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Convert a 2D image into a set of curves
» Extracts salient features of the scene
* More compact than pixels
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Edge Detection
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Edge Detection

* Edge : points in the image
where brightness change

* Sharp changes in the image
brightness occur

— Object boundaries

* A light object may lie on a dark
background or a dark object may
lie on a light background

— Reflectance changes

* May have quite different
characteristics — zebras have
stripes, and leopards have spots

— (Cast shadows

— Sharp changes in surface
orientation

surface normal cEconbinusy

depth discandmuny

surfacs color UECl:ﬂllﬂur:u'

ilusminakon deconhnuty
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Where are the edges?

It is hard to tell where the edges are
It requires high level information
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Why important?

 Information reduction

— replace image by a cartoon in which objects and surface
markings are outlined

— these are the most informative parts of the image
* Biological plausibility

— 1nitial stages of mammalian vision systems involve
detection of edges and local features

adapted from Larry Davis, University of Maryland
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What 1s an edge?

* Find the peak
— Should be a local maximum
— Should be sufficiently high

adapted from Martial Hebert, CMU
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What 1s an edge?

Edge pixels are at local maxima of gradient magnitude

Gradient direction 1s always perpendicular to edge direction

Vil = () + (%)° 6= atan2(Z,90)

adapted from Martial Hebert, CMU
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What 1s an edge?

» An ideal edge 1s a step function

I{2c)

I'(3)

adapted from Larry Davis, University of Maryland
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General Strategy
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* Determine 1image gradient

* Mask points where gradient 1s particularly large
with respect to neighbors (ideally curves of such
points)
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What 1s Gradient?

11

No Change

adapted from Michael Black, Brown University

Jacobs
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What 1s Gradient?
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Change

adapted from Michael Black, Brown University

No Change

CS554 Computer Vision © Pinar Duygulu



What 1s Gradient?
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Gradient direction is
perpendicular to edge. Small Change

Gradient Magnitude
measures edge strength.

Large Change

Jacobs

adapted from Michael Black, Brown University
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2D edge detection
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Take a derivative

— Compute the magnitude of the gradient:

VI=(1,1))= —,— |is the Gradient

ox Oy

V|- T

O(x,y)=arctan(/ (x, y),[ (x,1))

adapted from Michael Black, Brown University
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Finite Differences
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Partial Derivatives

—I(x,y)=1 ~I®D,, -
Ox Oy

* Often approximated with simple filters:

1‘—1
D =—|-1
Y3

-1

adapted from Michael Black, Brown University
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Finite differences

[(x,y)=1,~1®D,
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Finite Differences

'

adapted from David Forsyth, UC Berkeley
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Finite Differences responding to noise
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 Jssue: noise

— smooth before differentiation

adapted from David Forsyth, UC Berkeley
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Smoothing and differentiation

Smooth with a Gaussian

Why Gaussian?
-1f we convolve a Gaussian with a Gaussian the result 1s a Gaussian
G(c1)**G(02) > G(sqrt(cl*c1+ 62*c2))
-efficient -> for o=1 k should be 5, for 6=10 k should be 50
-convolving any function with itself repeatedly eventually yields a
Gaussian
-Gaussian 1s separable

two convolutions to smooth, then differentiate?

— actually, no - we can use a derivative of Gaussian filter

* because differentiation 1s convolution, and convolution 1s
associative
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Derivatives and Smoothing
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D ®GR®I)=(D.®G)®I
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adapted from Michael Black, Brown University
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Derivatives and Smoothing
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In 2D

D.®G®N=(D. ®G)®I

adapted from Michael Black, Brown University
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First Derivative of Gaussian

adapted from Martial Hebert, CMU
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First Derivative of Gaussian
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Applying the first derivative of Gaussian

adapted from Martial Hebert, CMU
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Second derivative
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*Another way
to detect an
extremal first
derivative 1s
to look for a
zero second
derivative
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Zero-crossings of 2nd derivative

(Laplacian)
7 |

adapted from Martial Hebert, CMU
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Step edge
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Recall: the zero-crossings of the second derivative tell us
the location of edges.

adapted from Michael Black, Brown University
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Second derivative
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70 = lim L ey

=0

=J(x+2)=2f(x+1)+ f(x)

Mask?

adapted from Michael Black, Brown University
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Sobel Operator
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Laplacian of Gaussian (LOG)
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* Bad idea to apply a Laplacian without smoothing
— smooth with Gaussian, apply Laplacian
— this is the same as filtering with a Laplacian of Gaussian filter
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Just another linear filter.

