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What 1s light?

* Electromagnetic radiation (EMR) moving along rays in space

— R(A) is EMR, measured in units of power (watts)
* A is wavelength

<0

* Perceiving light
— How do we convert radiation into “color’?

— What part of the spectrum do we see?

Adapted from Seitz
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The visible light spectrum

* We “see” electromagnetic radiation in a range of wavelengths
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Adapted from Seitz
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Light spectrum

* The appearance of light depends on its power spectrum

— How much power (or energy) at each wavelength
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* Qur visual system converts a light spectrum into “color”

— This 1s a rather complex transformation

Adapted from Seitz
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The human visual system
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* Color perception
— Light hits the retina, which contains photosensitive cells
* rods and cones

— These cells convert the spectrum into a few discrete values

Adapted from Seitz
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Density of rods and cones
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* Rods and cones are non-uniformly distributed on the retina
— Rods responsible for intensity, cones responsible for color

— Fovea - Small region (1 or 2°) at the center of the visual field containing
the highest density of cones (and no rods).

— Less visual acuity in the periphery—many rods wired to the same neuron
Adapted from Seitz
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Color perception
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— Each 1s sensitive in a different region of the spectrum

* but regions overlap

* Short (S) corresponds to blue
* Medium (M) corresponds to green
* Long (L) corresponds to red
— Different sensitivities: we are more sensitive to green than red
* varies from person to person (and with age)
— Colorblindness—deficiency in at least one type of cone

Adapted from Seitz
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Color perception

Power

Wavelength

* Rods and cones act as filters on the spectrum

— To get the output of a filter, multiply its response curve by the spectrum, integrate
over all wavelengths

* Each cone yields one number

Adapted from Seitz
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Demonstrations of visual acuity
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*With one eye shut, at the right distance, all of these letters
Adapted from Seitz should appear equally legible (Glassner, 1.7).
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Demonstrations of visual acuity

10

*With left eye shut, look at the cross on the left. At the right
distance, the circle on the right should disappear (Glassner, 1.8).

Adapted from Seitz

CS554 Computer Vision © Pinar Duygulu



Brightness contrast and constancy

11

* The apparent brightness depends on the surrounding region

— brightness contrast: a constant colored region seem lighter or
darker depending on the surround:

— brightness constancy: a surface looks the same under widely

varying lighting conditions.
Adapted from Seitz
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http://www.sandlotscience.com/Contrast/CheckerBoard_illusion.htm

Light response 1s nonlinear

12

* Our visual system has a large dynamic range
— We can resolve both light and dark things at the same
time
— One mechanism for achieving this 1s that we sense light
intensity on a logarithmic scale

* an exponential intensity ramp will be seen as a linear ramp

— Another mechanism 1s adaptation

* rods and cones adapt to be more sensitive in low light, less
sensitive in bright light.

Adapted from Seitz

CS554 Computer Vision © Pinar Duygulu



Light response 1s nonlinear

Background Luminance (candelas
per square meter)
Horizon sky
Moonless overcast night 0.00003
Moonless clear night 0.0003
Moonlit overcast night 0.003
Muoonlit clear night 0.03
Deep twilight l 0.3
Twilight : 3
Very dark day 30
Overcast day 300
Clear day 3,000
Day with sunlit clouds 30,000
Daylight fog
Dull 300-1,000
Typical 1,000-3,000
Bright 3,000-16,000
Ground
Overcast day 30-100
Sunny day 300
Snow in full sunlight 16,000

Adapted from Seitz FIGURE 1.13
Luminance of everyday backgrounds. Sowrce: Data from Rea, ed., Lighting Handbook 1984
CS554 Computer Vision Reference and Application, fig. 3-44, p. 3-24.




Adaptation phenomena

14

* The response of your color
system depends both on spatial
contrast and what it has seen
before (adaptation)

* This seems to be a result of
coding constraints --- receptors
appear to have an operating
point that varies slowly over
time, and to signal some sort of
offset. One form of adaptation
involves changing this
operating point.

Adapted from David Forsyth, UC Berkeley

* Common example: walk
inside from a bright day;
everything looks dark for
a bit, then takes 1ts
conventional brightness.
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Adapted from David Forsyth, UC Berkeley

CS554 Computer Vision © Pinar Duygulu



16

Adapted from David Forsyth, UC Berkeley
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R

Adapted from David Forsyth, UC Berkeley
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you should see an image of opponent colors

(blue->yellow, red->green, etc.)

This 1s a color afterimage.

