
CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

1

Chapter 7
Logical Agents

CS 461 – Artificial Intelligence
Pinar Duygulu

Bilkent University, Spring 2008

Slides are mostly adapted from AIMA and MIT Open Courseware

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

2

Outline

• Knowledge-based agents
• Wumpus world
• Logic in general - models and entailment
• Propositional (Boolean) logic
• Equivalence, validity, satisfiability
• Inference rules and theorem proving

– forward chaining
– backward chaining
– resolution

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

3

Introduction

• The representation of knowledge and the reasoning processes that bring
knowledge to life are central to entire field of artificial intelligence

• Knowledge and reasoning are important to artificial agents because they
enable successful behaviors that would be very hard to achieve otherwise (no
piece in chess can be on two different squares at the same time)

• Knowledge and reasoning also play a crucial role in dealing with partially
observable environments (inferring hidden states in diagnosing diseases,
natural language understanding)

• Knowledge also allows flexibility.

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

4

Knowledge bases

• Knowledge base = set of sentences in a formal language
• Each sentence is expressed in a knowledge representation language and represents some

assertions about the world
• There should be a way to add new sentences to KB, and to query what is known
• Declarative approach to building an agent (or other system):

– TELL it what it needs to know
– Then it can ASK itself what to do - answers should follow from the KB

• Both tasks may involve inference – deriving new sentences from old
• In logical agents – when one ASKs a question to KB, the answer should follow from what

has been TELLed
• Agents can be viewed at the knowledge level

i.e., what they know, regardless of how implemented
• Or at the implementation level

– i.e., data structures in KB and algorithms that manipulate them

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

5

A simple knowledge-based agent

• KB : maintain the background knowledge
• Each time the agent program is called it does three things

– TELLs the KB what it perceives
– ASK the KB what action it should perform
– TELL the KB that the action is executed

• The agent must be able to:
– Represent states, actions, etc.
– Incorporate new percepts
– Update internal representations of the world
– Deduce hidden properties of the world
– Deduce appropriate actions

• Declarative versus procedural approaches

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

6

Wumpus World PEAS description
• Performance measure

– gold +1000, death -1000
– -1 per step, -10 for using the arrow

• Environment
– Squares adjacent to wumpus are smelly (stench)
– Squares adjacent to pit are breezy
– Glitter iff gold is in the same square
– Shooting kills wumpus if you are facing it
– Shooting uses up the only arrow
– Grabbing picks up gold if in same square
– Releasing drops the gold in same square

• Sensors: Stench, Breeze, Glitter, Bump, Scream
• Actuators: Left turn, Right turn, Forward, Grab, Release,

Shoot

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

7

Wumpus world characterization

• Fully Observable No – only local perception
• Deterministic Yes – outcomes exactly specified
• Episodic No – sequential at the level of actions
• Static Yes – Wumpus and Pits do not move
• Discrete Yes
• Single-agent? Yes – Wumpus is essentially a natural

feature

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

8

Exploring a wumpus world

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

9

Exploring a wumpus world

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

10

Exploring a wumpus world

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

11

Exploring a wumpus world

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

12

Exploring a wumpus world

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

13

Exploring a wumpus world

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

14

Exploring a wumpus world

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

15

Exploring a wumpus world

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

16

Logic in general

• Logics are formal languages for representing information such that conclusions can be
drawn

• Syntax defines the sentences in the language
• Semantics define the "meaning" of sentences;

– i.e., define truth of a sentence in a world

• E.g., the language of arithmetic
– x+2 ≥ y is a sentence; x2+y > {} is not a sentence
– x+2 ≥ y is true iff the number x+2 is no less than the number y
– x+2 ≥ y is true in a world where x = 7, y = 1
– x+2 ≥ y is false in a world where x = 0, y = 6

• Possible world – model
• m is a model of α – the sentence α is true in model m

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

17

Entailment

• Entailment means that one thing follows from another:
KB ╞ α

• Knowledge base KB entails sentence α if and only if α is
true in all worlds where KB is true