VA (5, )@ G(x,)) =V G(x,y)® f(x, )
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Laplacian of Gaussian (LOG)

adapted from Martial Hebert, CMU
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Filters
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Approximating the Laplacian
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We can approximate Laplacian of Gaussian by

 Difference of Gaussians at different

scales.
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adapted from Michael Black, Brown University
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Laplacian of Gaussian (LOG)
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At the corners where three or more edges meet, contours behave strangely

adapted from David Forsyth, UC Berkeley
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Gradient based algorithms
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| pixel 3 pixels 7 pixels

The scale of the smoothing filter atfects derivative estimates. and also
the semantics of the edges recovered.

Note: strong edges persist across scales.

adapted from David Forsyth, UC Berkeley
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Gradient based algorithms
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There are three major issues:
I') The gradient magnitude at different scales is difterent; which should
we choose?
2) The gradient magnitude is large along a thick trail; how
do we identity the significant points?
3) How do we link the relevant points up into curves?

adapted from David Forsyth, UC Berkeley

CS554 Computer Vision © Pinar Duygulu



Gradient based edge detection
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Gradient magnitude can be large along a thick trail in an image of edge points
We need to obtain most distinctive points on this trail

Look for the points where gradient magnitude is a maximum along the direction perpendicular to the edge

Algorithm :
Form an estimate of the image gradient
Obtain the gradient magnitude from this estimate
Identify image points where
the value of the gradient magnitude is maximal
in the direction perpendicular to the edge
and also large
as edge points
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Gradient based edge detection

We wish to mark points along the curve where the magnitude is biggest.

We can do this by looking for a maximum along a slice normal to the curve
(non-maximum suppression). These points should form a curve. There are
then two algorithmic issues: at which point 1s the maximum, and where 1s the
next one?

adapted from David Forsyth, UC Berkeley
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Non-Maximum Suppression Algorithm

While there are points with high gradient
that have not been visited

Find a start point that is a local maximum in the
direction perpendicular to Tthe gradient
erasing points that have been checked
while possible, expand a chain through
the current point by:
1) predicting a set of next points, using

the direction perpendicular te the gradient

2) finding which (if any) is a local maximum
in the gradient direction

3) testing if the gradient magnitude at the
maximum is sufficiently large

4) leaving a record that the point and
neighbours have been visited

record the next point, which becomes the current point
end

end
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Non-Maximum Suppression Algorithm
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A4 4L

VI

Gradient magnitude at center pixel
1s lower than the gradient magnitude

of a neighbor in the direction of the gradient
> Discard center pixel (set magnitude to 0)

adapted from Martial Hebert, CMU

VI

Gradient magnitude at center pixel
1s greater than gradient magnitude

of all the neighbors in the direction
of the gradient

= Keep center pixel unchanged
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Non-Maximum Suppression
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adapted from David Forsyth, UC Berkeley

At q, we have a
maximum if the
value 1s larger than
those at both p and
at r. Interpolate to
get these values.
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Non-Maxima Suppression
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(Gradient

adapted from David Forsyth, UC Berkeley

Predicting
the next
edge point

Assume the marked point
1s an edge point. Then we
construct the tangent to
the edge curve (which 1s
normal to the gradient at
that point) and use this to
predict the next points
(here either r or s).
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Thresholding

Different thresholds
applied to gradient
magnitude

adapted from Martial Hebert, CMU

CS554 Computer Vision © Pinar Duygulu



Example

42

adapted from David Forsyth, UC Berkeley
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Example
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adapted from David Forsyth, UC Berkeley
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Example
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adapted from David Forsyth, UC Berkeley
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Example
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adapted from David Forsyth, UC Berkeley
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Hysteresis Thresholding
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*Jdea : use a high threshold to start edge curves and a low threshold to
continue them

*Start with a high threshold (strong edge)
*Apply another threshold which 1s lower than the higher one

*Look for the other edges which are higher than the lower
threshold and connected to the strong edges

*Add them to the edge list

adapted from Martial Hebert, CMU
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Hysteresis Thresholding
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= 4
Weak pixels but connected by 11 _ _
Weak pixels but isolated
Very strong edge response. Weaker response but it is Contine
Let's start here connected to a confirmed

edge point. Let’s keep it.

