
CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

1

Chapter 10
Knowledge Representation

CS 461 – Artificial Intelligence
Pinar Duygulu

Bilkent University, Spring 2007

Slides are mostly adapted from AIMA and MIT Open Courseware

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

2

Universal instantiation (UI)
• Every instantiation of a universally quantified sentence is entailed by it:

∀v α
Subst({v/g}, α)

for any variable v and ground term g

• E.g., ∀x King(x) ∧ Greedy(x) ⇒ Evil(x) yields:
King(John) ∧ Greedy(John) ⇒ Evil(John)
King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)
King(Father(John)) ∧ Greedy(Father(John)) ⇒ Evil(Father(John))
.
.
.

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

3

Existential instantiation (EI)

• For any sentence α, variable v, and constant symbol k that
does not appear elsewhere in the knowledge base:

∃v α
Subst({v/k}, α)

• E.g., ∃x Crown(x) ∧ OnHead(x,John) yields:

Crown(C1) ∧ OnHead(C1,John)

provided C1 is a new constant symbol, called a Skolem
constant

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

4

Reduction to propositional inference

Suppose the KB contains just the following:
∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)
Greedy(John)
Brother(Richard,John)

• Instantiating the universal sentence in all possible ways, we have:
King(John) ∧ Greedy(John) ⇒ Evil(John)
King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)
King(John)
Greedy(John)
Brother(Richard,John)

• The new KB is propositionalized: proposition symbols are

 King(John), Greedy(John), Evil(John), King(Richard), etc.

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

5

Reduction contd.

• Every FOL KB can be propositionalized so as to preserve
entailment

• (A ground sentence is entailed by new KB iff entailed by
original KB)

• Idea: propositionalize KB and query, apply resolution,
return result

• Problem: with function symbols, there are infinitely many
ground terms,
– e.g., Father(Father(Father(John)))

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

6

Reduction contd.

Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB, it is
entailed by a finite subset of the propositionalized KB

Idea: For n = 0 to ∞ do
 create a propositional KB by instantiating with depth-n terms
 see if α is entailed by this KB

Problem: works if α is entailed, loops if α is not entailed

Theorem: Turing (1936), Church (1936) Entailment for FOL is semidecidable
(algorithms exist that say yes to every entailed sentence, but no algorithm
exists that also says no to every nonentailed sentence.)

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

7

Problems with propositionalization

• Propositionalization seems to generate lots of irrelevant sentences.

• E.g., from:
∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)
∀y Greedy(y)
Brother(Richard,John)

• it seems obvious that Evil(John), but propositionalization produces lots of
facts such as Greedy(Richard) that are irrelevant

• With p k-ary predicates and n constants, there are p·nk instantiations.

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

8

Unification

• We can get the inference immediately if we can find a substitution θ such that
King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ
p q θ
Knows(John,x) Knows(John,Jane)
Knows(John,x) Knows(y,Elizabeth)
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(x, Elizabeth)

• Standardizing apart eliminates overlap of variables,
e.g., Knows(z17, Elizabeth)

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

9

Unification

• We can get the inference immediately if we can find a substitution θ such that
King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ
p q θ
Knows(John,x) Knows(John,Jane) {x/Jane}}
Knows(John,x) Knows(y, Elizabeth) {x/ Elizabeth,y/John}}
Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}}
Knows(John,x) Knows(x, Elizabeth) {fail}

• Standardizing apart eliminates overlap of variables,
e.g., Knows(z17, Elizabeth)

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

10

Unification

• To unify Knows(John,x) and Knows(y,z),
θ = {y/John, x/z } or θ = {y/John, x/John, z/John}

• The first unifier is more general than the second.
• There is a single most general unifier (MGU) that is

unique up to renaming of variables.
MGU = { y/John, x/z }

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

11

The unification algorithm

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

12

The unification algorithm

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

13

Generalized Modus Ponens (GMP)

p1', p2', … , pn', (p1 ∧ p2 ∧ … ∧ pn ⇒q)
 qθ
p1' is King(John) p1 is King(x)
p2' is Greedy(y) p2 is Greedy(x)
θ is {x/John,y/John} q is Evil(x)
q θ is Evil(John)

