Filters

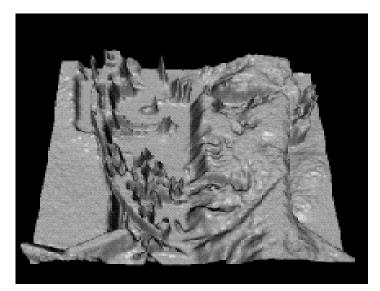
CS 554 – Computer Vision Pinar Duygulu Bilkent University

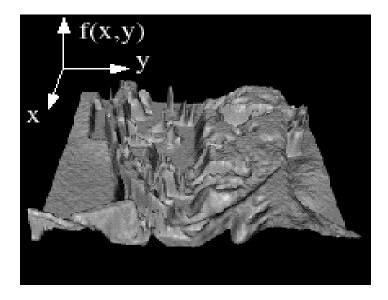
Today's topics

Image Formation

- Image filters in spatial domain
 - Filter is a mathematical operation of a grid of numbers
 - Smoothing, sharpening, measuring texture
- Image filters in the frequency domain
 - Filtering is a way to modify the frequencies of images
 - Denoising, sampling, image compression
- Templates and Image Pyramids
 - Filtering is a way to match a template to the image
 - Detection, coarse-to-fine registration

Images as functions





Images as functions

- We can think of an image as a function, *f*, from R² to R:
 - *f*(*x*, *y*) gives the intensity at position (*x*, *y*)
 - Realistically, we expect the image only to be defined over a rectangle, with a finite range:

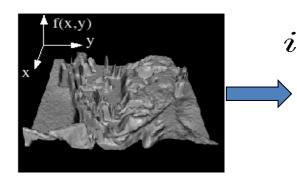
- f: [*a*,*b*] x [*c*,*d*] → [0, 255]

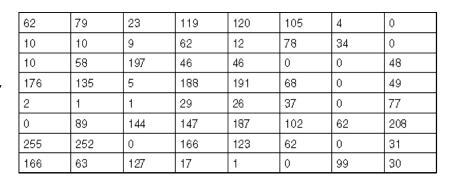
 A color image is just three functions pasted together. We can write this as a "vector-valued" function:

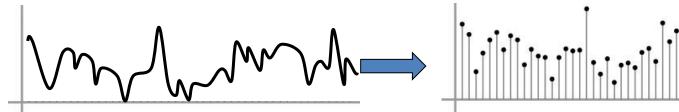
$$f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$$

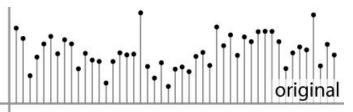
Digital images

- In computer vision we operate on **digital** (**discrete**) images:
 - Sample the 2D space on a regular grid
 - **Quantize** each sample (round to nearest integer)
- Image thus represented as a matrix of integer values.









1D

Images as discrete functions

Cartesian Coordinates

$$f[n,m] = \begin{bmatrix} \ddots & & \vdots & & \\ & f[-1,1] & f[0,1] & f[1,1] & \\ & \ddots & f[-1,0] & \underline{f[0,0]} & f[1,0] & \dots & \\ & f[-1,-1] & f[0,-1] & f[1,-1] & \\ & & \vdots & \ddots & \\ & & & \vdots & \ddots & \\ \end{bmatrix}$$

Today's topics

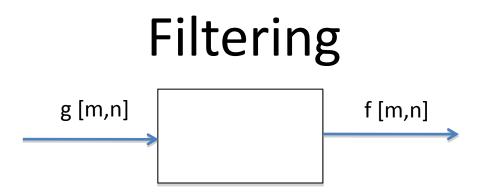
- Image Formation
- Image filters in spatial domain
 - Filter is a mathematical operation of a grid of numbers
 - Smoothing, sharpening, measuring texture
- Image filters in the frequency domain
 - Filtering is a way to modify the frequencies of images
 - Denoising, sampling, image compression
- Templates and Image Pyramids
 - Filtering is a way to match a template to the image
 - Detection, coarse-to-fine registration

Zebras vs. Dalmatians

Both zebras and dalmatians have black and white pixels in about the same number

- if we shuffle the images point-wise processing is not affected

Need to measure properties relative to small *neighborhoods* of pixels - find different image patterns



We want to remove unwanted sources of variation, and keep the information relevant for whatever task we need to solve

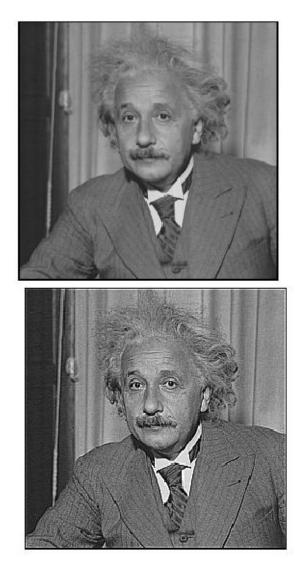
Filters

• Filtering:

 Form a new image whose pixels are a combination of original pixel values

- compute function of local neighborhood at each position
- Goals:
- Extract useful information from the images Features (textures, edges, corners, distinctive points, blobs...)
- Modify or enhance image properties: super-resolution; in-painting; de-noising, resizing
- Detect patterns

Template matching



Find waldo...

Find edges...

Source: Darrell, Berkeley

De-noising

Super-resolution

Salt and pepper noise

In-painting

Common types of noise

- Salt and pepper noise:
 random occurrences of
 black and white pixels
- Impulse noise: random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

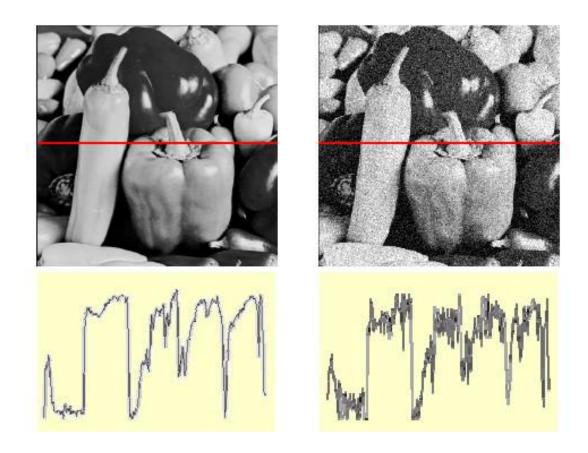
Original

Salt and pepper noise

Impulse noise

Gaussian noise

Gaussian noise



 $f(x,y) = \overbrace{\widehat{f(x,y)}}^{\text{Ideal Image}} + \overbrace{\eta(x,y)}^{\text{Noise process}} \qquad \begin{array}{l} \text{Gaussian i.i.d. ("white") noise:} \\ \eta(x,y) \sim \mathcal{N}(\mu,\sigma) \end{array}$

>> noise = randn(size(im)).*sigma;

>> output = im + noise;

