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Today’s topics 

• Image Formation 
 

• Image filters in spatial domain 
– Filter is a mathematical operation of a grid of numbers 
– Smoothing, sharpening, measuring texture 

 
• Image filters in the frequency domain 

– Filtering is a way to modify the frequencies of images 
– Denoising, sampling, image compression 

 

• Templates and Image Pyramids 
– Filtering is a way to match a template to the image 
– Detection, coarse-to-fine registration 

 



Images as functions 

Source: S. Seitz 



Images as functions 

• We can think of an image as a function, f, from  

R2 to R: 
• f( x, y ) gives the intensity at position ( x, y )  

• Realistically, we expect the image only to be defined over a 

rectangle, with a finite range: 

– f: [a,b] x [c,d]  [0, 255] 

 

• A color image is just three functions pasted 

together.  We can write this as a “vector-valued” 

function:  

Source: S. Seitz 
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Digital images 
• In computer vision we operate on digital (discrete) images: 

• Sample the 2D space on a regular grid 

• Quantize each sample (round to nearest integer) 

• Image thus represented as a matrix of integer values. 

 

Adapted from S. Seitz 

2D 

1D 



Images as discrete functions 

• Cartesian Coordinates 

Source: Fei Feli Li, Stanford University 



Today’s topics 

• Image Formation 
 

• Image filters in spatial domain 
– Filter is a mathematical operation of a grid of numbers 
– Smoothing, sharpening, measuring texture 

 
• Image filters in the frequency domain 

– Filtering is a way to modify the frequencies of images 
– Denoising, sampling, image compression 

 

• Templates and Image Pyramids 
– Filtering is a way to match a template to the image 
– Detection, coarse-to-fine registration 

 



Zebras vs. Dalmatians 

Both zebras and dalmatians have black and white pixels in about the same 
number  
 – if we shuffle the images point-wise processing is not affected 
 
Need to measure properties relative to small neighborhoods of pixels 
 - find different image patterns 



Filtering 
g [m,n] f [m,n] 

We want to remove unwanted sources of variation, and keep the 
information relevant for whatever task we need to solve 

Source: Torralba, MIT 



Filters 

• Filtering: 

 – Form a new image whose pixels are a combination of 
original pixel values  

 - compute function of local neighborhood at each position 

• Goals: 

• Extract useful information from the images 

 Features (textures, edges, corners, distinctive points, blobs…) 

• Modify or enhance image properties: 

 super-resolution; in-painting; de-noising, resizing 

• Detect patterns 

 Template matching 

 
Source: Fei Feli Li, Stanford University; James Hays, Brown 



Smooth/Sharpen Images...      Find edges...                  Find waldo… 

 Source: Darrell, Berkeley 



 

Source: Fei Feli Li, Stanford University 



Common types of noise 

– Salt and pepper noise: 
random occurrences of   
black and white pixels 

– Impulse noise: random 
occurrences of white pixels 

– Gaussian noise: variations 
in intensity drawn from a 
Gaussian normal 
distribution 

 

 

Source: S. Seitz Source: Darrell, Berkeley 



Gaussian noise 

Fig: M. Hebert 

>> noise = randn(size(im)).*sigma; 

 

>> output = im + noise; 

Source: Darrell, Berkeley 



First attempt at a solution 

• Let’s replace each pixel with an average of all 
the values in its neighborhood 

• Assumptions:  

– Expect pixels to be like their neighbors 

– Expect noise processes to be independent from 
pixel to pixel 

 

Source: Darrell, Berkeley 



First attempt at a solution 

• Let’s replace each pixel with an average of all 
the values in its neighborhood 

• Moving average in 1D: 

Source: S. Marschner Source: Darrell, Berkeley 



Weighted Moving Average 

• Can add weights to our moving average 

• Weights  [1, 1, 1, 1, 1]  / 5  

Source: S. Marschner Source: Darrell, Berkeley 



Weighted Moving Average 

• Non-uniform weights [1, 4, 6, 4, 1] / 16 

Source: S. Marschner Source: Darrell, Berkeley 



Moving Average In 2D 
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Correlation filtering 

Say the averaging window size is 2k+1 x 2k+1: 

Loop over all pixels in neighborhood around  
image pixel F[i,j] 

Attribute uniform weight 
to each pixel 

Now generalize to allow different weights depending on  
neighboring pixel’s relative position: 

Non-uniform weights 

Source: Darrell, Berkeley 



Correlation filtering 

Filtering an image: replace each pixel with a linear combination of 
its neighbors. 
 
The filter “kernel” or “mask” H[u,v] is the prescription for the 
weights in the linear combination. 
 