– If α true then KB must also be true

– E.g., the KB containing “the Giants won” and “the Reds won”
entails “Either the Giants won or the Reds won”

– E.g., x+y = 4 entails 4 = x+y
– Entailment is a relationship between sentences (i.e., syntax) that is

based on semantics

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

18

Models

• Logicians typically think in terms of models, which are formally structured
worlds with respect to which truth can be evaluated

• We say m is a model of a sentence α if α is true in m

• M(α) is the set of all models of α

• Then KB ╞ α iff M(KB) ⊆ M(α)
– E.g. KB = Giants won and Reds won
 α = Giants won

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

19

Entailment in the wumpus world

• Situation after detecting
nothing in [1,1], moving
right, breeze in [2,1]

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

20

Wumpus models

3 Boolean choices ⇒ 8 possible models
for the adjacent squares [1,2], [2,2] and [3,1] to contain pits

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

21

Wumpus models

• KB = wumpus-world rules + observations
• KB is false in any model in which [1,2] contains a

pit, because there is no breeze in [1,1]

Consider possible models for KB assuming only pits

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

22

Wumpus models

• Consider α1 = “[1,2] is safe” = “There is no pit in [1,2]”
• In every model KB is true α1 is also true
• KB ╞ α1, proved by model checking
• We can conclude that there is no pit in [1,2]

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

23

Wumpus models

• Consider α2 = “[2,2] is safe” = “There is no pit in [2,2]”
• In some models in which KB is true α2 is false
• KB ╞/ α2

• We cannot conclude that there is no pit in [2,2]

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

24

Inference
• KB ├i α = sentence α can be derived from KB by a procedure i (an inference algorithm)

• Soundness: i is sound if whenever KB ├i α, it is also true that KB╞ α
• An inference algorithm that derives only entailed sentences is sound or truth preserving

(model checking is a sound procedure)
• Completeness: i is complete if whenever KB╞ α, it is also true that KB ├i α
• An inference algorithm is complete if it can derive any sentence that is entailed

• Think set of all consequences of KB as a haystack and α as a needle. Entailment is like the
needle being in the haystack, and inference is like finding it

• An unsound inference procedure essentially makes things up as it goes along – it announces
the discovery of nonexistent needles

• For completeness, a systematic examination can always decide whether the needle is in the
haystack which is finite

• If KB is true in the real world then any sentence α derived from KB by a sound inference
procedure is also true in real world

– The conclusions of the reasoning process are guaranteed to be true in any world in which the
premises are true

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

25

Propositional logic: Syntax

• Propositional logic is the simplest logic – illustrates basic ideas

• Atomic sentences : consists of proposition symbols P1, P2

• Complex sentences : constructed from atomic sentences using logical
connectives

– If S is a sentence, ¬S is a sentence (negation)
– If S1 and S2 are sentences, S1 ∧ S2 is a sentence (conjunction)
– If S1 and S2 are sentences, S1 ∨ S2 is a sentence (disjunction)
– If S1 and S2 are sentences, S1 ⇒ S2 is a sentence (implication)
– If S1 and S2 are sentences, S1 ⇔ S2 is a sentence (biconditional)

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

26

Precedence
– Use parentheses to specify the precedence
– Otherwise the precedence from highest to lowest is: ¬ , ∧, ∨, ⇒ , ⇔
– A ⇒ Β ⇒ C is not allowed

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

27

Propositional logic: Semantics
Semantics defines the rules for determining the truth of a sentence with respect to a particular model
Each model specifies true/false for each proposition symbol

E.g. P1,2 P2,2 P3,1

 false true false

True is true in every model, False is false in every model
The truth value of every other proposition symbol must be specified directly in the model
For the complex sentences
Rules for evaluating truth with respect to a model m:

¬S is true iff S is false
S1 ∧ S2 is true iff S1 is true and S2 is true
S1 ∨ S2 is true iff S1is true or S2 is true
S1 ⇒ S2 is true iff S1 is false orS2 is true
 i.e., is false iff S1 is true and S2 is false
S1 ⇔ S2 is true iff S1⇒S2 is true andS2⇒S1 is true

Important shorthand
S1 ⇒ S2 ≡ ¬S1 ∨ S2

 S1 ⇔ S2 ≡ S1 ⇒ S2 ∧ S2 ⇒ S1

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

28

Truth tables for connectives

Simple recursive process evaluates an arbitrary sentence, e.g.,
¬P1,2 ∧ (P2,2 ∨ P3,1) = true ∧ (true ∨ false) = true ∧ true = true

Implication: if P is true then I am claming that Q is true, otherwise I am making no claim
The sentence is false, if P is true but Q is false

Biconditional: True whenever both P->Q and Q->P is true
(e.g. a square is breezy if and only if adjacent square has a pit: implication requires the
presence of pit if there is a breeze, biconditional also requires the absence of pit if there
is no breeze)

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

29

Wumpus world sentences

Let Pi,j be true if there is a pit in [i, j].
Let Bi,j be true if there is a breeze in [i, j].
Knowledge base includes:

R1: ¬ P1,1 No pit in [1,1]
R2: ¬B1,1 No breeze in [1.1]
R3: B2,1 Breeze in [2,1]

• "Pits cause breezes in adjacent squares"
R4: B1,1 ⇔ (P1,2 ∨ P2,1)
R5: B2,1 ⇔ (P1,1 ∨ P2,2 ∨ P3,1)

 KB = R1 ∧ R2 ∧ R3 ∧ R4 ∧ R5

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

30

Inference

• Decide whether KB╞ α
• First method: enumerate the models and check that α is true in every

model in which KB is true
• B1,1 B2,1, P1,1 , P1,2, P2,1, P3,1

• 7 symbols : 27 = 128 possible models

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

31

Truth tables for inference
R1: ¬ P1,1

R2: ¬B1,1

R3: B2,1

R4: B1,1 ⇔ (P1,2 ∨ P2,1)

R5: B2,1 ⇔(P1,1 ∨ P2,2 ∨ P3,1)

KB = R1 ∧ R2 ∧ R3 ∧ R4 ∧ R5

α1 = ¬ P1,2

α2 = P2,2

α1 is true in all models that KB is true

α2 is true only in two models that KB
is true, but false in the other one

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

32

Inference by enumeration

• Depth-first enumeration of all models is sound and complete

• For n symbols, time complexity is O(2n), space complexity is O(n)

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

33

Logical equivalence

• Two sentences are logically equivalent iff they are true in same models:
• α ≡ ß iff α╞ β and β╞ α

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

34

Validity and satisfiability
A sentence is valid if it is true in all models,

e.g., True, A ∨¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B

Valid sentences are tautologies
Every valid sentence is equivalent to True

Validity is connected to inference via the Deduction Theorem:
KB ╞ α if and only if (KB ⇒ α) is valid
Every valid implication sentence describes a legitimate inference

A sentence is satisfiable if it is true in some model
e.g., A∨ B, C

If a sentence is true in a model m, then we say m satisfies the sentence, or a model of the sentence

A sentence is unsatisfiable if it is true in no models
e.g., A∧¬A
α is valid iff ¬ α is unsatisfiable, α is satisfiable iff ¬ α is not valid

Satisfiability is connected to inference via the following:
KB ╞ α if and only if (KB ∧¬α) is unsatisfiable

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

35

Examples

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

36

Satisfiability

• Related to constraint satisfaction
• Given a sentence S, try to find an interpretation i

where S is true
• Analogous to finding an assignment of values to

variables such that the constraint hold
• Example problem: scheduling nurses in a hospital

– Propositional variables represent for example that
Nurse1 is working on Tuesday at 2

– Constraints on the schedule are represented using logical
expressions over the variables

• Brute force method: enumerate all interpretations
and check

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

37

Example Problem

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

38

Checking Interpretations

• Start by figuring out what set of interpretations
make our original sentences true.