Source: Darrell, Berkeley

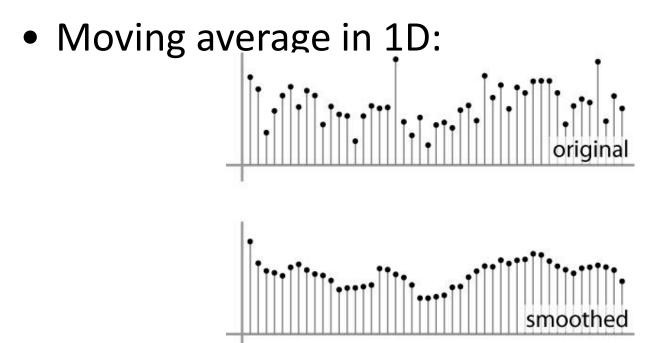
Fig: M. Hebert

First attempt at a solution

- Let's replace each pixel with an average of all the values in its neighborhood
- Assumptions:
 - Expect pixels to be like their neighbors
 - Expect noise processes to be independent from pixel to pixel

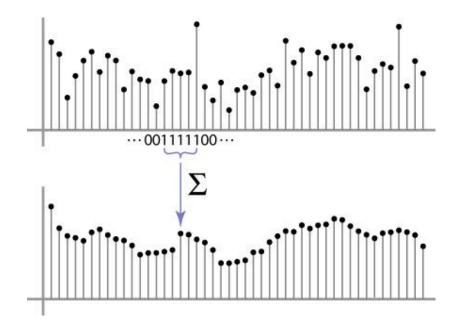
First attempt at a solution

• Let's replace each pixel with an average of all the values in its neighborhood



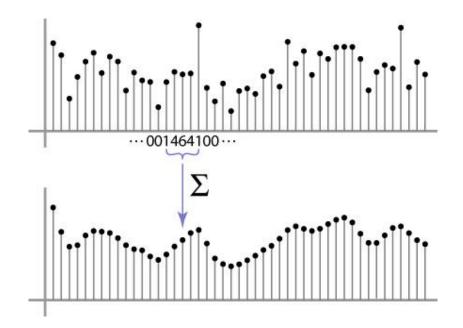
Weighted Moving Average

- Can add weights to our moving average
- Weights [1, 1, 1, 1, 1] / 5



Weighted Moving Average

• Non-uniform weights [1, 4, 6, 4, 1] / 16

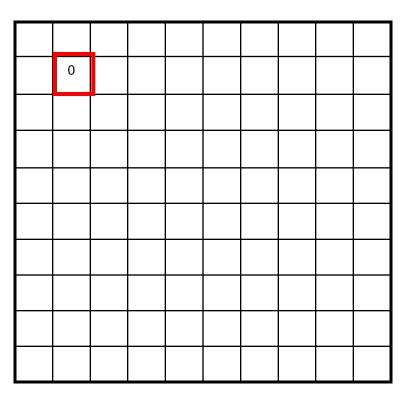


Source: S. Marschner

F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0



F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10				

F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20			

F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30			

F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30		

F[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

G[x, y]

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Correlation filtering

Say the averaging window size is 2k+1 x 2k+1:

$$G[i,j] = \frac{1}{(2k+1)^2} \sum_{\substack{u=-k}}^{k} \sum_{\substack{v=-k}}^{k} F[i+u,j+v]$$

Attribute uniform weight Loop over all pixels in neighborhood aroundto each pixelimage pixel F[i,j]

Now generalize to allow different weights depending on neighboring pixel's relative position:

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} \frac{H[u, v]F[i+u, j+v]}{v}$$

Non-uniform weights

Correlation filtering

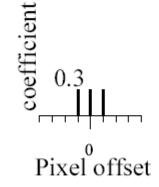
$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

This is called cross-correlation, denoted $G = H \otimes F$

Filtering an image: replace each pixel with a linear combination of its neighbors.

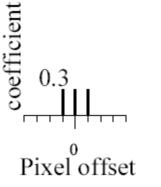
The filter "kernel" or "mask" H[u,v] is the prescription for the weights in the linear combination.

original

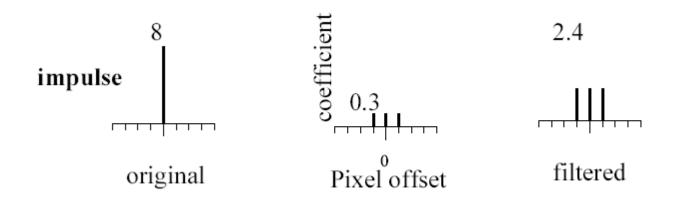


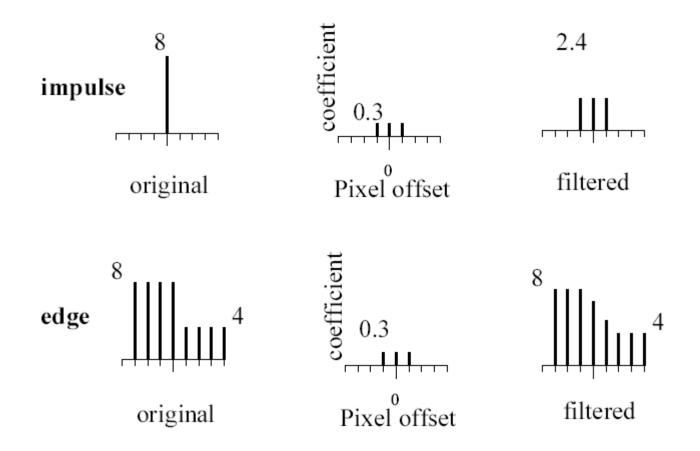
adapted from Darrell and Freeman, MIT

original

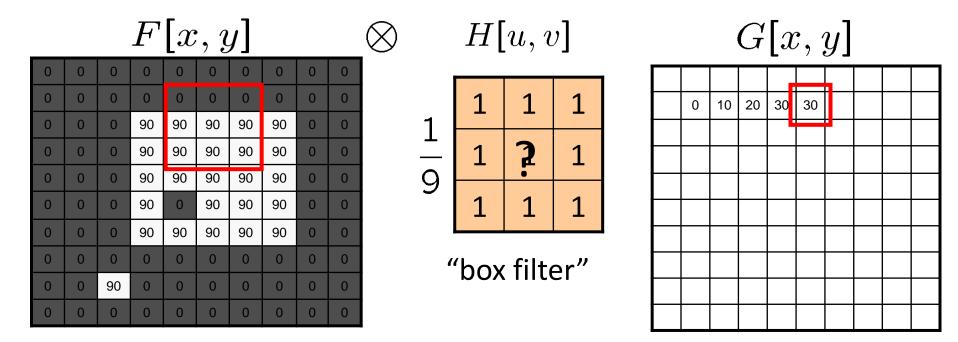


Blurred (filter applied in both dimensions).