• GMP used with KB of definite clauses (exactly one positive literal)

• All variables assumed universally quantified

where pi'θ = pi θ for all i

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

14

Soundness of GMP

• Need to show that
p1', …, pn', (p1 ∧ … ∧ pn ⇒ q) ╞ qθ

provided that pi'θ = piθ for all I

• Lemma: For any sentence p, we have p ╞ pθ by UI

1. (p1 ∧ … ∧ pn ⇒ q) ╞ (p1 ∧ … ∧ pn ⇒ q)θ = (p1θ ∧ … ∧ pnθ ⇒ qθ)
2. p1', \; …, \;pn' ╞ p1' ∧ … ∧ pn' ╞ p1'θ ∧ … ∧ pn'θ
3. From 1 and 2, qθ follows by ordinary Modus Ponens

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

15

Example knowledge base

• The law says that it is a crime for an American to sell weapons to
hostile nations. The country Nono, an enemy of America, has some
missiles, and all of its missiles were sold to it by Colonel West, who is
American.

• Prove that Col. West is a criminal

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

16

Example knowledge base contd.

... it is a crime for an American to sell weapons to hostile nations:
American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ Missile(x):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

Missiles are weapons:
Missile(x) ⇒ Weapon(x)

An enemy of America counts as "hostile“:
Enemy(x,America) ⇒ Hostile(x)

West, who is American …
American(West)

The country Nono, an enemy of America …
Enemy(Nono,America)

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

17

Forward chaining algorithm

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

18

Forward chaining proof

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

19

Forward chaining proof

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

20

Forward chaining proof

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

21

Properties of forward chaining

• Sound and complete for first-order definite clauses

• Datalog = first-order definite clauses + no functions
• FC terminates for Datalog in finite number of iterations

• May not terminate in general if α is not entailed

• This is unavoidable: entailment with definite clauses is
semidecidable

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

22

Efficiency of forward chaining

Incremental forward chaining: no need to match a rule on iteration k if a
premise wasn't added on iteration k-1

⇒ match each rule whose premise contains a newly added positive literal

Matching itself can be expensive:
Database indexing allows O(1) retrieval of known facts

– e.g., query Missile(x) retrieves Missile(M1)

Forward chaining is widely used in deductive databases

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

23

Backward chaining algorithm

SUBST(COMPOSE(θ1, θ2), p) =
SUBST(θ2, SUBST(θ1, p))

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

24

Backward chaining example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

25

Backward chaining example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

26

Backward chaining example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

27

Backward chaining example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

28

Backward chaining example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

29

Backward chaining example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

30

Backward chaining example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

31

Backward chaining example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

32

Properties of backward chaining

• Depth-first recursive proof search: space is linear
in size of proof

• Incomplete due to infinite loops
– ⇒ fix by checking current goal against every goal on

stack
• Inefficient due to repeated subgoals (both success

and failure)
– ⇒ fix using caching of previous results (extra space)

• Widely used for logic programming

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

33

Logic programming: Prolog

• Algorithm = Logic + Control

• Basis: backward chaining with Horn clauses + bells & whistles

• Program = set of clauses = head :- literal1, … literaln.
criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).

• Depth-first, left-to-right backward chaining
• Built-in predicates for arithmetic etc., e.g., X is Y*Z+3
• Built-in predicates that have side effects (e.g., input and output
• predicates, assert/retract predicates)
• Closed-world assumption ("negation as failure")

– e.g., given alive(X) :- not dead(X).
– alive(joe) succeeds if dead(joe) fails

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

34

Logic in the real world

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

35

Airfare Pricing

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

36

Fare Restrictions

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

37

Ontology

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

38

Airfare Domain Ontology

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

39

Representing Properties

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

40

Basic Relations

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

41

Defined Relations

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

42

Infant Fare

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

43

Rules and Logic Programming

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

44

Horn Clauses

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

45

Limitations

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

46

Inference: Backchaining

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

47

Backchaining and Resolution

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

48

Proof Strategy

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

49

Example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

50

Example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

51

Example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

52

Example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

53

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

54

Relations not Functions

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

55

Order Revisited

CS461 Artificial Intelligence © Pinar Duygulu Spring 2007

56

Logic Programming

