Filters

CS 554 — Computer Vision
Pinar Duygulu
Bilkent University

Today’s topics

Image Formation

Image filters in spatial domain
— Filter is a mathematical operation of a grid of numbers
— Smoothing, sharpening, measuring texture

Image filters in the frequency domain
— Filtering is a way to modify the frequencies of images
— Denoising, sampling, image compression

Templates and Image Pyramids
— Filtering is a way to match a template to the image
— Detection, coarse-to-fine registration

Images as functions

Source: S. Seitz

Images as functions

* We can think of an image as a function, f, from

R? to R;

« f(x,y) gives the intensity at position (X, y)

« Realistically, we expect the image only to be defined over a

rectangle, with a finite range:

~ f:[a,b] x [c,d] = [0, 255]

* A color image Is just three functions pasted

together. We can write this as a “vector-valued”

function:

F(xy)=

r(X,y)
g(x,y)

 b(x,y)

Source: S. Seitz

Digital images

* In computer vision we operate on digital (discrete) images:

e Sample the 2D space on a regular grid
e Quantize each sample (round to nearest integer)

* Image thus represented as a matrix of integer values.

J

g2 79 23 119 120 105 4 0
10 10 9 g2 12 78 34 0
10 54 197 45 46 0 0 43
176 138 & 138 191 ks 0 49
2 1 1 29 26 a7 0 77
0 39 144 147 187 102 g2 208
255 252 0 166 123 g2 0 31
168 g3 187 17 1 0 g9 30

Lm !

2D

1D

Adapted from S. Seitz

Images as discrete functions

e Cartesian Coordinates

fl-1,1] f[0,1] f[1,1]
flnm|=1 ... f[-1,0 £10,0] f1,0

fl=1,-1] flo,-1] f[1,—1]

Source: Fei Feli Li, Stanford University

Today’s topics

* Image filters in spatial domain
— Filter is a mathematical operation of a grid of numbers
— Smoothing, sharpening, measuring texture

Zebras vs. Dalmatians

Both zebras and dalmatians have black and white pixels in about the same
number
— if we shuffle the images point-wise processing is not affected

Need to measure properties relative to small neighborhoods of pixels
- find different image patterns

Filtering

g [m,n] f[m,n]

We want to remove unwanted sources of variation, and keep the
information relevant for whatever task we need to solve

Source: Torralba, MIT

Filters

* Filtering:
— Form a new image whose pixels are a combination of
original pixel values

- compute function of local neighborhood at each position
* Goals:
* Extract useful information from the images
Features (textures, edges, corners, distinctive points, blobs...)
* Modify or enhance image properties:
super-resolution; in-painting; de-noising, resizing
* Detect patterns

Template matching

Source: Fei Feli Li, Stanford University; James Hays, Brown

[ir N

Smooth/Sharpen Images...

Source: Darrell, Berkeley

Super-resolution

De-noising

In-painting

|e 12 og‘wénag

Source: Fei Feli Li, Stanford University

Common types of noise

— Salt and pepper noise:
random occurrences of
black and white pixels

— Impulse noise: random
occurrences of white pixels

— @Gaussian noise: variations
in intensity drawn from a
Gaussian normal
distribution

Impulse noise Gaussian noise

Source: Darrell, Berkeley Source: S. Seitz

Gaussian noise

Ide_al Image Noise process Gaussian i.i.d. (“white") noise:
f('lf' y) = f(;r,y) + ’7(1'-3/) q(ly) ~ _,'\"(I_[,,O')
>> noise = randn(size(im)) .*sigma;
>> output = im + noise;

Source: Darrell, Berkeley Fig: M. Hebert

First attempt at a solution

e |Let’s replace each pixel with an average of all
the values in its neighborhood
e Assumptions:

— Expect pixels to be like their neighbors

— Expect noise processes to be independent from
pixel to pixel

Source: Darrell, Berkeley

Source: Darrell, Berkeley

First attempt at a solution

e Let’s replace each pixel with an average of all
the values in its neighborhood

* Moving average in 1D:

lTMH T \ orlglnal

Q.
.. *

Weighted Moving Average

* Can add weights to our moving average
 Weights [1,1,1,1,1] /5

M

Source: Darrell, Berkeley Source: S. Marschner

Weighted Moving Average

* Non-uniform weights [1, 4, 6,4, 1]/ 16

Source: Darrell, Berkeley Source: S. Marschner

Moving Average In 2D

Flz, y] Glz, y.