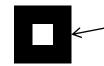


• What values belong in the kernel *H* for the moving average example?



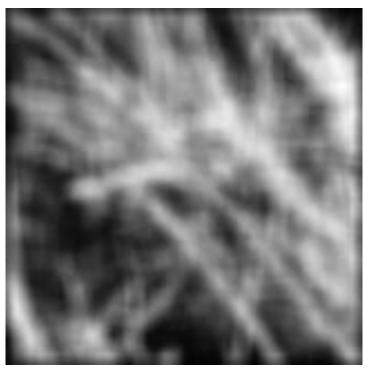
 $G = H \otimes F$

Smoothing by averaging



depicts box filter: white = high value, black = low value

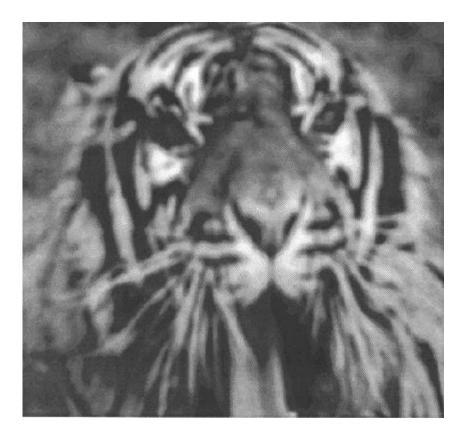
original



filtered

Source: Darrell, Berkeley

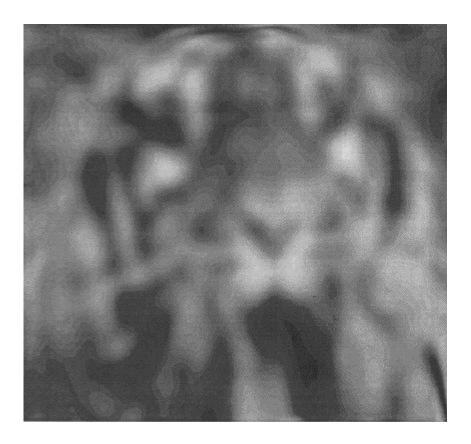
Example



Source: Martial Hebert, CMU

Example

Example



Smoothing by averaging

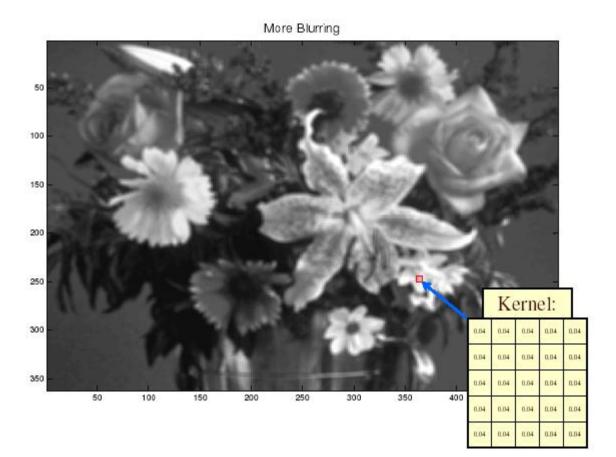
Source: Martial Hebert, CMU

Smoothing by averaging

Slight Blurring 50 100 150 200 250 300 Kernel: 1/9 1/9 1/9 350 1/9 1/9 1/9 50 100 300 350 400 150 200 250 1/9 1/9 1/9

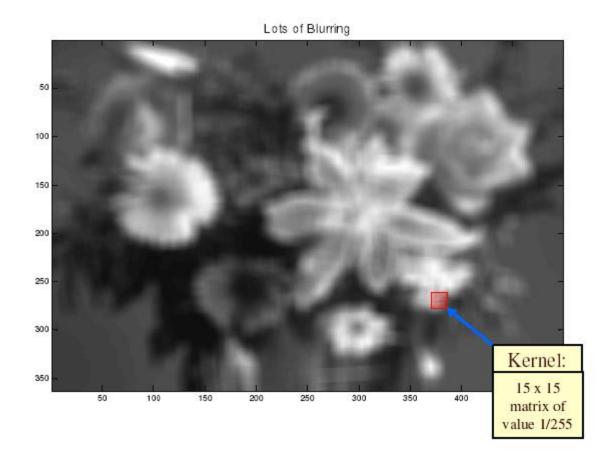
Source: Martial Hebert, CMU

Smoothing by averaging



Source: Martial Hebert, CMU

Smoothing by averaging



Gaussian filter

• What if we want nearest neighboring pixels to have the most influence on the output?

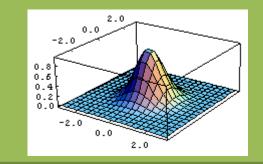
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

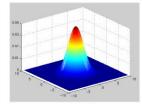
$$\frac{1}{16} \begin{array}{cccc}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{array}$$

A weighted average that weights pixels at its center much more strongly than its boundaries

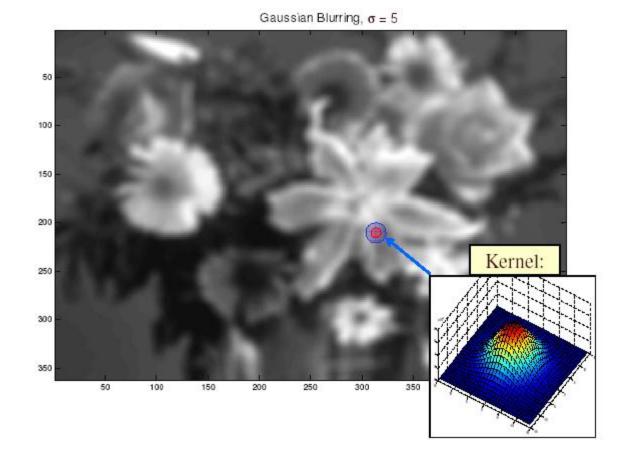
This kernel is an approximation of a Gaussian function:

$$h(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{\sigma^2}}$$





Source: Darrell, Berkeley

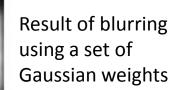


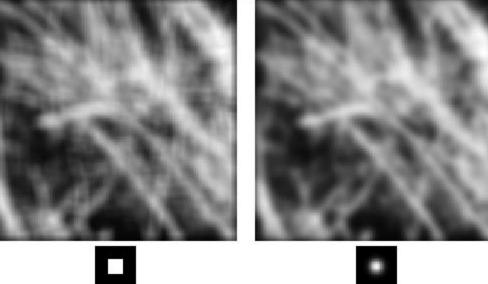
Source: Martial Hebert, CMU

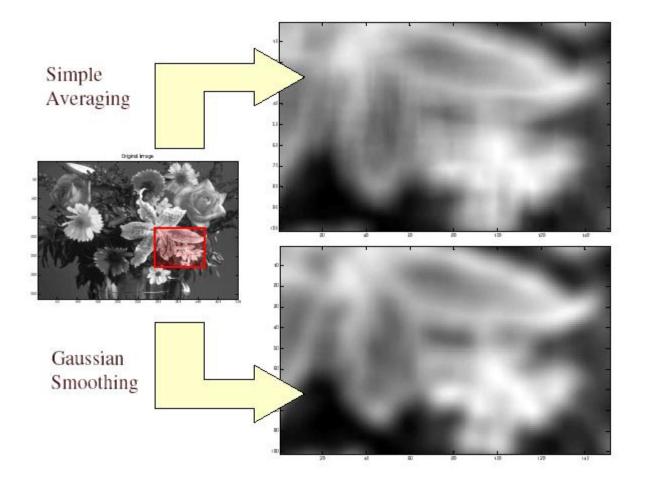


Result of blurring using a uniform local model

Produces a set of narrow vertical horizontal and vertical bars – ringing effect

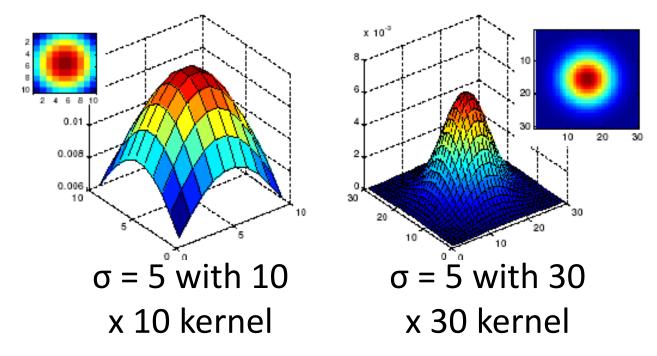






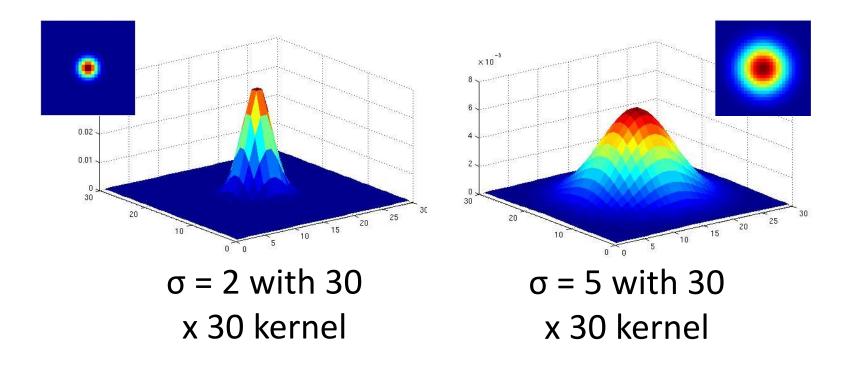
Gaussian filters

- What parameters matter here?
- Size of kernel or mask
 - Note, Gaussian function has infinite support, but discrete filters use finite kernels



Gaussian filters

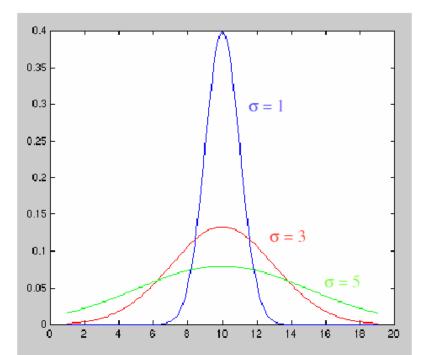
- What parameters matter here?
- Variance of Gaussian: determines extent of smoothing



If σ is small : the smoothing will have little effect

If σ is larger : neighboring pixels will have larger weights resulting in consensus of the neighbors

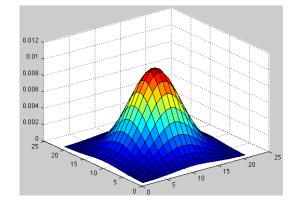
If $\boldsymbol{\sigma}$ is very large : details will disappear along with the noise

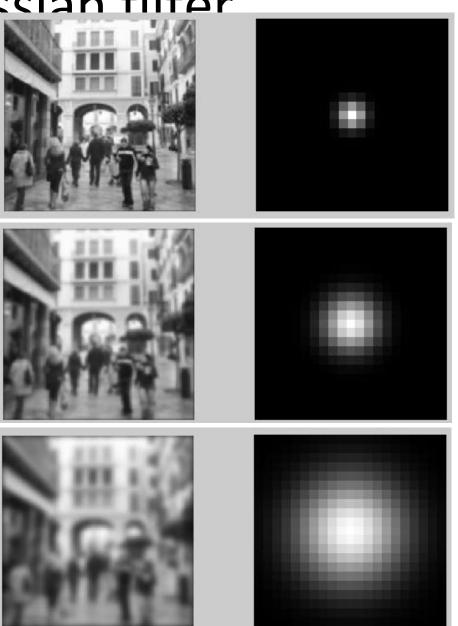


Effect of σ

Gaussian filter

$$G(x,y;\sigma) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}}$$





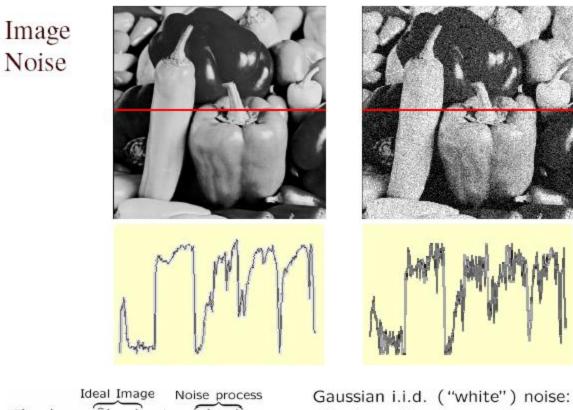
σ=1

σ=2

σ=4

Source: Torralba, MIT

Gaussian smoothing to remove noise

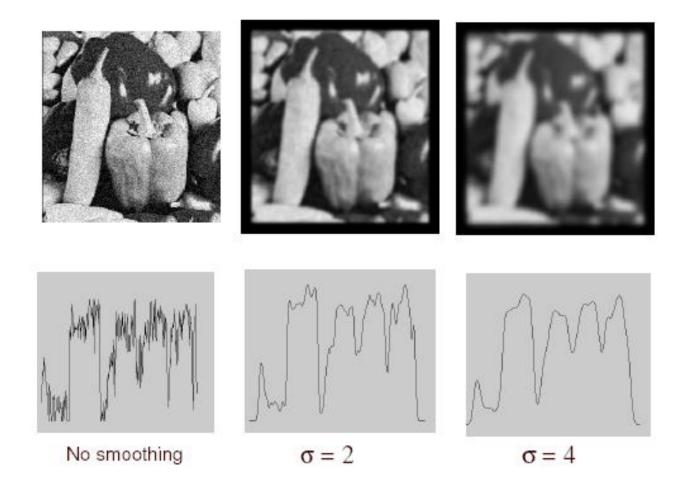


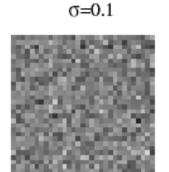
 $f(x,y) = \widehat{f}(x,y) + \widetilde{\eta(x,y)}$