This is called cross-correlation, denoted  

Source: Darrell, Berkeley 



Averaging Filter 

adapted from Darrell and Freeman, MIT 



Averaging Filter 

adapted from Darrell and Freeman, MIT 

Averaging Filter 



Averaging Filter 

adapted from Darrell and Freeman, MIT 



Averaging Filter 

adapted from Darrell and Freeman, MIT 



Averaging filter 

• What values belong in the kernel H for the moving average 
example? 
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Source: Darrell, Berkeley 



Smoothing by averaging 

depicts box filter:  
white = high value, black = low value 

original filtered 

Source: Darrell, Berkeley 



Example 

Source: Martial Hebert, CMU 



Example 

Source: Martial Hebert, CMU 



Example 

Source: Martial Hebert, CMU 



Smoothing by averaging 

Source: Martial Hebert, CMU 



Smoothing by averaging 

Source: Martial Hebert, CMU 



Smoothing by averaging 

Source: Martial Hebert, CMU 



Smoothing by averaging 

Source: Martial Hebert, CMU 



Gaussian filter 
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• What if we want nearest 
neighboring pixels to have the 
most influence on the output? 

This kernel is an 
approximation of a 
Gaussian function: 

Source: S. Seitz Source: Darrell, Berkeley 

A weighted average that 
weights pixels at its center 
much more strongly than 
its boundaries 



Smoothing with a Gaussian 

Source: Darrell, Berkeley 



Smoothing with a Gaussian 

Source: Martial Hebert, CMU 



Smoothing with a Gaussian 

Result of blurring using 
a uniform local model 
 
Produces a set of 
narrow vertical 
horizontal and vertical 
bars – ringing effect 

Result of blurring 
using a set of 
Gaussian weights 

Source: David Forsyth, UIUC 



Smoothing with a Gaussian 

Source: Martial Hebert, CMU 



Gaussian filters 
• What parameters matter here? 

• Size of kernel or mask 

– Note, Gaussian function has infinite support, but discrete filters 
use finite kernels 

 

σ = 5 with 10 
x 10 kernel 

σ = 5 with 30 
x 30 kernel 

Source: Darrell, Berkeley 



Gaussian filters 
• What parameters matter here? 

• Variance of Gaussian: determines extent of 
smoothing 

 

σ = 2 with 30 
x 30 kernel 

σ = 5 with 30 
x 30 kernel 

Source: Darrell, Berkeley 



Smoothing with a Gaussian 

 

 
If  is small : the smoothing will have little effect 
 
If  is larger : neighboring pixels will have larger  
weights resulting in consensus of the neighbors 
 
If  is very large : details will disappear along 
with the noise 
 

Source: Martial Hebert, CMU 



Gaussian filter 

=1 

=2 

=4 

Source: Torralba, MIT 



Gaussian smoothing to remove 
noise 

Source: Martial Hebert, CMU 



Gaussian smoothing to remove 
noise 

Source: Martial Hebert, CMU 



Smoothing with a Gaussian 

The effects of smoothing  
Each row shows smoothing 
with gaussians of different 
width; each column shows 
different realizations of  
an image of gaussian noise. 
 

Source: David Forsyth, UIUC 



Smoothing with a Gaussian 

• Filtered noise is sometimes useful 

– looks like some natural textures, can be used to 
simulate fire, etc. 

 

Source: David Forsyth, UIUC 



Gaussian kernel 

Source:  from Michael Black 



Matlab 
>> hsize = 10; 

>> sigma = 5; 

>> h = fspecial(‘gaussian’ hsize, sigma); 

 

 

>> mesh(h); 

 

>> imagesc(h); 

 

>> outim = imfilter(im, h); 

>> imshow(outim); 

outim 
Source: Darrell, Berkeley 



Smoothing with a Gaussian 

for sigma=1:3:10  

 h = fspecial('gaussian‘, fsize, sigma); 

 out = imfilter(im, h);  

 imshow(out); 

 pause;  

end 

… 

Parameter σ is the “scale” / “width” / “spread” of the Gaussian 
kernel, and controls the amount of smoothing. 

Source: Darrell, Berkeley 



Convolution 

• Convolution:  
– Flip the filter in both dimensions (bottom to top, right to left) 

– Then apply cross-correlation 

Notation for 
convolution 
operator 

F 

H 

Source: Darrell, Berkeley 



Convolution vs. correlation 
Convolution 

Cross-correlation 

For a Gaussian or box filter, how will the outputs differ? 

If the input is an impulse signal, how will the outputs differ? 
Source: Darrell, Berkeley 



Predict the filtered outputs 

0 0 0 

0 1 0 

0 0 0 

* = ? 

0 0 0 

1 0 0 

0 0 0 
* = ? 

1 1 1 
1 1 1 
1 1 1 

0 0 0 
0 2 0 
0 0 0 

- * = ? 

Source: Darrell, Berkeley 



Practice with linear filters 

adapted from Darrell and Freeman, MIT 



Practice with linear filters 

adapted from Darrell and Freeman, MIT 



Practice with linear filters 

0 0 0 

0 1 0 

0 0 0 

Original Filtered  

(no change) 

Source: D. Lowe Source: Darrell, Berkeley 



Impulse 
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0 0 0 0 0 



f [m,n] I  g  h[m  k,n  l]g[k,l]
k,l



g[m,n] 

h[m,n] 

f[m,n] 

= 

Source: Torralba, MIT 



Practice with linear filters 

0 0 0 

1 0 0 

0 0 0 

Original 

? 

