
CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

1

Chapter 4
Informed search and

Exploration
CS 461 – Artificial Intelligence

Pinar Duygulu
Bilkent University, Spring 2008

Slides are mostly adapted from AIMA and MIT Open Courseware

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

2

Outline

• Best-first search
• Greedy best-first search
• A* search
• Heuristics
• Local search algorithms
• Hill-climbing search
• Simulated annealing search
• Local beam search
• Genetic algorithms

Informed search strategies use problem specific knowledge
beyond the definition of the problem itself

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

3

Best-first search
• Idea: use an evaluation function f(n) to select the node for

expansion
– estimate of "desirability"
Expand most desirable unexpanded node

• Implementation:
Order the nodes in fringe in decreasing order of desirability

• A key component in best-first algorithms is a heuristic
function, h(n), which is the estimated cost of the cheapest path
from n to a goal node

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

4

Best-first search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

5

Romania with step costs in km
e.g. For Romania, cost of the cheapest path from Arad to
Bucharest can be estimated via the straight line distance

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

6

Greedy best-first search

• Greedy best-first search expands the node that
appears to be closest to goal

• Evaluation function f(n) = h(n) (heuristic)
• = estimate of cost from n to goal
• e.g., hSLD(n) = straight-line distance from n to

Bucharest

• Note that, hSLD cannot be computed from the problem
description itself. It takes a certain amount of
experience to know that it is correlated with actual
road distances, and therefore it is a useful heuristic

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

7

Greedy best-first search example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

8

Greedy best-first search example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

9

Greedy best-first search example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

10

Greedy best-first search example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

11

Greedy best-first search example

Problems:
Path through Faragas is not the optimal
In getting Iasi to Faragas, it will expand Neamt first but it is a dead end

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

12

Greedy best-first search – Another example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

13

Greedy best-first search – Another example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

14

Greedy best-first search – Another example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

15

Greedy best-first search – Another example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

16

Greedy best-first search – Another example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

17

Greedy best-first search – Another example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

18

Greedy best-first search – Another example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

19

Properties of greedy best-first search

• Complete? No – can get stuck in loops,
– e.g., Iasi Neamt Iasi Neamt

• Time? O(bm), but a good heuristic can give dramatic
improvement

• Space? O(bm) -- keeps all nodes in memory
• Optimal? No

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

20

A* search

• Idea: avoid expanding paths that are already
expensive

• Evaluation function f(n) = g(n) + h(n)
• g(n) = cost so far to reach n
• h(n) = estimated cost from n to goal
• f(n) = estimated total cost of path through n to goal

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

21

A* search example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

22

A* search example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

23

A* search example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

24

A* search example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

25

A* search example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

26

A* search example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

27

A* search – Another example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

28

A* search – Another example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

29

A* search – Another example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

30

A* search – Another example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

31

Classes of search

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

32

Uniform Cost (UC) versus A*

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

33

Straight line estimate

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

34

Why use estimate of goal distance

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

35

Why use estimate of goal distance

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

36

Not all heuristics are addmissible

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

37

Admissible heuristics

• A heuristic h(n) is admissible if for every node n,
h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal state from n.

• An admissible heuristic never overestimates the cost to reach the goal,
i.e., it is optimistic – thinks that the cost of solving the problem is less
than it actually is

• Consequence: f(n) never over estimates the the true cost of a solution
through n since g(n) is the exact cost to reach n

• Example: hSLD(n) (never overestimates the actual road distance) since
the shortest path between any two points is a straight line

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

38

Optimality of A* (proof)

• Theorem: If h(n) is admissible, A* using TREE-SEARCH is
optimal

•
• Suppose some suboptimal goal G2 has been generated and is in the fringe.

Let the cost of the optimal solution to goal G is C*

f = g + h

• f(G2) = g(G2) since h(G2) = 0
• g(G2) > C* since G2 is suboptimal
• f(G) = g(G) since h(G) = 0
• f(G2) > f(G) from above

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

39

Optimality of A* (proof)

• Let n be an unexpanded node in the fringe such that n is on a shortest path
to an optimal goal G (e.g. Pitesti).