Gaussian I.I.d. ("white") n $\eta(x,y) \sim \mathcal{N}(\mu,\sigma)$

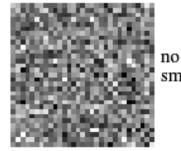
Source: Martial Hebert, CMU

Gaussian smoothing to remove noise





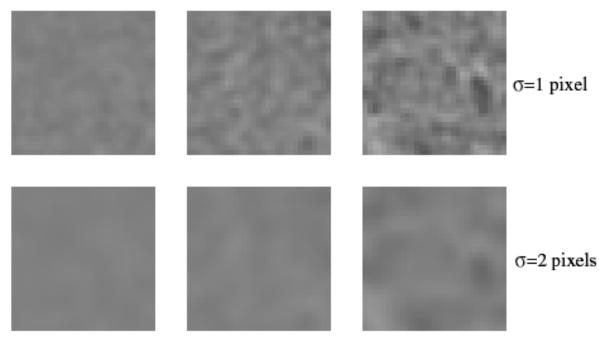
σ=0.2



smoothing

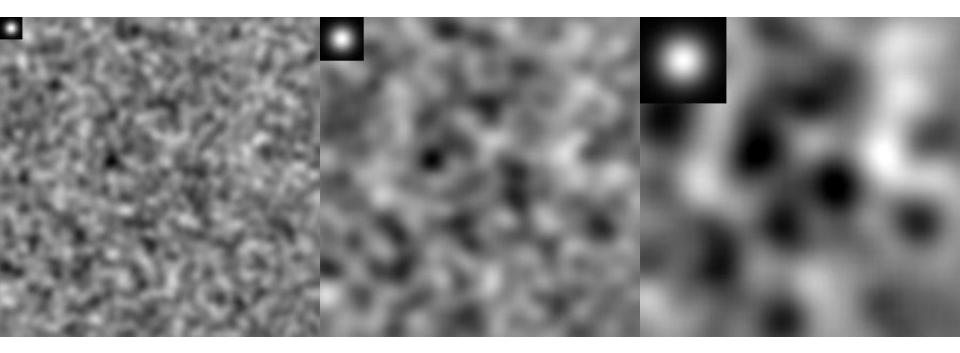
The effects of smoothing

Each row shows smoothing with gaussians of different width; each column shows different realizations of an image of gaussian noise.



Source: David Forsyth, UIUC

- Filtered noise is sometimes useful
 - looks like some natural textures, can be used to simulate fire, etc.



Gaussian kernel

$$g(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{(x^2+y^2)}{2\sigma^2}\right)$$

0.0751 0.1238 0.0751 0.1238 0.242 0.1238 0.0751 0.1238 0.0751

Gaussian is an approximation to the binomial distribution.

Can approximate Gaussian using binomial coefficients.

$$a_{nr} = \frac{n!}{r!(n-r)!} = \binom{n}{r}$$

n = number of elements in the 1D filter minus 1 r = position of element in the filter kernel (0, 1, 2...)

g = 1/4 1 2 1

 $\begin{array}{rll} g^{\prime}g= & \begin{array}{c} 0.0625 & 0.1250 & 0.0625 \\ 0.1250 & 0.2500 & 0.1250 \\ 0.0625 & 0.1250 & 0.0625 \end{array}$

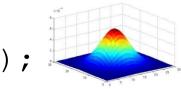
1X3 filter: n=(3-1)=2, r=0,1,2

1 2	2]	L
-----	-----	---

Source: from Michael Black

Matlab

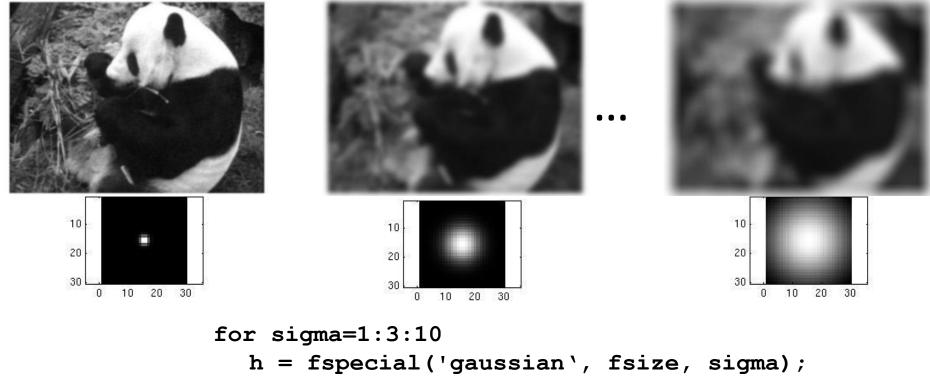
- >> hsize = 10;
- >> sigma = 5;
- >> h = fspecial('gaussian' hsize, sigma);



- >> mesh(h);
- >> imagesc(h); 🧿
- >> outim = imfilter(im, h);
- >> imshow(outim);

outim

Parameter σ is the "scale" / "width" / "spread" of the Gaussian kernel, and controls the amount of smoothing.



```
for sigma=1:3:10
    h = fspecial('gaussian', fsize, sigma);
    out = imfilter(im, h);
    imshow(out);
    pause;
end
```

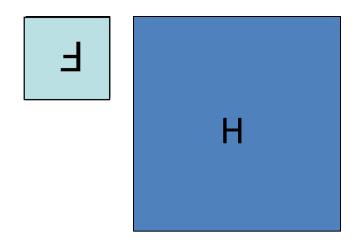
Convolution

- Convolution:
 - Flip the filter in both dimensions (bottom to top, right to left)
 - Then apply cross-correlation

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

$$G = H \star F$$

Notation for convolution operator



Convolution vs. correlation

Convolution

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

$$G = H \star F$$

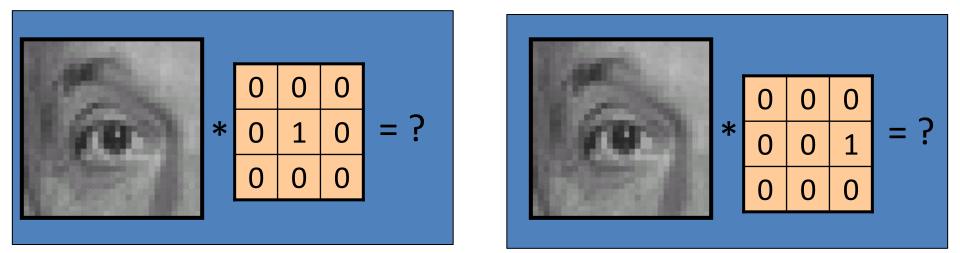
Cross-correlation

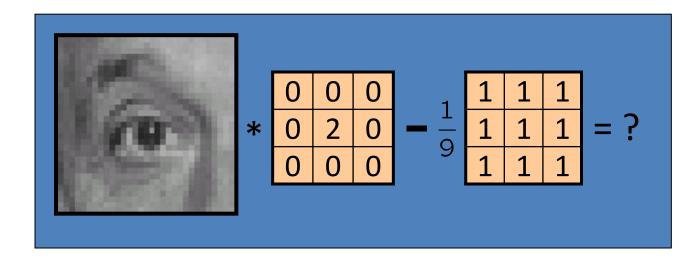
$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