• Then, if G is true in all those interpretations, it must
be OK to conclude it from the sentences we started
out with (our knowledge base).

• In a universe with only three variables, there are 8
possible interpretations in total.

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

39

Checking Interpretations

• Only one of these
interpretations makes all the
sentences in our knowledge
base true:

• S = true, H = true, G = true.

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

40

Checking Interpretations

• it's easy enough to check that G
is true in that interpretation, so it
seems like it must be reasonable
to draw the conclusion that the
lecture will be good.

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

41

Computing entailment

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

42

Entailment and Proof

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

43

Proof

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

44

Logical equivalence

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

45

Natural deduction

 α⇔β--------------------(α⇒β) ∧ (β⇒α)
(α⇒β) ∧ (β⇒α)-------------------- α⇔β

Biconditional Elimination

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

46

Example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

47

Example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

48

Example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

49

Example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

50

Example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

51

Example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

52

Example from Wumpus World

R1: ¬ P1,1

R2: ¬B1,1

R3: B2,1

R4: B1,1 ⇔ (P1,2 ∨ P2,1)

R5: B2,1 ⇔(P1,1 ∨ P2,2 ∨ P3,1)

KB = R1 ∧ R2 ∧ R3 ∧ R4 ∧ R5

Prove α1 = ¬ P1,2

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

53

Example from Wumpus World

R1: ¬ P1,1

R2: ¬B1,1

R3: B2,1

R4: B1,1 ⇔ (P1,2 ∨ P2,1)

R5: B2,1 ⇔(P1,1 ∨ P2,2 ∨ P3,1)

R6 : B1,1 ⇔ (B1,1 ⇒ (P1,2 ∨ P2,1)) ∧((P1,2 ∨ P2,1) ⇒ B1,1) Biconditional elimination

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

54

Example from Wumpus World

R1: ¬ P1,1

R2: ¬B1,1

R3: B2,1

R4: B1,1 ⇔ (P1,2 ∨ P2,1)

R5: B2,1 ⇔(P1,1 ∨ P2,2 ∨ P3,1)

R6 : B1,1 ⇔ (B1,1 ⇒ (P1,2 ∨ P2,1)) ∧((P1,2 ∨ P2,1) ⇒ B1,1) Biconditional elimination

R7 : ((P1,2 ∨ P2,1) ⇒ B1,1) And Elimination

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

55

Example from Wumpus World

R1: ¬ P1,1

R2: ¬B1,1

R3: B2,1

R4: B1,1 ⇔ (P1,2 ∨ P2,1)

R5: B2,1 ⇔(P1,1 ∨ P2,2 ∨ P3,1)

R6 : B1,1 ⇔ (B1,1 ⇒ (P1,2 ∨ P2,1)) ∧((P1,2 ∨ P2,1) ⇒ B1,1) Biconditional elimination

R7 : ((P1,2 ∨ P2,1) ⇒ B1,1) And Elimination

R8: (¬ B1,1 ⇒ ¬ (P1,2 ∨ P2,1)) Equivalence for contrapositives

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

56

Example from Wumpus World

R1: ¬ P1,1

R2: ¬B1,1

R3: B2,1

R4: B1,1 ⇔ (P1,2 ∨ P2,1)

R5: B2,1 ⇔(P1,1 ∨ P2,2 ∨ P3,1)

R6 : B1,1 ⇔ (B1,1 ⇒ (P1,2 ∨ P2,1)) ∧((P1,2 ∨ P2,1) ⇒ B1,1) Biconditional elimination