Tired photoreceptors
* Send out negative response after a strong stimulus

Adapted from David Forsyth, UC Berkeley
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Are the colors on top
and bottom the same?
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Adapted from David Forsyth, UC Berkeley
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Adapted from David Forsyth, UC Berkeley
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Adapted from David Forsyth, UC Berkeley
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Adapted from David Forsyth, UC Berkeley
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narrower ones should look greener

we have relatively few S cones in our retina. In turn,
this means that S cones alias signals that have high
spatial frequency. The most obvious signs of this
are that narrow blue stripes look green (and blue text
i1s notoriously hard to read).
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KXXXXX

GREEN GREEN
AAX XXX BLUE BLUE
XXXXXX Y ELLOW YELLOW
XXXXXX PURPLE PURPLE
KAXXXAX ORANGE ORANGE
19,9, 9,9,0, RED RED
XXXXXX WHITE WHITE

o XXXXXX 0 ORANGE — ORANGE

XXX XXX BLUE BLUE
XXX XXX RED RED
AX XX XX GREEN GREEN
XXXXXX WHITE WHITE
XXXXXX Y ELLOW YELLOW
XXXXXX PURPLE PURPLE
XXX XXX RED RED
1,9, 9,9,9,9, GREEN GREEN
XXXXXX BLUE BLUE
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your ability to name the colors is being interfered with by some
input from reading. There is no reason to describe what; this is
a clear demonstration that color naming is affected by more than

just physics.

Adapted from David Forsyth, UC Berkeley
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Color

28

4.1 NEWTONM'S SUMMARY DRAWING of his experiments with light. Using a
point source of light and a prism, Newton separated sunlight into its fundamental
components. By reconverging the rays, he also showed that the decomposition is
reversible.

From Foundations of Vision, by Brian Wandell, Sinauer Assoc., 19935

Adapted from Freeman and Darrell, MIT
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Spectrophotometer
| ' Color
(A) Movable slit (B) Wavelength (viewed in
(nm) isolation)
700 Red
610 Orange
. 280 Yellow
Sensor 540 Green
480 Blue

400 Violet

42 A SPECTRORADIOMETER is used to measure the spectral power distribution of
light. (A) A schematic design of a spectroradiometer includes a means for separating the
input light into its different wavelengths and a detector for measuring the energy at each
of the separate wavelengths. (B) The color names associated with the appearance of

- lights at a variety of wavelengths are shown. After Wyszecki and Stiles, 1982.

Foundations ol Vision, by Brian Wandell. Sinauer Assoc.. 1995
Adapted from Freeman and Darrell, MIT
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Spectral Colors

30

http://hyperphysics.phy-astr.gsu.edu/hbase/vision/specol.html#c2

Adapted from Freeman and Darrell, MIT
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Color of sources

31

* Building a light source usually involves heating something
until 1t glows.

* Construct a black body — a body that reflects no light

— Easiest way to do this is to build a hollow metal object with a tiny
hole in it, and look at the hole.

* The spectral power distribution of light leaving this object
1s a simple function of temperature

* Atrelatively low temperatures black bodies are red,
passing through orange to yellow and then white

Adapted from David Forsyth, UC Berkeley
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Color of sources

32

The most important natural light source is the sun

* Light from the sun is scattered by the air
— Sky is also an important light source

* A patch of surface outdoors is illuminated by
— Sun light
— Skylight

* The presence of snow or clouds 1s also important

* The color of daylight varies by time of the day and by time of the year
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Color of sources

33

* Light of a long wavelength can travel much farther before being scattered
than light of a short wavelength

* 1.e. when the sun is high on the sky blue light is scattered out of the ray
from the sun to the earth — meaning that sun looks yellow — and can scatter
from the sky to the eye — meaning that the sky is blue

* There are standard models of the spectral radiance of the sky at different
times of day
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Color of sources

e Artificial illumination

— Incandescent light - metal filament that 1s heated to a high temperature
(reddish)

— Fluorescent light — high speed electrons that strike gas within the bulb, releasing
ultraviolet radiation (bluish)
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2.5 T

15

cloudless sky, bright snow

slightly cloudy, sun behind a cloud

cloudy, sun visible

cloudless sky

cloudy, gray sky

05
cloudless sky, sunset
0 cloudlgss sky, just before sunset
400 450 500

Violet Indigo Blue  Green

Adapted from David Forsyth, UC Berkeley

550

Yellow

35

_Measurements of
relative spectral power
of sunlight

Relative spectral power
1s plotted against
wavelength in nm. The
visible range is about
400nm to 700nm. The
color names on the
horizontal axis give the
color names used for
monochromatic light of
the corresponding
wavelength --- the
“colors of the rainbow™.
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Adapted from David Forsyth, UC Berkeley