 $G = H \otimes F$

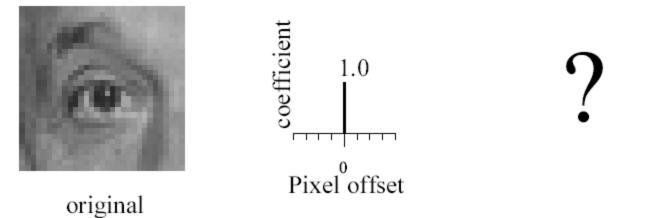
For a Gaussian or box filter, how will the outputs differ? If the input is an impulse signal, how will the outputs differ? Source: Darrell, Berkeley

Predict the filtered outputs

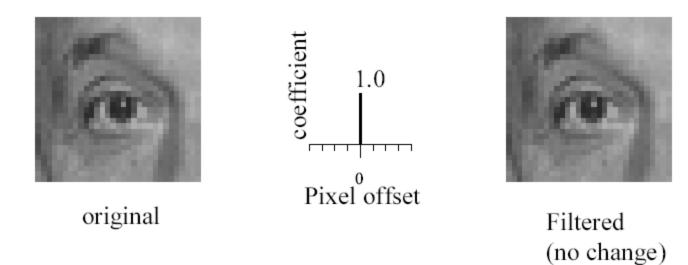


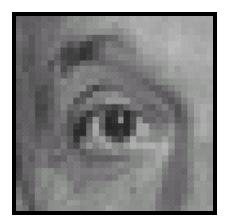


Source: Darrell, Berkeley

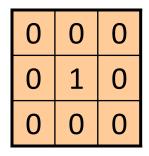


adapted from Darrell and Freeman, MIT



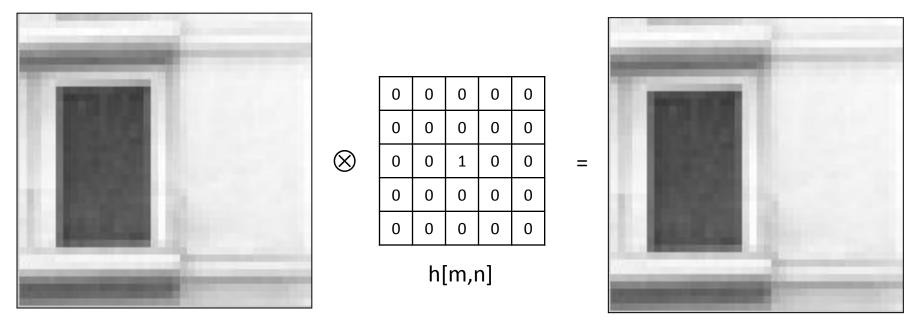


Original

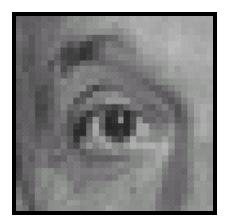


Filtered (no change)

Impulse $f[m,n] = I \otimes g = \sum_{k,l} h[m-k,n-l]g[k,l]$



f[m,n]



Original

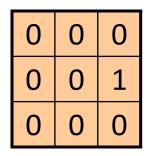
0	0	0	
0	0	1	
0	0	0	

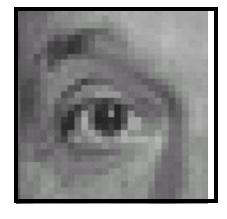
?

Source: Darrell, Berkeley

Source: D. Lowe

Original

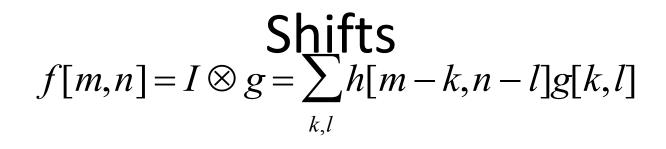


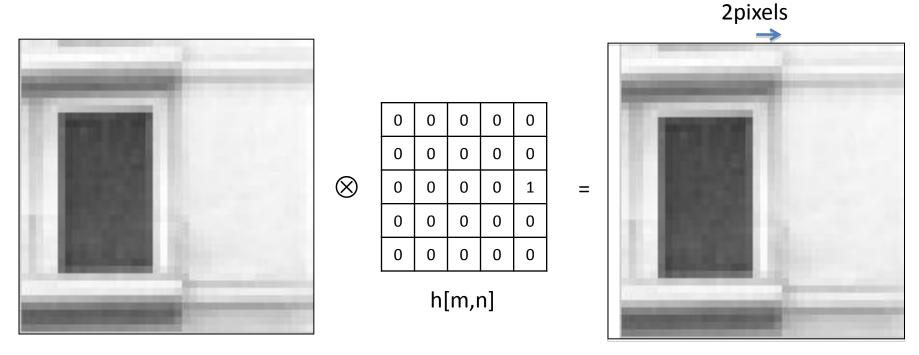


Shifted left by 1 pixel with correlation

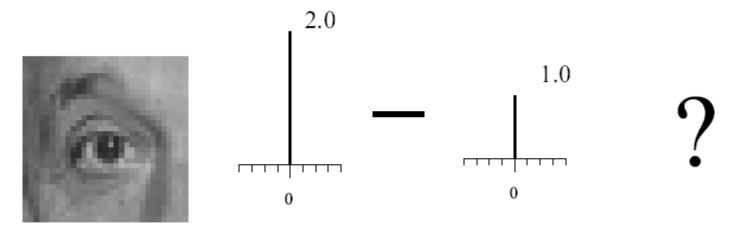
Source: Darrell, Berkeley

Source: D. Lowe



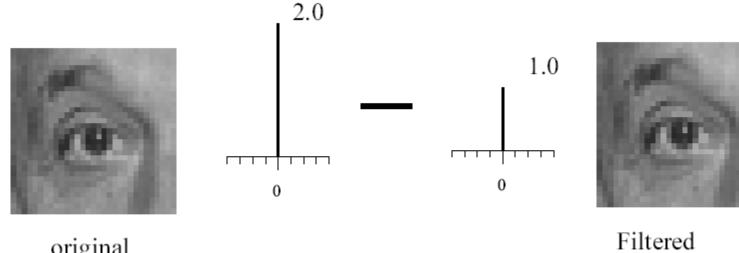


g[m,n]