R7 : ((P1,2 ∨ P2,1) ⇒ B1,1) And Elimination

R8: (¬ B1,1 ⇒ ¬ (P1,2 ∨ P2,1)) Equivalence for contrapositives

R9: ¬ (P1,2 ∨ P2,1) Modus Ponens with R2 and R8

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

57

Example from Wumpus World

R1: ¬ P1,1

R2: ¬B1,1

R3: B2,1

R4: B1,1 ⇔ (P1,2 ∨ P2,1)

R5: B2,1 ⇔(P1,1 ∨ P2,2 ∨ P3,1)

R6 : B1,1 ⇔ (B1,1 ⇒ (P1,2 ∨ P2,1)) ∧((P1,2 ∨ P2,1) ⇒ B1,1) Biconditional elimination

R7 : ((P1,2 ∨ P2,1) ⇒ B1,1) And Elimination

R8: (¬ B1,1 ⇒ ¬ (P1,2 ∨ P2,1)) Equivalence for contrapositives

R9: ¬ (P1,2 ∨ P2,1) Modus Ponens with R2 and R8

R10: ¬ P1,2 ∧ ¬ P2,1 De Morgan’s Rule

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

58

Example from Wumpus World

R1: ¬ P1,1

R2: ¬B1,1

R3: B2,1

R4: B1,1 ⇔ (P1,2 ∨ P2,1)

R5: B2,1 ⇔(P1,1 ∨ P2,2 ∨ P3,1)

R6 : B1,1 ⇔ (B1,1 ⇒ (P1,2 ∨ P2,1)) ∧((P1,2 ∨ P2,1) ⇒ B1,1) Biconditional elimination

R7 : ((P1,2 ∨ P2,1) ⇒ B1,1) And Elimination

R8: (¬ B1,1 ⇒ ¬ (P1,2 ∨ P2,1)) Equivalence for contrapositives

R9: ¬ (P1,2 ∨ P2,1) Modus Ponens with R2 and R8

R10: ¬ P1,2 ∧ ¬ P2,1 De Morgan’s Rule

R11: ¬ P1,2 And Elimination

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

59

Monotonicity

• The set of entailed sentences can only increase as
information is added to the knowledge base

• If
• KB╞ α
• Then
• KB ∧ β╞ α

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

60

Proof systems

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

61

Resolution
R1: ¬ P1,1

R2: ¬B1,1

R3: B2,1

R4: B1,1 ⇔ (P1,2 ∨ P2,1)

R5: B2,1 ⇔ (P1,1 ∨ P2,2 ∨ P3,1)

….

R11: ¬B1,2

R12: B1,2 ⇔ (P1,1 ∨ P2,2 ∨ P1,3)

R13: ¬ P2,2

R14: ¬ P1,3

R15: (P1,1 ∨ P2,2 ∨ P3,1) biconditional elimination on R3, followed by a Modus Ponens with R5

R16: (P1,1 ∨ P3,1) Resolution with ¬ P2,2 in R13

If there is a pit in one of [1,1], [2,2] and [3,1] and it is not in [2,2] then it is in [1,1] or [3,1]

R17: P3,1 Resolve with ¬ P1,1 in R1

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

62

Resolution

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

63

Conjunctive Normal form

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

64

Converting to CNF

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

65

CNF Conversion Example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

66

Resolution

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

67

Example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

68

Example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

69

Example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

70

The power of false

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

71

Example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

72

Example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

73

Resolution

Conjunctive Normal Form (CNF)
 conjunction of disjunctions of literals

clauses
E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)

• Resolution inference rule (for CNF):
li ∨… ∨ lk, m1 ∨ … ∨ mn

li ∨ … ∨ li-1 ∨ li+1 ∨ … ∨ lk ∨ m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨ mn

where li and mj are complementary literals.
E.g., P1,3 ∨ P2,2, ¬P2,2

 P1,3

• Resolution is sound and complete
for propositional logic

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

74

Conversion to CNF

B1,1 ⇔ (P1,2 ∨ P2,1)