• If h(n) does not overestimate the cost of completing the solution path, then
• f(n) = g(n) + h(n) ≤ C*
• f(n) ≤ f(G)
• f(G2) > f(G) from above
• Hence f(G2) > f(G) >= f(n) , and A* will never select G2 for expansion

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

40

Consistent heuristics
• A heuristic is consistent if for every node n, every successor n' of n

generated by any action a,

h(n) ≤ c(n,a,n') + h(n')

 n' = successor of n generated by action a

• The estimated cost of reaching the goal from n is no greater than the step
cost of getting to n' plus the estimated cost of reaching the goal from n'

•
• If h is consistent, we have
 f(n') = g(n') + h(n')
 = g(n) + c(n,a,n') + h(n')
 ≥ g(n) + h(n)
 = f(n)
• if h(n) is consistent then the values of f(n) along any path are non-

decreasing
• Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

41

Optimality of A*

• A* expands nodes in order of increasing f value

• Gradually adds "f-contours" of nodes
• Contour i has all nodes with f=fi, where fi < fi+1

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

42

Properties of A*

• Complete? Yes (unless there are infinitely many
nodes with f ≤ f(G))

• Time? Exponential
• Space? Keeps all nodes in memory
• Optimal? Yes

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

43

Admissible heuristics

E.g., for the 8-puzzle:
• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance – the sum of the distances of the tiles from

their goal positions

• h 1(S) = ?
• h 2(S) = ?

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

44

Admissible heuristics

E.g., for the 8-puzzle:
• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance

• h 1(S) = ? 8
• h 2(S) = ? 3+1+2+2+2+3+3+2 = 18

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

45

Dominance

• If h2(n) ≥ h1(n) for all n (both admissible)
• then h2 dominates h1
• h2 is better for search
• It is always better to use a heuristic function with higher

values, provided it does not overestimate and that the
computation time for the heuristic is not too large

• Typical search costs (average number of nodes expanded):

• d=12 IDS = 3,644,035 nodes
A*(h1) = 227 nodes
A*(h2) = 73 nodes

• d=24 IDS = too many nodes
A*(h1) = 39,135 nodes
A*(h2) = 1,641 nodes

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

46

Relaxed problems
• A problem with fewer restrictions on the actions is

called a relaxed problem
• The cost of an optimal solution to a relaxed problem

is an admissible heuristic for the original problem
• The heuristic is admissible because the optimal

solution in the original problem is also a solution in
the relaxed problem and therefore must be at least as
expensive as the optimal solution in the relaxed
problem

• If the rules of the 8-puzzle are relaxed so that a tile
can move anywhere, then h1(n) gives the shortest
solution

• If the rules are relaxed so that a tile can move to any
adjacent square, then h2(n) gives the shortest solution

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

47

Inventing admissible heuristic functions
• If a problem definition is written down in a formal language, it is

possible to construct relaxed problems automatically (ABSOLVER)

– If 8-puzzle is described as
• A tile can move from square A to square B if
• A is horizontally or vertically adjacent to B and B is blank

– A relaxed problem can be generated by removing one or both of
the conditions

• (a) A tile can move from square A to square B if A is adjacent to B
• (b) A tile can move from square A to square B if B is blank
• (c) A tile can move from square A to square B

– h2 can be derived from (a) – h2 is the proper score if we move
each tile into its destination

– h1 can be derived from (c) – it is the proper score if tiles could
move to their intended destination in one step

• Admissible heuristics can also be derived from the solution cost of a
subproblem of a given problem

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

48

Local search algorithms

• In many optimization problems, the path to the goal is
irrelevant; the goal state itself is the solution

• State space = set of "complete" configurations
• Find configuration satisfying constraints, e.g., n-

queens

• In such cases, we can use local search algorithms
• keep a single "current" state, try to improve it

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

49

Example: n-queens

• Put n queens on an n × n board with no two queens
on the same row, column, or diagonal

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

50

Hill-climbing search

• "Like climbing Everest in thick fog with amnesia"

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

51

Hill-climbing search

• Problem: depending on initial state, can get stuck in
local maxima

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

52

Hill-climbing search: 8-queens problem

• h = number of pairs of queens that are attacking each other, either directly or
indirectly

• h = 17 for the above state

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

53

Hill-climbing search: 8-queens problem

• A local minimum with h = 1

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

54

Simulated annealing search

• Idea: escape local maxima by allowing some "bad"
moves but gradually decrease their frequency

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

55

Properties of simulated annealing search

• One can prove: If T decreases slowly enough, then
simulated annealing search will find a global
optimum with probability approaching 1

• Widely used in VLSI layout, airline scheduling, etc

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

56

Local beam search
• Keep track of k states rather than just one

• Start with k randomly generated states

• At each iteration, all the successors of all k states are
generated

• If any one is a goal state, stop; else select the k best
successors from the complete list and repeat.

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

57

Genetic algorithms

• A successor state is generated by combining two parent states

• Start with k randomly generated states (population)

• A state is represented as a string over a finite alphabet (often a
string of 0s and 1s)

• Evaluation function (fitness function). Higher values for better
states.

• Produce the next generation of states by selection, crossover,
and mutation

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

58

Genetic algorithms

• Fitness function: number of non-attacking pairs of queens (min
= 0, max = 8 × 7/2 = 28)

• 24/(24+23+20+11) = 31%
• 23/(24+23+20+11) = 29% etc

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

59

Genetic algorithms