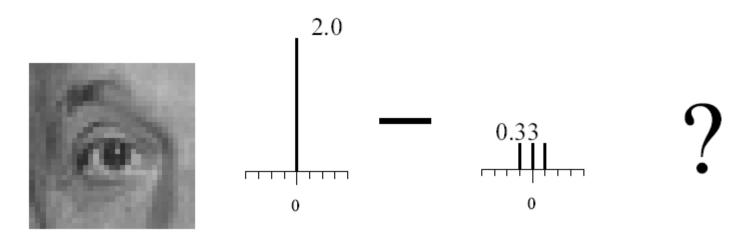
original

adapted from Darrell and Freeman, MIT



(no change)

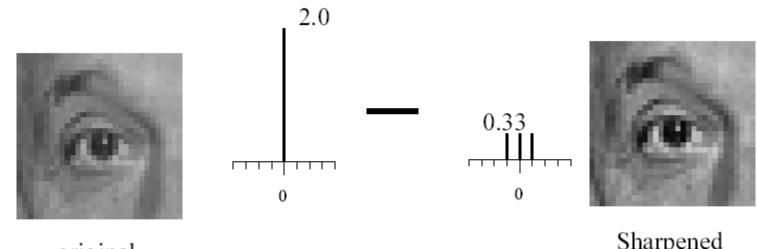
original



original

adapted from Darrell and Freeman, MIT

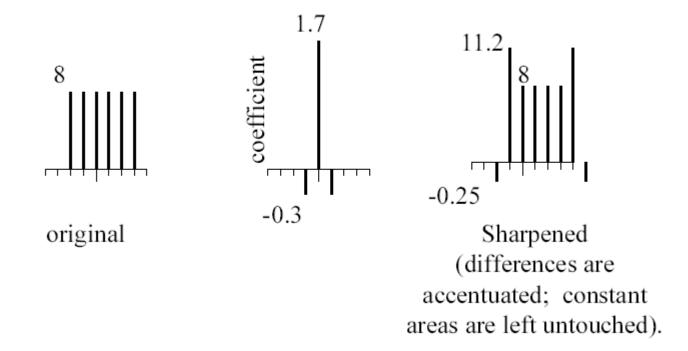
Sharpening



original

Sharpened original

Sharpening



0	0	0	
0	2	0	
0	0	0	

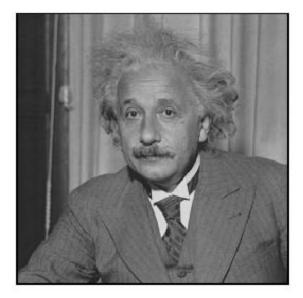
0.0

1	1	1	1
<u>-</u> 9	1	1	1
	1	1	1

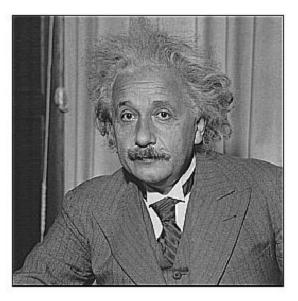
Original

Sharpening filter - Accentuates differences with local average

Filtering examples: sharpening



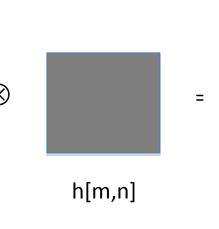
before



after

Rectangular filter

g[m,n]



f[m,n]

What does blurring take away?

detail

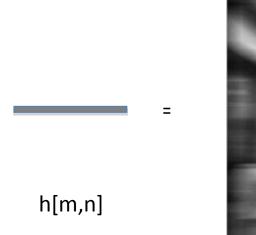
• Let's add it back:

=

=

Rectangular filter

g[m,n]



f[m,n]

Rectangular filter

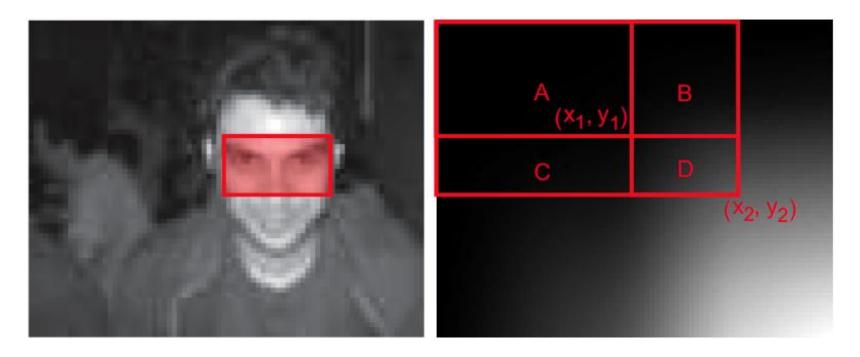
h[m,n]

=

g[m,n]

f[m,n]

Integral image



Shift invariant linear system

• Shift invariant:

 Operator behaves the same everywhere, i.e. the value of the output depends on the pattern in the image neighborhood, not the position of the neighborhood.

• Linear:

- Superposition: h * (f1 + f2) = (h * f1) + (h * f2)
- Scaling: h * (k f) = k (h * f)

Properties of convolution

- Linear & shift invariant
- Commutative:

f * g = g * f

• Associative

• Identity:

unit impulse e = [..., 0, 0, 1, 0, 0, ...]. f * e = f

• Differentiation:

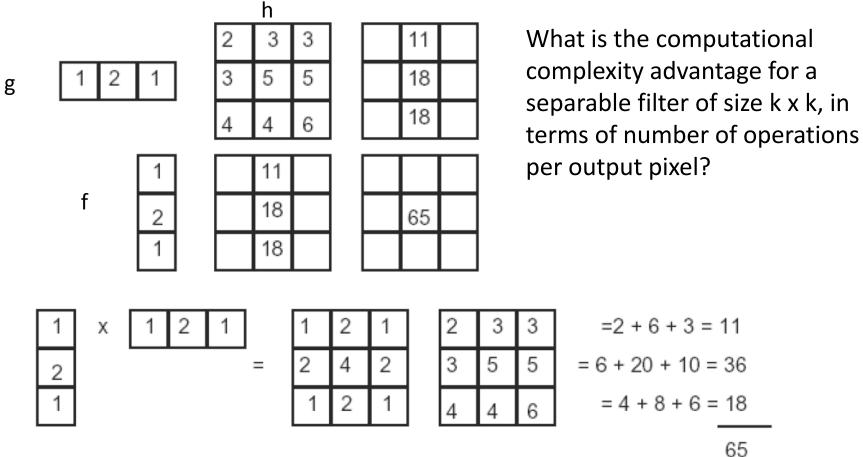
$$\frac{\partial}{\partial x}(f * g) = \frac{\partial f}{\partial x} * g$$

Separability

- In some cases, filter is separable, and we can factor into two steps:
 - Convolve all rows
 - Convolve all columns

Separability

• In some cases, filter is separable, and we can factor into two steps: e.g.,



Advantages of separability

- First convolve the image with a one dimensional horizontal filter
- Then convolve the result of the first convolution with a one dimensional vertical filter
- For a kxk Gaussian filter, 2D convolution requires k² operations per pixel
- But using the separable filters, we reduce this to 2k operations per pixel.

