions anywhere in Q



Added paths in <u>blue</u>; <u>underlined</u> paths are chosen for extension. We show the paths in <u>reversed</u> order; the node's state is the first entry.







Heuristic Values

A=2 C=1 S=0 B=3 D=1 G=0

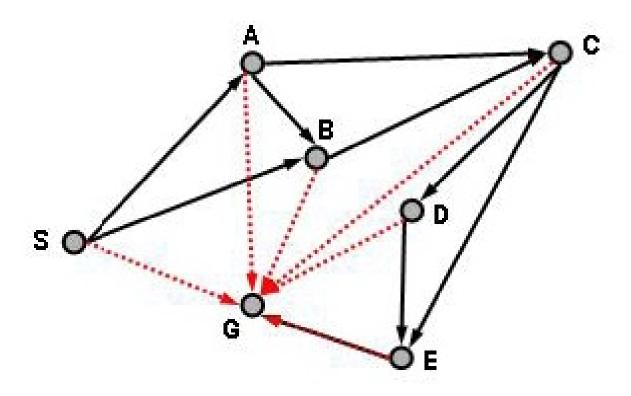
Classes of search

Class	Name	Operation
Any Path Uninformed	Depth-First Breadth-First	Systematic exploration of whole tree until a goal node is found.
Any Path Informed	Best-First	Uses heuristic measure of goodness of a node, e.g. estimated distance to goal.
Optimal Uninformed	Uniform-Cost	Uses path "length" measure. Finds "shortest" path.

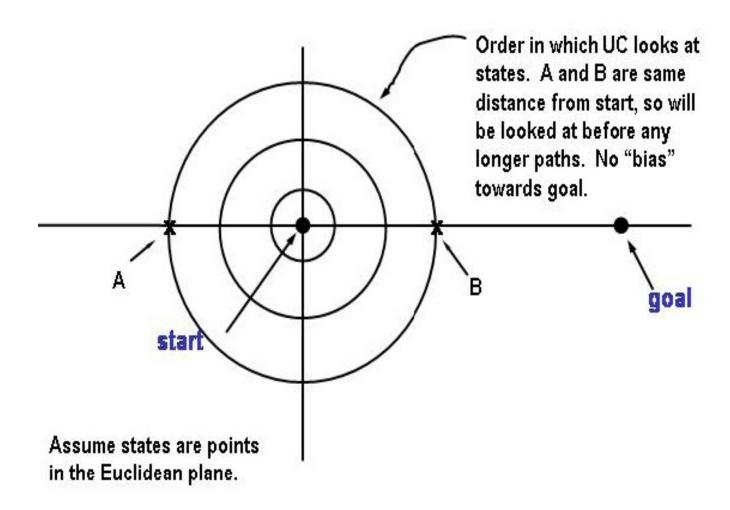
Uniform Cost (UC) versus A*

- UC is really trying to identify the shortest path to every state in the graph in order. It has no particular bias to finding a path to a goal early in the search.
- We can introduce such a bias by means of heuristic function h(N), which is an estimate (h) of the distance from a state n to a goal.
- Instead of enumerating paths in order of just length (g), enumerate paths in terms of f = estimated total path length = g + h.
- An estimate that always underestimates the real path length to the goal is called <u>admissible</u>. For example, an estimate of 0 is admissible (but useless).
 Straight line distance is admissible estimate for path length in Euclidean space.
- Use of an admissible estimate guarantees that UC will still find the shortest path.
- UC with an admissible estimate is known as A* (pronounced "A star")
 search.