Source: Darrell, Berkeley Source: S. Seitz

Moving Average In 2D

Flz, y] Glz, y.

O“ 10

Source: Darrell, Berkeley Source: S. Seitz

Source: Darrell, Berkeley

Moving Average In 2D

Flz, y]

Glz,y.

10

20

Source: S. Seitz

Source: Darrell, Berkeley

Moving Average In 2D

Flz, y]

Glz,y.

10

20

?ﬂ

Source: S. Seitz

Source: Darrell, Berkeley

Moving Average In 2D

Flz, y]

Glz,y.

10

20

30

Source: S. Seitz

Moving Average In 2D

Flz, y] Glz, y.

Source: Darrell, Berkeley Source: S. Seitz

Correlation filtering

Say the averaging window size is 2k+1 X 2k+1:

|
Glin) = 12 z;kv_z_ Fli+u.j +]

)| J
! |

Attribute uniform weight Loop over all pixels in neighborhood around
to each pixel image pixel F[i,j]

Now generalize to allow different weights depending on
neighboring pixel’s relative position

Gli, 5] = Z Z H[u U]F[Z—|-Uj—|—’v]

w=—kv=—k ¥
Non-uniform weights

Source: Darrell, Berkeley

Correlation filtering
k k
Gli,jl= > > Hlu,v]F[i4 u,j+ v]
u=—kv=-—%k
This is called cross-correlation, denoted G=HXF

Filtering an image: replace each pixel with a linear combination of
its neighbors.

The filter “kernel” or “mask” Hl[u,v] is the prescription for the
weights in the linear combination.

Source: Darrell, Berkeley

Averaging Filter

=
w2

_coefficient

0
Pixel offset

original

adapted from Darrell and Freeman, MIT

Averaging Filter

-
2
s
E 0.3
l":-.]I T l ! l 171
® {} -
Pixel offset
original Blurred (filter
applied in both
dimensions).

adapted from Darrell and Freeman, MIT

Averaging Filter

impulse

adapted from Darrell and Freeman, MIT

original

coefticient

0
Pixel ofiset

filtered

Averaging Filter

impulse
0.

coefficient

__[«.J‘J

1T | 111 !
.. 0 N
original Pixel offset filtered

o o]

edge 4

coefticient

. 0 _—
original Pixel offset filtered

adapted from Darrell and Freeman, MIT

Averaging filter

* What values belong in the kernel H for the moving average

example?
F[.’,U,y] ® H[u,v] G[a:,y]
11111 0 |10] 20 3o|r¥.i
1 le===5
—|1]|2 |1
9 [
1111

“box filter”

G=HQXF

Source: Darrell, Berkeley

Smoothing by averaging

depicts box filter:
white = high value, black = low value

original filtered

Source: Darrell, Berkeley

Example

Source: Martial Hebert, CMU

Example

Source: Martial Hebert, CMU

Example

Source: Martial Hebert, CMU

Smoothing by averaging

Original Image

50

150
200
250
300

350

50 100 150 200 250 300 350 400 450

Source: Martial Hebert, CMU

500

Smoothing by averaging

Slight Blurring

50

100

150

200

250

300

Kernel:

19 119 179

350

50 100 150 200 250 300 350 400 19 119 | ¥9

19 19 179

Source: Martial Hebert, CMU

Smoothing by averaging

Mare Blurring

50
100
150

200

Kernel:

300 1 0 1 nne

o4

350

o4

50 100 150 200 250 300 350 400
04 04 o | nos nn4

o (L8} g onns nns

Source: Martial Hebert, CMU

Smoothing by averaging

Source: Martial Hebert, CMU

Lots of Blurring

50

100

150

200

250

300

Kernel:

1556155
matrix of
value 1/255

350

Gaussian filter

 What if we want nearest

neighboring pixels to have the
most influence on the output?