Yellow
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Orange
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36

___Relative spectral power

of two standard
1lluminant models

D65 models sunlight

illuminant A models
incandescent lamps.
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Color of surfaces

37

* Itis aresult of absorption at different wavelengths, refraction, diffraction and
scattering
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Adapted from David Forsyth, UC Berkeley

Spectral reflectances for
several different leaves,
with color names
attached. Notice that
different colours
typically have different
spectral albedo, but that
different spectral
albedoes may result in
the same perceived
color (compare the two
whites). Spectral
albedoes are typically
quite smooth functions.
Measurements by
E.Koivisto.

CS554 Computer Vision © Pinar Duygulu



Causes of color

39

The sensation of color is caused
by the brain.

Some ways to get this sensation
include:

— Pressure on the eyelids

— Dreaming, hallucinations, etc.
Main way to get it 1s the
response of the visual system to

the presence/absence of light at
various wavelengths.

Adapted from David Forsyth, UC Berkeley

Light could be produced in
different amounts at different
wavelengths (compare the sun
and a fluorescent light bulb).

Light could be differentially
reflected (e.g. some pigments).

It could be differentially
refracted - (e.g. Newton’s
prism)

Wavelength dependent specular
reflection - e.g. shiny copper
penny (actually most metals).

Flourescence - light at invisible
wavelengths 1s absorbed and
reemitted at visible
wavelengths.
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Why does a visual system need color?

40

To tell what food is edible.
« To distinguish material changes from shading
changes.

» To group parts of one object together in a scene.

g

To find people’s skin.

* Check whether someone’s appearance looks
normal/healthy.

L

« To compress images

—
 _——
i —
—
-
—
=
—
-

s |02 _
' ’ ’v---' B Color 1s intuitively an important cue for
bty i hobbyline com/gr/pllpllS019 jpe understanding images. In particular, objects that
look similar in black/white images can be
discriminated more easily in color images.

Adapted from Freeman and Darrell, MIT
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Color matching experiment

(A) Primary (B)
Q Surround field
Primary
lights
Bipartite
white
screen
Subject
Test light Surround Test light

field

4.1_0 THE COLOR-MATCHING EXPERIMENT. The observer views a bipartite field and
adjusts the intensities of the three primary lights to match the appearance of the test
light. (A) A top view of the experimental apparatus. (B) The appearance of the stimuli to
the observer. After Judd and Wyszecki, 1975.

Foundations of Vision, by Brian Wandell, Sinauer Assoc.. 1995

Adapted from Freeman and Darrell, MIT
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Color matching experiment

42

Adapted from Freeman and Darrell, MIT
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Color matching experiment

43

Adapted from Freeman and Darrell, MIT
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Color matching experiment

44

Adapted from Freeman and Darrell, MIT
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Color matching experiment

45

Adapted from Freeman and Darrell, MIT

The primary color
amounts needed
for a match

l
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Color matching experiment

46

Adapted from Freeman and Darrell, MIT
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Color matching experiment

47

Adapted from Freeman and Darrell, MIT
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Color matching experiment

48

Adapted from Freeman and Darrell, MIT
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Color matching experiment

The primary color
We say a amounts nceded
negative for a match:
amount ol p,

was needed to
make the match.
because we
added it to the
test color’s side.

Adapted from Freeman and Darrell, MIT
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Color matching experiment

50

i {A) Test light Primary lights
matches + T :.:: t matches e

(B) %

/f matches + L e t’ matches ¢’
(€

V// ]

% matches + + t+t matchese+e’

%

4.12 THE COLOR-MATCHING EXPERIMENT SATISFIES THE PRINCIPLE OF
SUPERPQSITIGN. In parts (A) and (B), test lights are matched by a mixture of three
prlmar_-_t,r lights. In part (C) the sum of the test lights is matched by the additive mixture of
the primaries, demonstrating superposition.

Foundations ol Vision, by Brian Wandell, Sinauver Assoc.. 1995

Adapted from Freeman and Darrell, MIT
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Color matching experiments

51

* Many colors can be represented as a mixture of A, B, C

* write
M=aA+bB+cC

where the = sign should be read as “matches”
* This 1s additive matching.

* @ives a color description system - two people who agree
on A, B, C need only supply (a, b, ¢) to describe a color.