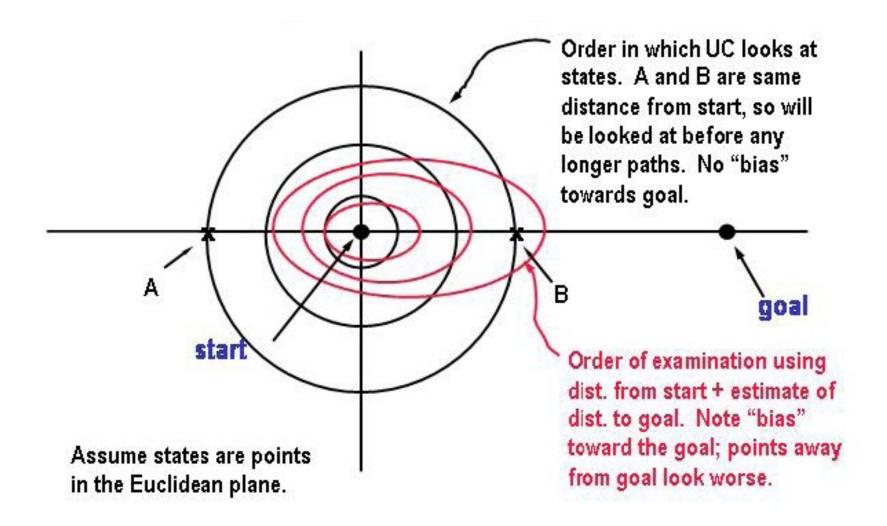
Straight line estimate



Why use estimate of goal distance



Why use estimate of goal distance



Not all heuristics are addmissible

Given the link lengths in the figure, is the table of heuristic values that we used in our earlier best-first example an admissible heuristic?

No!

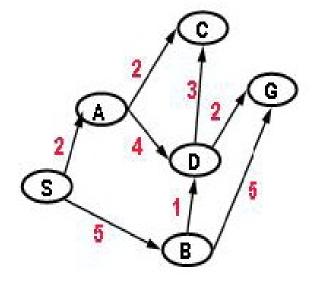
A is ok

B is ok

Cisok

D is too big, needs to be <= 2

S is too big, can always use 0 for start



Heuristic Values

A=2 C=1

=1 S=10

B=3

D=4

G=0

Admissible heuristics

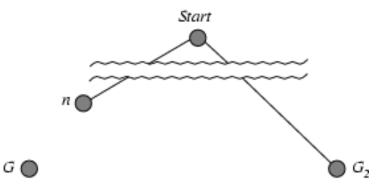
- A heuristic h(n) is admissible if for every node n, $h(n) \le h^*(n)$, where $h^*(n)$ is the true cost to reach the goal state from n.
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic thinks that the cost of solving the problem is less than it actually is
- Consequence: f(n) never over estimates the the true cost of a solution through n since g(n) is the exact cost to reach n
- Example: $h_{SLD}(n)$ (never overestimates the actual road distance) since the shortest path between any two points is a straight line

Optimality of A* (proof)

- Theorem: If h(n) is admissible, A* using TREE-SEARCH is optimal
- Suppose some suboptimal goal G_2 has been generated and is in the fringe. Let the cost of the optimal solution to goal G is C^*

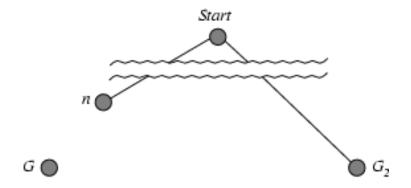
$$f = g + h$$

- $f(G_2) = g(G_2)$ since $h(G_2) = 0$
- $g(\overline{G_2}) > C^*$ since G₂ is suboptimal
- f(G) = g(G) f(G₂) > f(G) since h(G) = 0
 - from above



Optimality of A* (proof)

Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G (e.g. Pitesti).



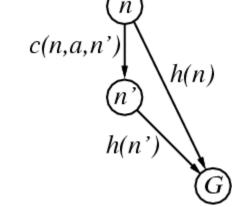
- If h(n) does not overestimate the cost of completing the solution path, then
- $f(n) = g(n) + h(n) \le C^*$
- f(n) $\leq f(G)$ $f(G_2)$ $\geq f(G)$ from above
- Hence $f(G_2) > f(G) > = f(n)$, and A* will never select G_2 for expansion

Consistent heuristics

• A heuristic is consistent if for every node n, every successor n' of n generated by any action a,

$$h(n) \le c(n,a,n') + h(n')$$

 $n' = successor \ of \ n \ generated \ by \ action \ a$

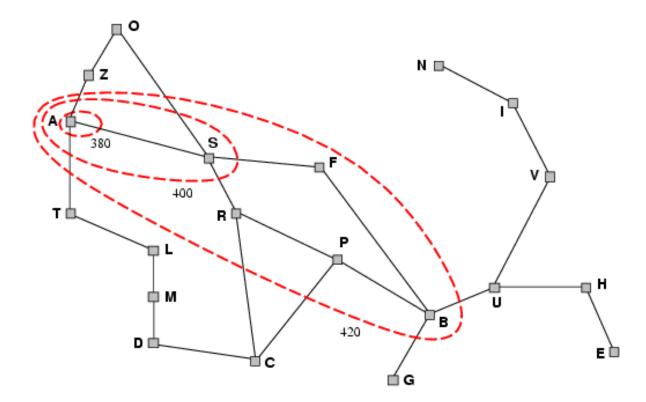


- The estimated cost of reaching the goal from n is no greater than the step cost of getting to n' plus the estimated cost of reaching the goal from n'
- If h is consistent, we have f(n') = g(n') + h(n') = g(n) + c(n,a,n') + h(n') $\geq g(n) + h(n)$
- if h(n) is consistent then the values of f(n) along any path are non-decreasing
- Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal

= f(n)

Optimality of A*

- A^* expands nodes in order of increasing f value
- Gradually adds "f-contours" of nodes Contour i has all nodes with $f=f_i$, where $f_i < f_{i+1}$



Properties of A*

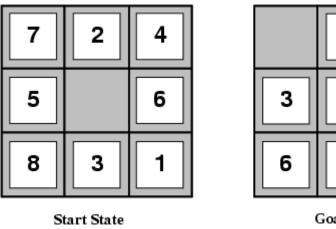
- Complete? Yes (unless there are infinitely many nodes with $f \le f(G)$)
- <u>Time?</u> Exponential
- Space? Keeps all nodes in memory
- Optimal? Yes

Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance the sum of the distances of the tiles from their goal positions

• $h_2(S) = ?$

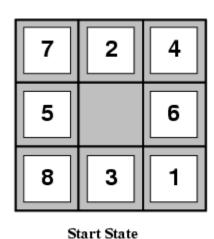


Goal State

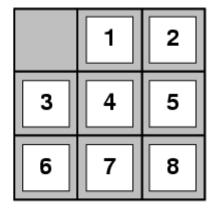
Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance



•
$$h_2(S) = ? 3+1+2+2+3+3+2 = 18$$



Goal State

Dominance

- If $h_2(n) \ge h_1(n)$ for all n (both admissible)
- then h_2 dominates h_1
- h_2 is better for search
- It is always better to use a heuristic function with higher values, provided it does not overestimate and that the computation time for the heuristic is not too large
- Typical search costs (average number of nodes expanded):
- d=12 IDS = 3,644,035 nodes $A^*(h_1) = 227$ nodes $A^*(h_2) = 73$ nodes
- d=24 IDS = too many nodes $A^*(h_1) = 39,135$ nodes $A^*(h_2) = 1,641$ nodes

Relaxed problems

- A problem with fewer restrictions on the actions is called a relaxed problem
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
- The heuristic is admissible because the optimal solution in the original problem is also a solution in the relaxed problem and therefore must be at least as expensive as the optimal solution in the relaxed problem
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_I(n)$ gives the shortest solution
- If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution

Inventing admissible heuristic functions

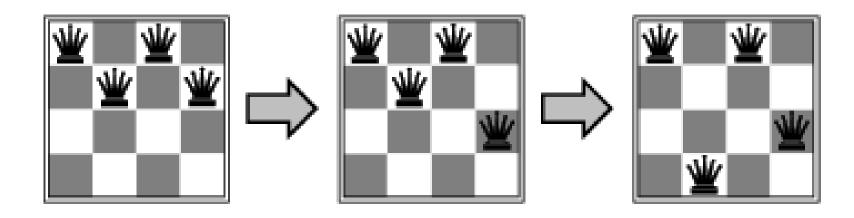
- If a problem definition is written down in a formal language, it is possible to construct relaxed problems automatically (ABSOLVER)
 - If 8-puzzle is described as
 - A tile can move from square A to square B if
 - A is horizontally or vertically adjacent to B and B is blank
 - A relaxed problem can be generated by removing one or both of the conditions
 - (a) A tile can move from square A to square B if A is adjacent to B
 - (b) A tile can move from square A to square B if B is blank
 - (c) A tile can move from square A to square B
 - h2 can be derived from (a) h2 is the proper score if we move each tile into its destination
 - h1 can be derived from (c) it is the proper score if tiles could move to their intended destination in one step
- Admissible heuristics can also be derived from the solution cost of a subproblem of a given problem

Local search algorithms

- In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution
- State space = set of "complete" configurations
- Find configuration satisfying constraints, e.g., n-queens
- In such cases, we can use local search algorithms
- keep a single "current" state, try to improve it