3. Eliminate ⇔, replacing α ⇔ β with (α ⇒ β)∧(β ⇒ α).
(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1)

2. Eliminate ⇒, replacing α ⇒ β with ¬α∨ β.
(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1)

3. Move ¬ inwards using de Morgan's rules and double-negation:
(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨ B1,1)

4. Apply distributivity law (∧ over ∨) and flatten:
(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1)

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

75

Resolution algorithm

• Proof by contradiction, i.e., show KB∧¬α unsatisfiable

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

76

Resolution example

• KB = (B1,1 ⇔ (P1,2∨ P2,1)) ∧¬ B1,1 α = ¬P1,2

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

77

Forward and backward chaining

• Horn Form (restricted)
KB = conjunction of Horn clauses

– Horn clause =
• proposition symbol; or
• (conjunction of symbols) ⇒ symbol

– E.g., C ∧ (B ⇒ A) ∧ (C ∧ D ⇒ B)
• Modus Ponens (for Horn Form): complete for Horn KBs

α1, … ,αn, α1 ∧ … ∧ αn ⇒ β
β

• Can be used with forward chaining or backward chaining.
• These algorithms are very natural and run in linear time

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

78

Forward chaining

• Idea: fire any rule whose premises are satisfied in the KB,
– add its conclusion to the KB, until query is found

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

79

Forward chaining algorithm

• Forward chaining is sound and complete for Horn KB

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

80

Forward chaining example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

81

Forward chaining example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

82

Forward chaining example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

83

Forward chaining example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

84

Forward chaining example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

85

Forward chaining example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

86

Forward chaining example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

87

Forward chaining example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

88

Proof of completeness

• FC derives every atomic sentence that is entailed by KB
1. FC reaches a fixed point where no new atomic sentences are

derived
2. Consider the final state as a model m, assigning true/false to

symbols
3. Every clause in the original KB is true in m

 a1 ∧ … ∧ ak ⇒ b

4. Hence m is a model of KB
5. If KB╞ q, q is true in every model of KB, including m

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

89

Backward chaining

Idea: work backwards from the query q:
to prove q by BC,

check if q is known already, or
prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal
1. has already been proved true, or
2. has already failed

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

90

Backward chaining example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

91

Backward chaining example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

92

Backward chaining example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

93

Backward chaining example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

94

Backward chaining example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

95

Backward chaining example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

96

Backward chaining example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

97

Backward chaining example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

98

Backward chaining example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

99

Backward chaining example

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

100

Forward vs. backward chaining

• FC is data-driven, automatic, unconscious processing,
– e.g., object recognition, routine decisions

• May do lots of work that is irrelevant to the goal

• BC is goal-driven, appropriate for problem-solving,
– e.g., Where are my keys? How do I get into a PhD program?

• Complexity of BC can be much less than linear in size of KB

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

101

Proof methods

• Proof methods divide into (roughly) two kinds:

– Application of inference rules
• Legitimate (sound) generation of new sentences from old
• Proof = a sequence of inference rule applications

Can use inference rules as operators in a standard search algorithm
• Typically require transformation of sentences into a normal form

– Model checking
• truth table enumeration (always exponential in n)
• improved backtracking, e.g., Davis--Putnam-Logemann-Loveland (DPLL)
• heuristic search in model space (sound but incomplete)

e.g., min-conflicts-like hill-climbing algorithms

CS461 Artificial Intelligence © Pinar Duygulu Spring 2008

102

Summary

• Logical agents apply inference to a knowledge base to derive new information
and make decisions

• Basic concepts of logic:
– syntax: formal structure of sentences
– semantics: truth of sentences wrt models
– entailment: necessary truth of one sentence given another
– inference: deriving sentences from other sentences
– soundness: derivations produce only entailed sentences
– completeness: derivations can produce all entailed sentences

• Wumpus world requires the ability to represent partial and negated
information, reason by cases, etc.

• Resolution is complete for propositional logic
Forward, backward chaining are linear-time, complete for Horn clauses

• Propositional logic lacks expressive power