Adapted from David Forsyth, UC Berkeley
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Subtractive matching

52

* Some colors can’t be matched like this:
instead, must write

M+a A=bB+cC
* This 1s subtractive matching.
* Interpret this as (-a, b, ¢)

Adapted from David Forsyth, UC Berkeley
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Trichromacy

53

By experience, it 1s possible to match almost all colors,
using only three primary sources - the principle of
trichromacy

The primaries must be independent — no mixture of two
of the primaries may match a third

Adapted from David Forsyth, UC Berkeley
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The principle of trichromacy

54

* Experimental facts:

— Three primaries will work for most people if we allow
subtractive matching
* Exceptional people can match with two or only one primary.
* This could be caused by a variety of deficiencies.
— Most people make the same matches.

* There are some anomalous trichromats, who use three
primaries but make different combinations to match.

Adapted from David Forsyth, UC Berkeley
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Additive and subtractive color matching

MIXTURES OF LIGHT
(Additive primaries)

YELLOW

WHITE

MIXTURES OF PIGMENTS

(Subtractive primaries)

YELLOW

PRIMARY AND SECONDARY COLORS
OF LIGHT AND PIGMENT

a
§

FIGURE 6.4 Primary and secondary colors of light and pigments. (Courtesy of the Gen-

Adapted from Alyosha Efros, CMU eral Electric Co., Lamp Business Division.)
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Color receptors and color deficiency

56

Trichromacy is justified - in
color normal people, there are
three types of color receptor,
called cones, which vary in
their sensitivity to light at
different wavelengths (shown
by molecular biologists).

Deficiency can be caused by
CNS, by optical problems in the
eye, or by absent receptor types

— Usually a result of absent
genes.

Adapted from David Forsyth, UC Berkeley

Some people have fewer than
three types of receptor; most
common deficiency is red-green
color blindness in men.

Color deficiency is less
common 1n women; red and
green receptor genes are carried
on the X chromosome, and
these are the ones that typically
go wrong. Women need two
bad X chromosomes to have a

deficiency, and this is less
likely.
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Representing Color

57

Since we can define colors using almost any
set of primary colors, let’s agree on a set of
primaries and color matching functions for
the world to use...

Adapted from Freeman and Darrell, MIT
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Representing Color - Why specify color numerically?

58

* Accurate color reproduction is
commercially valuable
— Many products are identified
by color (““golden” arches;
* Few color names are widely
recognized by English speakers

— About 10; other languages
have fewer/more, but not many
more.

— It’s common to disagree on
appropriate color names.

Adapted from David Forsyth, UC Berkeley

Color reproduction problems
increased by prevalence of
digital imaging - eg. digital
libraries of art.

— How do we ensure that
everyone sees the same color?
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Color standards are important in industry
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58N

Fruit and ‘Ueg etable Frui :ams
AMS USDA SEARCH

Processed Produdts Standards and Quality Certification

Wisual Aids and Inspection Aids Approved For Use in Ascertaining
Grades of Processed Fruits and Vegetables (Fhoto)

Frozen Red Tarl Cherries
Orange Juice (Processed)
Canned Tomatoes

Frozen French Fried Potatoes

a Mew Page 1 - Microsoft Internet Explorer

File Edit ‘iew Fawvorites Tools  Help

d=Fack - = - ) ﬁ-| Disearch [%]Favorites  FFMeda 3| Eh- S Y
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Tomato Products

Maple Svrup

Honey

Froren Lima Beans
Clanned Mushrooms
Peanut Butter

Canned Pimientos

Frozen Peas

Canned Clingstone Peaches
Headspace Gauge

Canned Applesauce
Canned Freestone Peaches
Canned Ripe Olives

Return to: Procezzed Productz Bram

Adapted from Freeman and Darrell, MIT
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Color standards are important in industry

UNITED STATES DEFARTMENT OF AGRICULTURE

COLOR STANDARDS
for

FROZEN
FRENCH FRIED POTATOES

ey
GCE N

Adapted from Freeman and Darrell, MIT
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Linear color spaces
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* A choice of primaries
yields a linear color space
--- the coordinates of a
color are given by the
weights of the primaries
used to match it.

* Choice of primaries 1s
equivalent to choice of
color space.

Adapted from David Forsyth, UC Berkeley
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RGB Color space

62

FIGURE 6.8 RGB 24-bit color cube.

Adapted from Alyosha Efros, CMU
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| Color matching functions have
negative parts -> some colors
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subtractively.
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Adapted from David Forsyth, UC Berkeley
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Adapted from David Forsyth, UC Berkeley

750

800

850

64

CIE XYZ: Color
matching functions are
positive everywhere, but
primaries are imaginary.
Usually draw x, y, where
X=X/(X+Y+Z)
y=Y/(X+Y+Z)

CS554 Computer Vision © Pinar Duygulu
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0.8

the spectrallocus o A qualitative rendering of the CIE
\ (x,y) space. The blobby region
represents visible colors. There are
sets of (X, y) coordinates that don’t
represent real colors, because the
primaries are not real lights (so that
the color matching functions could
be positive everywhere).