Example: *n*-queens

• Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal

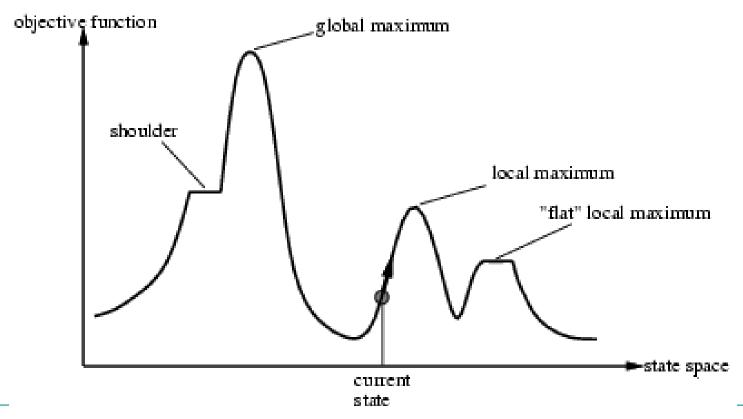


Hill-climbing search

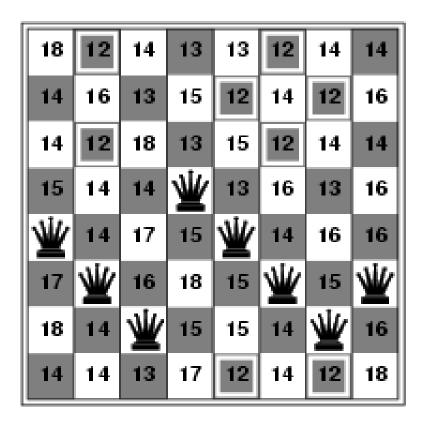
"Like climbing Everest in thick fog with amnesia"

Hill-climbing search

• Problem: depending on initial state, can get stuck in local maxima

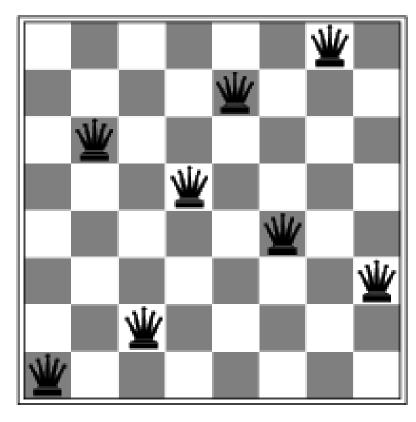


Hill-climbing search: 8-queens problem



- h = number of pairs of queens that are attacking each other, either directly or indirectly
- h = 17 for the above state

Hill-climbing search: 8-queens problem



• A local minimum with h = 1

Simulated annealing search

• Idea: escape local maxima by allowing some "bad" moves but gradually decrease their frequency

```
function Simulated-Annealing (problem, schedule) returns a solution state inputs: problem, a problem schedule, a mapping from time to "temperature" local variables: current, a node next, a node T, a "temperature" controlling prob. of downward steps current \leftarrow \text{Make-Node}(\text{Initial-State}[problem]) for t \leftarrow 1 to \infty do T \leftarrow schedule[t] if T = 0 then return current next \leftarrow a randomly selected successor of current \Delta E \leftarrow \text{Value}[next] - \text{Value}[current] if \Delta E > 0 then current \leftarrow next else current \leftarrow next only with probability e^{\Delta E/T}
```

Properties of simulated annealing search

- One can prove: If *T* decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching l
- Widely used in VLSI layout, airline scheduling, etc

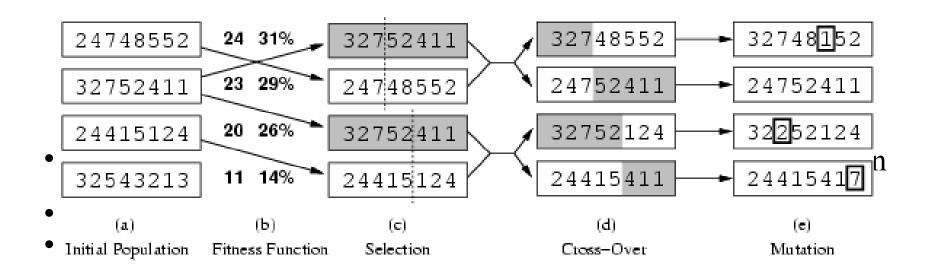
Local beam search

- Keep track of k states rather than just one
- Start with *k* randomly generated states
- At each iteration, all the successors of all *k* states are generated
- If any one is a goal state, stop; else select the *k* best successors from the complete list and repeat.

Genetic algorithms

- A successor state is generated by combining two parent states
- Start with *k* randomly generated states (population)
- A state is represented as a string over a finite alphabet (often a string of 0s and 1s)
- Evaluation function (fitness function). Higher values for better states.
- Produce the next generation of states by selection, crossover, and mutation

Genetic algorithms



Genetic algorithms