Source: D. Lowe Source: Darrell, Berkeley 



Practice with linear filters 

0 0 0 

1 0 0 

0 0 0 

Original Shifted left 

by 1 pixel 

with 

correlation 

Source: D. Lowe Source: Darrell, Berkeley 



Shifts 





0 0 0 0 0 
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0 0 0 0 0 



f [m,n] I  g  h[m  k,n  l]g[k,l]
k,l



g[m,n] 

h[m,n] 

f[m,n] 

= 

2pixels 

Source: Torralba, MIT 



Practice with linear filters 

adapted from Darrell and Freeman, MIT 



Practice with linear filters 

adapted from Darrell and Freeman, MIT 



Practice with linear filters 

adapted from Darrell and Freeman, MIT 



Sharpening 

adapted from Darrell and Freeman, MIT 



Sharpening 

adapted from Darrell and Freeman, MIT 



Practice with linear filters 

Original 

1 1 1 
1 1 1 
1 1 1 

0 0 0 
0 2 0 
0 0 0 

- 

Sharpening filter 
- Accentuates differences with 
local average 

Source: D. Lowe Source: Darrell, Berkeley 



Filtering examples: sharpening 

Source: Darrell, Berkeley 



Rectangular filter 





g[m,n] 

h[m,n] 

= 

f[m,n] 

Source: Torralba, MIT 



 

Source: Fei Fei Li, Stanford 



Rectangular filter 





g[m,n] 

h[m,n] 

= 

f[m,n] 

Source: Torralba, MIT 



Rectangular filter 





g[m,n] 

h[m,n] 

= 

f[m,n] 

Source: Torralba, MIT 



Integral image 

Source: Torralba, MIT 



Shift invariant linear system 

• Shift invariant:  

– Operator behaves the same everywhere, i.e. the value of 
the output depends on the pattern in the image 
neighborhood, not the position of the neighborhood. 

 

• Linear:  

– Superposition: h * (f1 + f2) = (h * f1) +  (h * f2)  

– Scaling: h * (k f) = k (h * f) 

 

Source: Darrell, Berkeley 



Properties of convolution 
• Linear & shift invariant 

• Commutative: 

f * g = g * f 

• Associative 

(f * g) * h = f * (g * h) 

• Identity: 

unit impulse e = […, 0, 0, 1, 0, 0, …].  f * e = f 

• Differentiation: 

Source: Darrell, Berkeley 



Separability 

• In some cases, filter is separable, and we can factor into two 
steps: 

– Convolve all rows 

– Convolve all columns 

Source: Darrell, Berkeley 



Separability 

• In some cases, filter is separable, and we can factor into two 
steps: e.g., 

 
What is the computational 
complexity advantage for a 
separable filter of size k x k, in 
terms of number of operations 
per output pixel? 

 f * (g * h) = (f * g) * h  

g 

h 

f 

Source: Darrell, Berkeley 



Advantages of separability 

adapted from Larry Davis, University of Maryland 



Seperable Gaussian 



Advantages of Gaussians 

adapted from Larry Davis, University of Maryland 



Effect of smoothing filters 

Additive Gaussian noise Salt and pepper noise 

Source: Darrell, Berkeley 



Median filter 

• No new pixel values 

introduced 

• Removes spikes: good 

for impulse, salt & 

pepper noise 

 

Source: Darrell, Berkeley 



Median filter 

Salt and 
pepper noise 

Median 
filtered 

Source: M. Hebert 

Plots of a row of the image 

Source: Darrell, Berkeley 



Median filter 

• Median filter is edge preserving 

Source: Darrell, Berkeley 



Boundary issues 

• What is the size of the output? 

• MATLAB: filter2(g, f, shape) 

– shape = ‘full’: output size is sum of sizes of f and g 

– shape = ‘same’: output size is same as f 

– shape = ‘valid’: output size is difference of sizes of f and g  

f 

g g 

g g 

f 

g g 

g g 

f 

g g 

g g 

full same valid 

Source: S. Lazebnik Source: Darrell, Berkeley 



Boundary issues 
• What about near the edge? 

– the filter window falls off the edge of the image 

– need to extrapolate 

– methods: 

• clip filter (black) 

• wrap around 

• copy edge 

• reflect across edge 

Source: S. Marschner Source: Darrell, Berkeley 



Boundary issues 

• What about near the edge? 

– the filter window falls off the edge of the image 

– need to extrapolate 

– methods (MATLAB): 

• clip filter (black):  imfilter(f, g, 0) 

• wrap around: imfilter(f, g, ‘circular’) 

• copy edge:   imfilter(f, g, ‘replicate’) 

• reflect across edge:  imfilter(f, g, ‘symmetric’) 

Source: S. Marschner Source: Darrell, Berkeley 



Borders 

From Rick’s book Source: Torralba, MIT 