Hlu,v]

Flx,y]

A weighted average that
weights pixels at its center

much more strongly than
Source: Darrell, Berkeley its boundaries

Source: S. Seitz

Smoothing with a Gaussian

Source: Darrell, Berkeley

Smoothing with a Gaussian

Gaussian Blurring. 6 = 5

50

100

200

250

300

350

Source: Martial Hebert, CMU

Smoothing with a Gaussian

Result of blurring
using a set of
Gaussian weights

Result of blurring using
a uniform local model

Produces a set of
narrow vertical
horizontal and vertical
bars — ringing effect

Source: David Forsyth, UIUC

Smoothing with a Gaussian

Simple
Averaging

Gaussian
Smoothing

Source: Martial Hebert, CMU

Gaussian filters

 What parameters matter here?
* Size of kernel or mask

— Note, Gaussian function has infinite support, but discrete filters
use finite kernels

2 4 E & 10

T Py

0.008 L.~ g

0.008 L4
10

o =5 with 10
x 10 kernel X 30 kernel

Source: Darrell, Berkeley

Gaussian filters

 What parameters matter here?

e Variance of Gaussian: determines extent of

 -

smoothing

o =2 with 30 o =5 with 30
X 30 kernel X 30 kernel

Source: Darrell, Berkeley

Smoothing with a Gaussian

If ¢ is small : the smoothing will have little effect

If ¢ is larger : neighboring pixels will have larger
weights resulting in consensus of the neighbors

If ¢ is very large : details will disappear along
with the noise

Source: Martial Hebert, CMU

0.4

0.35

0.3

0.23

0.2

0.1

0.0s

Effectof o

o e

0006 ..o
0004 <.

0002

25

Source: Torralba, MIT

Gaussian smoothing to remove
noise

Image
Noise

Ide_al Image Noise process Gaussian i.i.d. (“white") noise:
fz,y)= f(z,y) + n(z,y) n(z,y) ~ N(p, o)

Source: Martial Hebert, CMU

Gaussian smoothing to remove
noise

|l S e
w “ ‘ | ||] I".-'l '
\ | || " ll' l|
|
’ l lull | I| ‘,nl bl ll
No smoothing =2 c=4

urce: Martial Hebert, CMU

Smoothing with a Gaussian

o=0.05

Source: David Forsyth, UIUC

g s no
- smoothing — The effects of smoothing

Each row shows smoothing
with gaussians of different

width; each column shows

different realizations of

an image of gaussian noise.

o=1 pixel

0=2 pixels

Smoothing with a Gaussian

* Filtered noise is sometimes useful

— looks like some natural textures, can be used to
simulate fire, etc.

Source: David Forsyth, UIUC

Gaussian kernel

) 0.0751 0.1238 00751

1 (x"+77)
g(x, y)=——exp _u‘ 0.1238 0242 01233
T 20 0.0751 0.1238 0.0751

Gaussian is an approximation to the
binomial distribution. ! (L]

4 =— "
" rl(n-r)

Can approximate Gaussian using binomial \7,

coefficients.

. . 1X3 filter: n=(3-1)=2.1=0.1.2
n = number of elements in the 1D filter minus 1

= position of element in the filter kernel (0, 1, 2...) 1|2

g=1411]2/1

0.0625 0.1250 0.0625
£ 2= 0.1250 02500 0.1250
0.0625 0.1250 0.0625

Source: from Michael Black

Matlab

>> hsize = 10;
>> sigma = b5;
>> h = fspecial (‘gaussian’ hsize, sigma);

>> mesh (h); -

>> imagesc (h); ﬂ

>> outim = 1mfilter (im, h);
>> imshow (outim) ;

outim

Source: Darrell, Berkeley

Smoothing with a Gaussian

Parameter o is the “scale” / “width” / “spread” of the Gaussian
kernel, and controls the amount of smoothing.