Seperable Gaussian

$$g(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp(-x^2/(2\sigma^2))$$

$$g(y) = \frac{1}{\sqrt{2\pi\sigma}} \exp(-y^2/(2\sigma^2))$$

Product?

$$g(x, y) = \frac{1}{2\pi\sigma^2} \exp(-(x^2 + y^2)/(2\sigma^2))$$

Advantages of Gaussians

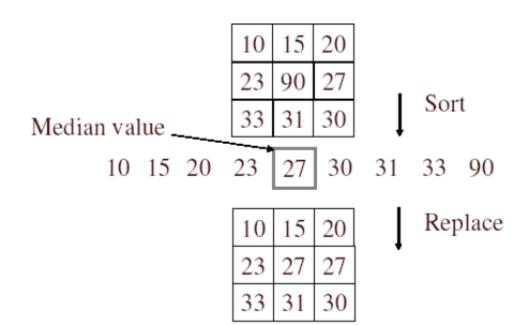
- Convolution of a Gaussian with itself is another Gaussian
 - ➤ so we can first smooth an image with a small Gaussian
 - then, we convolve that smoothed image with another small Gaussian and the result is equivalent to smoother the original image with a larger Gaussian.
 - If we smooth an image with a Gaussian having sd σ twice, then we get the same result as smoothing the image with a Gaussian having standard deviation (2σ)^{1/2}

Effect of smoothing filters

Additive Gaussian noise

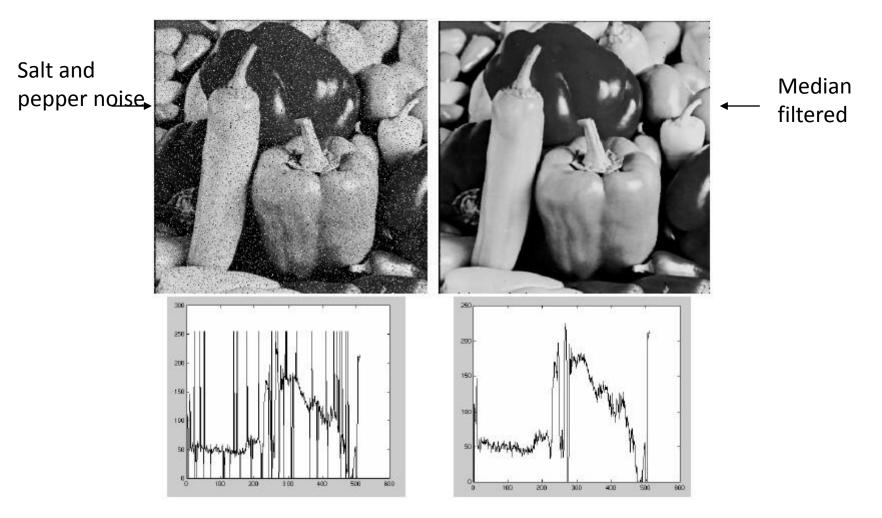
Salt and pepper noise

Median filter



- No new pixel values introduced
- Removes spikes: good for impulse, salt & pepper noise

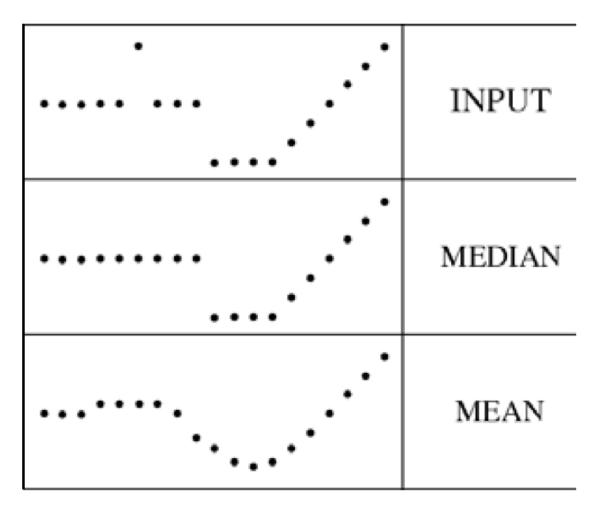
Median filter



Plots of a row of the image

Median filter

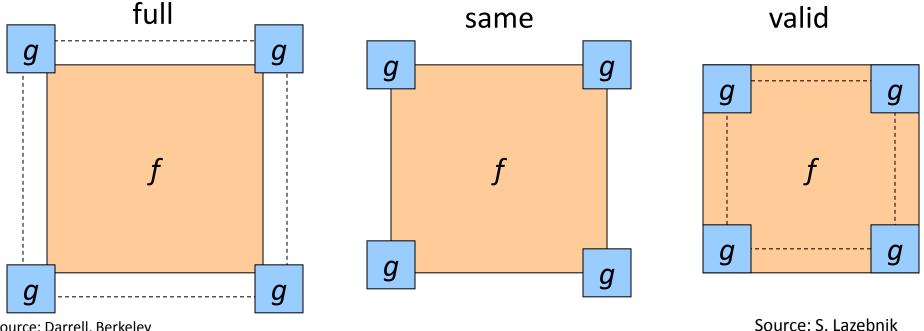
• Median filter is edge preserving



Source: Darrell, Berkeley

Boundary issues

- What is the size of the output?
- MATLAB: filter2(g, f, shape)
 - shape = 'full': output size is sum of sizes of f and g
 - shape = 'same': output size is same as f
 - shape = 'valid': output size is difference of sizes of f and g



Source: Darrell, Berkeley

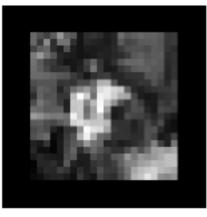
Boundary issues

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

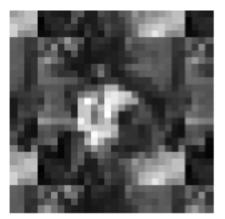
Boundary issues

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods (MATLAB):
 - clip filter (black): imfilter(f, g, 0)
 - wrap around: imfilter(f, g, 'circular')
 - copy edge: imfilter(f, g, 'replicate')
 - reflect across edge: imfilter(f, g, 'symmetric')

Borders



zero

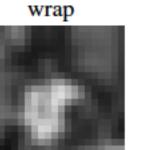


clamp

clamp

mirror

mirror



normalized zero

blurred: zero