MNote: Darker squares illustrate stronger edge response (larger M)

adapted from Martial Hebert, CMU

CS554 Computer Vision © Pinar Duygulu



Complete Algorithm
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1. Compute x and gy derivatives o image

Ih =GE=1 Iy=Ga+1

2. Compute magnitude of gradient at every
pixel

N
M(z,y) = |VI| = IZ + 12

3. Eliminate those pixels that are not local
maxima of the magnitude in the direction
of the gradient

4. Hysteresis Thresholding

e Select the pixels such that M = T (high
threshold)

e Collect the pixels such that M = T; (low
threshold) that are neighbors of already
collected edge points

adapted from Martial Hebert, CMU
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Example
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[nput image

adapted from Martial Hebert, CMU
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Thresholding
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Different thresholds
Applied to gradient value

adapted from Martial Hebert, CMU
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Non-local Maxima Suppression
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Two threshold applied to gradient magnitude

adapted from Martial Hebert, CMU
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Hysteresis Thresholding

T=15

Hysteresis
T,=15T,=5

Hysteresis
thresholding

adapted from Martial Hebert, CMU
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LOG Operator
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Zero-crossings of
LOG operator

- Do not|correspond
only to edﬁe points

adapted from Martial Hebert, CMU
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LOG Operator
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adapted from Martial Hebert, CMU

Combination zero-crossings
- land gradient
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Effect of sigma — Detection vs. Localization
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Small sigma Large sigma

adapted from Martial Hebert, CMU

CS554 Computer Vision © Pinar Duygulu



Effect of sigma
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adapted from Martial Hebert, CMU
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Small & = Poor detection (low SNR)
Good localization
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Canny’s Edge detection
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Several criteria can be chosen to characterize the performance of an edge detector
Good detection, 1.e. robustness to noise

Good localization
Uniqueness to response

Canny takes two factors into account in designing the edge detector

A model of the kind of edges to be detected
A quantitative definition of the performance this edge detector is supposed to have

adapted from Martial Hebert, CMU
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Canny’s Edge detection
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* Given a tilter £ detine the two objective functions:
AU large 1 fproduces good localization
Zifi large if fproduces good detection (high SNR)
*  Problem: Find a family of filters f that maximizes the compromise criterion
ANZ(S)
under the constraint that a single peak is generated by a step edge

«  Solution: Unique solution, a close approximation 1s the Gaussian derivative filter!

Canny Dervative of Gaussian

adapted from Martial Hebert, CMU

CS554 Computer Vision © Pinar Duygulu



An edge 1s not a line
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How can we detect lines ?

adapted from Steven Seitz, University of Washington
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Hough Transform

g = mox + by
—

I e

m, m
image space Hough space

Connection between image (x,y) and Hough (m,b) spaces
* Aline in the image corresponds to a point in Hough space

+ To go from image space to Hough space:
— given a set of points (x,y), find all (m,b) such thaty =mx +b

adapted from Steven Seitz, University of Washington

CS554 Computer Vision © Pinar Duygulu



61

Hough Transform

y.li b [
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image space Hough space

Connection between image (x,y) and Hough (m,b) spaces
* Aline in the image corresponds to a point in Hough space
+ To go from image space to Hough space:
— given a set of points (x.y), find all (m b) such thaty =mx + b
+ What does a point (X, Yo) in the image space map to?

— A the solutions of b = -x;m + y,
— this is a line in Hough space

adapted from Steven Seitz, University of Washington
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Hough Transform
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Typically use a different parameterization
d = reost + ysind
+ dis the perpendicular distance from the line to the origin
+ 0 is the angle this perpendicular makes with the x axis
+ Why?
Basic Hough transform algorithm
1. Initialize H[d, 0]=0
2. for each edge point I[x,y] in the image
for =0to 180
d = xeosl 4= ysinf
H[d, 0] += 1
3. Find the value(s) of (d, 0) where H[d, 0] is maximum

4. The detected line in the image is given by « = reostl + ysind

adapted from Steven Seitz, University of Washington
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