10

20

L)
30|:m

0 10 20 30 0 10 20 30

for sigma=1:3:10
h = fspecial ('gaussian‘', fsize, sigma);
out = imfilter(im, h);
imshow (out) ;
pause;

end
Source: Darrell, Berkeley

Convolution

* Convolution:

— Flip the filter in both dimensions (bottom to top, right to left)
— Then apply cross-correlation

Gli, 7] = Z Z Hlu,v]F[i —u,j — v]

u=—kv=-—k

G=HxF 4

T

Notation for
convolution
operator

Source: Darrell, Berkeley

Convolution vs. correlation

Convolution
Gli, 7] = Z Z Hlu,v]F[i —u,j — v]
u=—kv=—=%k
G =HxF

Cross-correlation

Eook
Gli,jl= > > Hluv]F[i+u,j+]

u=—kv=-—%k
G=HF

For a Gaussian or box filter, how will the outputs differ?
If the input is an impulse signal, how will the outputs differ?

Source: Darrell, Berkeley

Predict the filtered outputs

Source: Darrell, Berkeley

Practice with linear filters

1.0 (?

0
Pixel offset

_coefficient

original

adapted from Darrell and Freeman, MIT

Practice with linear filters

=
2
' 1.0
=
D
S
[
1T 1T | 17 11
- ﬂ ST
o Pixel offset
original Filtered

(no change)

adapted from Darrell and Freeman, MIT

Practice with linear filters

Original Filtered
(no change)

Source: Darrell, Berkeley Source: D. Lowe

Impulse

fimn]=1® g=> h{m—k,n—Iglk,I]

——

k,l

o |lOoOo|]O)|O| O

|l O |0)|O| O
O |]o|+]|]O|O
O |lOoOoO|]O|O| O

o |lOoOo |0 |O| O

g[m,n]

Source: Torralba, MIT

h[m,n]

f[m,n]

Practice with linear filters

0[O0
o[o]1 7
0[O0

Original

Source: Darrell, Berkeley Source: D. Lowe

Practice with linear filters

Original

Source: Darrell, Berkeley

Shifted left
by 1 pixel
with
correlation

Source: D. Lowe

flm,n]=1®g=

——

Shifts
> h[m—k,n— Nglk,1]

2pixels
e

g[m,n]

Source: Torralba, MIT

k,l
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
h[m,n]

—

f[m,n]

Practice with linear filters

2.0

1.0

original

adapted from Darrell and Freeman, MIT

Practice with linear filters

2.0

1.0

original Filtered
(no change)

adapted from Darrell and Freeman, MIT

Practice with linear filters

2.0

original

adapted from Darrell and Freeman, MIT

Sharpening

2.0

Sharpened

original .
original

adapted from Darrell and Freeman, MIT

Sharpening

20

original

adapted from Darrell and Freeman, MIT

20

1.7
11.2
5
2
5
o
:JI L L L I
N -0.25
-0.3

Sharpened

(differences are
accentuated: constant
areas are left untouched).

Practice with linear filters

0/0|0 1 1111
0/2|0f = 5 1111
0/0|0 1111

Original

Sharpening filter
- Accentuates differences with
local average

Source: Darrell, Berkeley Source: D. Lowe

Filtering examples: sharpening

before after

Source: Darrell, Berkeley

Rectangular filter

f[m,n]

g[m,n]

Source: Torralba, MIT

What does blurring take away?

smoothed (9%5)

e Let’'s add it back:

+a

detail

Source: Fei Fei Li, Stanford

Rectangular filter

h[m,n]

f[m,n]

Source: Torralba, MIT

Rectangular filter

g[m,n]

Source: Torralba, MIT

Integral image

Source: Torralba, MIT

Shift invariant linear system

e Shift invariant:

— Operator behaves the same everywhere, i.e. the value of
the output depends on the pattern in the image
neighborhood, not the position of the neighborhood.

e Linear:

— Superposition: h * (f1 + f2) = (h * f1) + (h * f2)
— Scaling:h * (kf) =k (h * f)

