
CS554 Computer Vision © Pinar Duygulu

1

Edge Detection

CS 554 – Computer Vision
Pinar Duygulu

Bilkent University



CS554 Computer Vision © Pinar Duygulu

2

Edge Detection



CS554 Computer Vision © Pinar Duygulu

3

Edge Detection



CS554 Computer Vision © Pinar Duygulu

4

Edge Detection
• Edge : points in the image 

where brightness change

• Sharp changes in the image 
brightness occur
– Object boundaries 

• A light object may lie on a dark 
background or a dark object may 
lie on a light background

– Reflectance changes
• May have quite different 

characteristics – zebras have 
stripes, and leopards have spots

– Cast shadows
– Sharp changes in surface 

orientation
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Where are the edges?

It is hard to tell where the edges are 
It requires high level information



CS554 Computer Vision © Pinar Duygulu

6

Why important?

• Information reduction
– replace image by a cartoon in which objects and surface 

markings are outlined
– these are the most informative parts of the image

• Biological plausibility
– initial stages of mammalian vision systems involve 

detection of edges and local features

adapted from Larry Davis, University of Maryland
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What is an edge?

adapted from Martial Hebert, CMU

• Find the peak
– Should be a local maximum
– Should be sufficiently high
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What is an edge?

adapted from Martial Hebert, CMU
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What is an edge?

adapted from Larry Davis, University of Maryland
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General Strategy

• Determine image gradient

• Mask points where gradient is particularly large 
with respect to neighbors (ideally curves of such 
points)
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What is Gradient?

adapted from Michael Black, Brown University
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What is Gradient?

adapted from Michael Black, Brown University
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What is Gradient?

adapted from Michael Black, Brown University
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2D edge detection

adapted from Michael Black, Brown University
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Finite Differences

adapted from Michael Black, Brown University

Partial Derivatives
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Finite Differences

adapted from David Forsyth, UC Berkeley
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Finite Differences responding to noise

adapted from David Forsyth, UC Berkeley

• Issue:  noise
– smooth before differentiation 
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Smoothing and differentiation

two convolutions to smooth, then differentiate?
– actually, no - we can use a derivative of Gaussian filter

• because differentiation is convolution, and convolution is 
associative

Smooth with a Gaussian
Why Gaussian?

-if we convolve a Gaussian with a Gaussian the result is a Gaussian
G(σ1)**G(σ2) -> G(sqrt(σ1*σ1+ σ2*σ2))
-efficient -> for σ=1 k should be 5, for σ=10 k should be 50
-convolving any function with itself repeatedly eventually yields a
Gaussian
-Gaussian is separable
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Derivatives and Smoothing

adapted from Michael Black, Brown University
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Derivatives and Smoothing

adapted from Michael Black, Brown University

In 2D
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First Derivative of Gaussian

adapted from Martial Hebert, CMU
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First Derivative of Gaussian

adapted from Martial Hebert, CMU
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Second derivative

adapted from Martial Hebert, CMU

•Another way 
to detect an 
extremal first 
derivative is 
to look for a 
zero second 
derivative
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Step edge

adapted from Michael Black, Brown University
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Second derivative

adapted from Michael Black, Brown University
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Sobel Operator
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Laplacian of Gaussian (LOG)

• Bad idea to apply a Laplacian without smoothing
– smooth with Gaussian, apply Laplacian
– this is the same as filtering with a Laplacian of Gaussian filter
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Laplacian of Gaussian (LOG)

adapted from Martial Hebert, CMU
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Filters
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Approximating the Laplacian

adapted from Michael Black, Brown University

We can approximate Laplacian of Gaussian by
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Laplacian of Gaussian (LOG)

adapted from David Forsyth, UC Berkeley

At the corners where three or more edges meet, contours behave strangely
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The Laplacian Pyramid

adapted from David Forsyth, UC Berkeley

sigma=2

sigma=4

Gradient threshold=1 Gradient threshold=4LOG zero crossings
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Gradient based algorithms

adapted from David Forsyth, UC Berkeley
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Gradient based algorithms

adapted from David Forsyth, UC Berkeley
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Gradient based edge detection

Gradient magnitude can be large along a thick trail in an image of edge points
We need to obtain most distinctive points on this trail

Look for the points where gradient magnitude is a maximum along the direction perpendicular to the edge

Algorithm :
Form an estimate of the image gradient
Obtain the gradient magnitude from this estimate
Identify image points where 

the value of the gradient magnitude is maximal
in the direction perpendicular to the edge
and also large

as edge points
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Gradient based edge detection

adapted from David Forsyth, UC Berkeley

We wish to mark points along the curve where the magnitude is biggest.
We can do this by looking for a maximum along a slice normal to the curve
(non-maximum suppression).  These points should form a curve.  There are
then two algorithmic issues: at which point is the maximum, and where is the
next one?



CS554 Computer Vision © Pinar Duygulu

37

Non-Maximum Suppression Algorithm
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Non-Maximum Suppression Algorithm

adapted from Martial Hebert, CMU
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Non-Maximum Suppression

adapted from David Forsyth, UC Berkeley

At q, we have a 
maximum if the 
value is larger than 
those at both p and 
at r. Interpolate to 
get these values.
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Non-Maxima Suppression

adapted from David Forsyth, UC Berkeley

Predicting
the next
edge point
Assume the marked point 
is an edge point.  Then we 
construct the tangent to 
the edge curve (which is 
normal to the gradient at 
that point) and use this to 
predict the next points 
(here either r or s). 
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Thresholding

adapted from Martial Hebert, CMU
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Example

adapted from David Forsyth, UC Berkeley
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Example

adapted from David Forsyth, UC Berkeley
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Example

adapted from David Forsyth, UC Berkeley
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Example

adapted from David Forsyth, UC Berkeley
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Hysteresis Thresholding

adapted from Martial Hebert, CMU

.
•Idea : use a high threshold to start edge curves and a low threshold to 
continue them

•Start with a high threshold (strong edge)

•Apply another threshold which is lower than the higher one

•Look for the other edges which are higher than the lower 
threshold and connected to the strong edges

•Add them to the edge list
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Hysteresis Thresholding

adapted from Martial Hebert, CMU
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Complete Algorithm

adapted from Martial Hebert, CMU
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Example

adapted from Martial Hebert, CMU
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Thresholding

adapted from Martial Hebert, CMU

Different thresholds
Applied to gradient value
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Non-local Maxima Suppression

adapted from Martial Hebert, CMU
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Hysteresis Thresholding

adapted from Martial Hebert, CMU
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LOG Operator

adapted from Martial Hebert, CMU
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LOG Operator

adapted from Martial Hebert, CMU



CS554 Computer Vision © Pinar Duygulu

55

Effect of sigma – Detection vs. Localization

adapted from Martial Hebert, CMU
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Effect of sigma

adapted from Martial Hebert, CMU
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Canny’s Edge detection 

adapted from Martial Hebert, CMU

Canny  takes two factors into account in designing the edge detector

A model of the kind of edges to be detected
A quantitative definition of the performance this edge detector is supposed to have 

Several criteria can be chosen to characterize the performance of an edge detector

Good detection, i.e. robustness to noise
Good localization
Uniqueness to response 



CS554 Computer Vision © Pinar Duygulu

58

Canny’s Edge detection 

adapted from Martial Hebert, CMU
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An edge is not a line

adapted from Steven Seitz, University of Washington
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Hough Transform

adapted from Steven Seitz, University of Washington
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Hough Transform

adapted from Steven Seitz, University of Washington
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Hough Transform

adapted from Steven Seitz, University of Washington


