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Universal instantiation (UI)
• Every instantiation of a universally quantified sentence is entailed by it:

∀v α
Subst({v/g}, α)

for any variable v and ground term g

• E.g., ∀x King(x) ∧ Greedy(x) ⇒ Evil(x) yields:
King(John) ∧ Greedy(John) ⇒  Evil(John)
King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)
King(Father(John)) ∧ Greedy(Father(John)) ⇒ Evil(Father(John))
.
.
.
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Existential instantiation (EI)

• For any sentence α, variable v, and constant symbol k that 
does not appear elsewhere in the knowledge base:

∃v α
Subst({v/k}, α)

• E.g., ∃x Crown(x) ∧ OnHead(x,John) yields:

Crown(C1) ∧ OnHead(C1,John)

provided C1 is a new constant symbol, called a Skolem 
constant
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Reduction to propositional inference

Suppose the KB contains just the following:
∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)
Greedy(John)
Brother(Richard,John)

• Instantiating the universal sentence in all possible ways, we have:
King(John) ∧ Greedy(John) ⇒ Evil(John)
King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)
King(John)
Greedy(John)
Brother(Richard,John)

• The new KB is propositionalized: proposition symbols are

 King(John), Greedy(John), Evil(John), King(Richard), etc.
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Reduction contd.

• Every FOL KB can be propositionalized so as to preserve 
entailment

• (A ground sentence is entailed by new KB iff entailed by 
original KB)

• Idea: propositionalize KB and query, apply resolution, 
return result

• Problem: with function symbols, there are infinitely many 
ground terms,
– e.g., Father(Father(Father(John)))
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Reduction contd.

Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB, it is 
entailed by a finite subset of the propositionalized KB

Idea: For n = 0 to ∞ do
    create a propositional KB by instantiating with depth-n terms
    see if α is entailed by this KB

Problem: works if α is entailed, loops if α is not entailed

Theorem: Turing (1936), Church (1936) Entailment for FOL is semidecidable 
(algorithms exist that say yes to every entailed sentence, but no algorithm 
exists that also says no to every nonentailed sentence.)
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Problems with propositionalization

• Propositionalization seems to generate lots of irrelevant sentences.

• E.g., from:
∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)
∀y Greedy(y)
Brother(Richard,John)

• it seems obvious that Evil(John), but propositionalization produces lots of 
facts such as Greedy(Richard) that are irrelevant

• With p k-ary predicates and n constants, there are p·nk instantiations.
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Unification

• We can get the inference immediately if we can find a substitution θ such that 
King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ 
p q  θ  
Knows(John,x) Knows(John,Jane)
Knows(John,x) Knows(y,Elizabeth)
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(x, Elizabeth)

• Standardizing apart eliminates overlap of variables,
e.g., Knows(z17, Elizabeth)
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Unification

• We can get the inference immediately if we can find a substitution θ such that 
King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ 
p q  θ  
Knows(John,x) Knows(John,Jane) {x/Jane}}
Knows(John,x) Knows(y, Elizabeth) {x/ Elizabeth,y/John}}
Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}}
Knows(John,x) Knows(x, Elizabeth) {fail}

• Standardizing apart eliminates overlap of variables,
e.g., Knows(z17, Elizabeth)
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Unification

• To unify Knows(John,x) and Knows(y,z),
θ = {y/John, x/z } or θ = {y/John, x/John, z/John}

• The first unifier is more general than the second.
• There is a single most general unifier (MGU) that is 

unique up to renaming of variables.
MGU = { y/John, x/z }
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The unification algorithm



CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

12

The unification algorithm
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Generalized Modus Ponens (GMP)

p1', p2', … , pn', ( p1 ∧ p2 ∧ … ∧ pn ⇒q)
                         qθ
p1' is King(John)  p1 is King(x) 
p2' is Greedy(y)  p2 is Greedy(x) 
θ is {x/John,y/John} q is Evil(x) 
q θ is Evil(John)

• GMP used with KB of definite clauses (exactly one positive literal)

• All variables assumed universally quantified

where pi'θ = pi θ for all i
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Soundness of GMP

• Need to show that 
p1', …, pn', (p1 ∧ … ∧ pn ⇒ q) ╞ qθ

provided that pi'θ = piθ for all I

• Lemma: For any sentence p, we have p ╞ pθ by UI

1. (p1 ∧ … ∧ pn ⇒ q) ╞ (p1 ∧ … ∧ pn ⇒ q)θ = (p1θ ∧ … ∧ pnθ ⇒ qθ)
2. p1', \; …, \;pn' ╞ p1' ∧ … ∧ pn' ╞ p1'θ ∧ … ∧ pn'θ 
3. From 1 and 2, qθ follows by ordinary Modus Ponens
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Example knowledge base

• The law says that it is a crime for an American to sell weapons to 
hostile nations.  The country Nono, an enemy of America, has some 
missiles, and all of its missiles were sold to it by Colonel West, who is 
American.

• Prove that Col. West is a criminal
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Example knowledge base contd.

... it is a crime for an American to sell weapons to hostile nations:
American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

Missiles are weapons:
Missile(x) ⇒ Weapon(x)

An enemy of America counts as "hostile“:
Enemy(x,America) ⇒ Hostile(x)

West, who is American …
American(West)

The country Nono, an enemy of America …
Enemy(Nono,America)
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Forward chaining algorithm
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Forward chaining proof



CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

19

Forward chaining proof
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Forward chaining proof
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Properties of forward chaining

• Sound and complete for first-order definite clauses

• Datalog = first-order definite clauses + no functions
• FC terminates for Datalog in finite number of iterations

• May not terminate in general if α is not entailed

• This is unavoidable: entailment with definite clauses is 
semidecidable
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Efficiency of forward chaining

Incremental forward chaining: no need to match a rule on iteration k if a 
premise wasn't added on iteration k-1

⇒ match each rule whose premise contains a newly added positive literal

Matching itself can be expensive:
Database indexing allows O(1) retrieval of known facts

– e.g., query Missile(x) retrieves Missile(M1)

Forward chaining is widely used in deductive databases
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Backward chaining algorithm

SUBST(COMPOSE(θ1, θ2), p) = 
SUBST(θ2, SUBST(θ1, p))
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Backward chaining example
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Properties of backward chaining

• Depth-first recursive proof search: space is linear 
in size of proof

• Incomplete due to infinite loops
– ⇒ fix by checking current goal against every goal on 

stack
• Inefficient due to repeated subgoals (both success 

and failure)
– ⇒ fix using caching of previous results (extra space)

• Widely used for logic programming
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Logic programming: Prolog

• Algorithm = Logic + Control

• Basis: backward chaining with Horn clauses + bells & whistles

• Program = set of clauses = head :- literal1, … literaln.
criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).

• Depth-first, left-to-right backward chaining
• Built-in predicates for arithmetic etc., e.g., X is Y*Z+3
• Built-in predicates that have side effects (e.g., input and output
• predicates, assert/retract predicates)
• Closed-world assumption ("negation as failure")

– e.g., given alive(X) :- not dead(X).
– alive(joe) succeeds if dead(joe) fails
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Logic in the real world
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Airfare Pricing
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Fare Restrictions
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Ontology
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Airfare Domain Ontology
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Representing Properties
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Basic Relations
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Defined Relations
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Infant Fare
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Rules and Logic Programming
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Horn Clauses
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Limitations
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Inference: Backchaining
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Backchaining and Resolution
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Proof Strategy
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Example
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Example



CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

51

Example
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Example
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Relations not Functions
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Order Revisited
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Logic Programming