Source: Darrell, Berkeley

Properties of convolution

* Linear & shift invariant
 Commutative:

f*g=g*f
* Associative

(f*g)*h=f*(g*h)
* |dentity:

unitimpulsee=1...,0,0,1,0,0, ..]. f*e=A1
* Differentiation:

9 (prg)=Lrg

ox dx

Source: Darrell, Berkeley

Separability

* Insome cases, filter is separable, and we can factor into two
steps:

— Convolve all rows

— Convolve all columns

Source: Darrell, Berkeley

Separability

* Insome cases, filter is separable, and we can factor into two

steps: e.g.,
h
2 |3 11
g 11211 3 |5 18
4 4 18
1 11
e
2 18 65
1 18

What is the computational
complexity advantage for a
separable filter of size k x k, in
terms of number of operations
per output pixel?

Source: Darrell, Berkeleyf * (8 * h) = (f * g) *h

313 =2+6+3=11
5 15 =6+20+10=36
4 6 =4+8+6=18

65

Advantages of separability

First convolve the image with a one dimensional
horizontal filter

Then convolve the result of the first convolution
with a one dimensional vertical filter

For a kxk Gaussian filter, 2D convolution requires
k? operations per pixel

But using the separable filters, we reduce this to
2k operations per pixel.

adapted from Larry Davis, University of Maryland

Seperable Gaussian

g(x)= L exp(—x” /(207))
J2ro

] T, q
g(y)=———exp(-y"/(207))
A 2T

Product?

1

_exp(—(x*+v)/(261))
2o

g(x.y)=

Advantages of Gaussians

» Convolution of a Gaussian with itself 1s another
Gaussian
» so we can first smooth an image with a small Gaussian
» then, we convolve that smoothed image with another
small Gaussian and the result 1s equivalent to smoother
the original 1mage with a larger Gaussian.

» It we smooth an image with a Gaussian having sd ¢
twice, then we get the same result as smoothing the
image with a Gaussian having standard deviation
(EG)":

adapted from Larry Davis, University of Maryland

Effect of smoothing filters

SXNS

Additive Gaussian noise Salt and pepper noise

Source: Darrell, Berkeley

Median filter

101520 * No new pixel values
2319027 iIntroduced
- 33 (3130 l Sort .
Median value andl Rl s « Removes SplkES: gOOd

10 15 20 23 12730 31 33 90 for impulse, salt &
pepper noise

5120 I Replace
27 |27
31130

od | I | =

fad | | OO
I

Source: Darrell, Berkeley

Median filter

Salt and _
Median

filtered

i | N“\
S TN |

LY N Dlewen™l)
1 fonk L

Plots of a row of the image

Source: Darrell, Berkeley Source: M. Hebert

 Median filter is edge preserving

Source: Darrell, Berkeley

Median filter

INPUT

& 3 8" &8 8 88

MEDIAN

MEAN

Boundary issues

 What is the size of the output?

e MATLAB: filter2(g, f, shape)
— shape = ‘full’: output size is sum of sizes of fand g
— shape = ‘same’: output size is same as f
— shape = ‘valid’: output size is difference of sizes of fand g

full same valid

g | g

o g

Source: Darrell, Berkeley Source: S. Lazebnik

Boundary issues
 What about near the edge?

— the filter window falls off the edge of the image

— need to extrapolate N

— methods: ’ F
clip filter (black)
* wrap around

* copy edge
* reflect across edge

Source: Darrell, Berkeley Source: S. Marschner

Boundary issues

 What about near the edge?
— the filter window falls off the edge of the image

— need to extrapolate

— methods (MATLAB):
 clip filter (black): imfilter(f, g, 0)
* wrap around: imfilter(f, g, ‘circular’)
* copy edge: imfilter(f, g, ‘replicate’)
* reflect across edge: imfilter(f, g, ‘symmetric’)

Source: Darrell, Berkeley Source: S. Marschner

Borders

ZETD wrap clamp MIITor

blurred: zero normalized zero clamp MIrror

Source: Torralba, MIT From Rick’s book