Green

0.6

Yellow

\

Saturation increases as
one moves out radially
from white

Orange

y axis

0.47

White

0.2

hue is a "pure" colour, 1.e. one with no black or white 1n it.

Adapted from David Forsyth, UC Berkeley
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Non-linear colour spaces

* HSV: Hue, Saturation, Value are non-linear functions of
XYZ.

— because hue relations are naturally expressed in a circle

* Uniform: equal (small!) steps give the same perceived
color changes.

* Munsell: describes surfaces, rather than lights - less
relevant for graphics. Surfaces must be viewed under
fixed comparison light

Adapted from David Forsyth, UC Berkeley
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HSV hexcone

68

A
G
Green
Cyan Yellow
Blue
/ {A
B R
Magenta

Adapted from David Forsyth, UC Berkeley

Value

Green (120°)

Blue (240°)

Red (0°)

Saturation
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Uniform color spaces

69

* McAdam ellipses (next slide) demonstrate that
differences in x,y are a poor guide to differences
in color

* Construct color spaces so that differences in
coordinates are a good guide to differences in
color.

Adapted from David Forsyth, UC Berkeley
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Variations in color matches on a CIE x, y space. At the center of the ellipsehis the color of a
test light; the size of the ellipse represents the scatter of lights that the human observers
tested would match to the test color; the boundary shows where the just noticeable difference
is. The ellipses on the left have been magnified 10x for clarity; on the right they are plotted
to scale. The ellipses are known as MacAdam ellipses after their inventor. The ellipses at the
top are larger than those at the bottom of the figure, and that they rotate as they move up.
This means that the magnitude of the difference in x, y coordinates is a poor guide to the
difference in color.

70
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CIE u’v’ which is a
projective transform
of x, y. We transform
X,y so that ellipses are
most like one another.
Figure shows the
transformed ellipses.

Adapted from David Forsyth, UC Berkeley
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Color Space Transformations

72

* Why
— To print (RGB = CMYK or Greyscale)
— To compress images (RGB =2 YUV)

* Color information (U,V) can be compressed 4 times without
significant degradation in perceptual quality)

— To compare images (RGB - CIELAB)

* CIELAB space is more perceptually uniform
* Euclidean distance in LAB space hence meaningful

* e.g. Photoshop operations

CS554 Computer Vision © Pinar Duygulu



Color Channels
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Cyan Magenta Yellow Black

Hue Saturation Intensity
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Color Constancy
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If you observe an object, say a red object, on a bright sunny day and later on a
cloudy day, you would not perceive any difference in the color, the object still
appears red. However, looking at the spectrum of natural ambient lights under
different conditions, we see that the illuminant color is very different depending
on the conditions. This implies that the cones in the eye must have measured
very different “observed color”. In fact, if we measure the spectral distribution of
the reflected light under different conditions, it clearly varies a lot, yet the human
visual system seems to report a constant color, the surface color.

Again, the perceived color is unaffected by the illuminant and is the surface color.

The basic phenomenon is that the visual system normalizes for the color of the
illuminant.

Adapted from Martial Hebert, CMU
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Color Constancy
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Adapted from Martial Hebert, CMU
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Color Constancy

Reading: 1,.3..3

!

\

“red”

“hilue”

\

/ Reading: 1..3,.3
White light

Colored light

Land’s experiments

The color constancy phenomenon was confirm by Edwin Land’s experiments in which
subjects are presented with flat patterns of colored rectangles under different lights. In all
experiments, subjects would name the correct color irrespective of the illuminant color. For
example, a red square illuminated with white light would elicit the correct response “red”, but
a blue square illuminated with colored light would also get the correct answer “blue”, even
though the actual reflected light is the same in both cases. In that case, the human visual
system seems to be able to distinguish between two colors even though the light radiating to

the eye has the same spectrum!
Adapted from Martial Hebert, CMU
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same set of tiles,
but they’ve been
rearranged, though
the four grey tiles
have been fixed.

Notice how they
now appear to have
the same hue.

Adapted from David Forsyth, UC Berkeley
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just rearranging four
of the tiles makes the
grey tiles look as
though they have the
same hue and
increases the range of
apparent colors what
1s next to a tile has a
strong effect on its
perceived color.




