
Filters

CS 554 – Computer Vision

Pinar Duygulu

Bilkent University

Today’s topics

• Image Formation

• Image filters in spatial domain
– Filter is a mathematical operation of a grid of numbers
– Smoothing, sharpening, measuring texture

• Image filters in the frequency domain

– Filtering is a way to modify the frequencies of images
– Denoising, sampling, image compression

• Templates and Image Pyramids
– Filtering is a way to match a template to the image
– Detection, coarse-to-fine registration

Images as functions

Source: S. Seitz

Images as functions

• We can think of an image as a function, f, from

R2 to R:
• f(x, y) gives the intensity at position (x, y)

• Realistically, we expect the image only to be defined over a

rectangle, with a finite range:

– f: [a,b] x [c,d] [0, 255]

• A color image is just three functions pasted

together. We can write this as a “vector-valued”

function:

Source: S. Seitz

(,)

(,) (,)

(,)

r x y

f x y g x y

b x y

Digital images
• In computer vision we operate on digital (discrete) images:

• Sample the 2D space on a regular grid

• Quantize each sample (round to nearest integer)

• Image thus represented as a matrix of integer values.

Adapted from S. Seitz

2D

1D

Images as discrete functions

• Cartesian Coordinates

Source: Fei Feli Li, Stanford University

Today’s topics

• Image Formation

• Image filters in spatial domain
– Filter is a mathematical operation of a grid of numbers
– Smoothing, sharpening, measuring texture

• Image filters in the frequency domain

– Filtering is a way to modify the frequencies of images
– Denoising, sampling, image compression

• Templates and Image Pyramids
– Filtering is a way to match a template to the image
– Detection, coarse-to-fine registration

Zebras vs. Dalmatians

Both zebras and dalmatians have black and white pixels in about the same
number
 – if we shuffle the images point-wise processing is not affected

Need to measure properties relative to small neighborhoods of pixels
 - find different image patterns

Filtering
g [m,n] f [m,n]

We want to remove unwanted sources of variation, and keep the
information relevant for whatever task we need to solve

Source: Torralba, MIT

Filters

• Filtering:

 – Form a new image whose pixels are a combination of
original pixel values

 - compute function of local neighborhood at each position

• Goals:

• Extract useful information from the images

 Features (textures, edges, corners, distinctive points, blobs…)

• Modify or enhance image properties:

 super-resolution; in-painting; de-noising, resizing

• Detect patterns

 Template matching

Source: Fei Feli Li, Stanford University; James Hays, Brown

Smooth/Sharpen Images... Find edges... Find waldo…

 Source: Darrell, Berkeley

Source: Fei Feli Li, Stanford University

Common types of noise

– Salt and pepper noise:
random occurrences of
black and white pixels

– Impulse noise: random
occurrences of white pixels

– Gaussian noise: variations
in intensity drawn from a
Gaussian normal
distribution

Source: S. Seitz Source: Darrell, Berkeley

Gaussian noise

Fig: M. Hebert

>> noise = randn(size(im)).*sigma;

>> output = im + noise;

Source: Darrell, Berkeley

First attempt at a solution

• Let’s replace each pixel with an average of all
the values in its neighborhood

• Assumptions:

– Expect pixels to be like their neighbors

– Expect noise processes to be independent from
pixel to pixel

Source: Darrell, Berkeley

First attempt at a solution

• Let’s replace each pixel with an average of all
the values in its neighborhood

• Moving average in 1D:

Source: S. Marschner Source: Darrell, Berkeley

Weighted Moving Average

• Can add weights to our moving average

• Weights [1, 1, 1, 1, 1] / 5

Source: S. Marschner Source: Darrell, Berkeley

Weighted Moving Average

• Non-uniform weights [1, 4, 6, 4, 1] / 16

Source: S. Marschner Source: Darrell, Berkeley

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz Source: Darrell, Berkeley

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz Source: Darrell, Berkeley

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz Source: Darrell, Berkeley

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz Source: Darrell, Berkeley

Moving Average In 2D

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz Source: Darrell, Berkeley

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

Source: S. Seitz Source: Darrell, Berkeley

Correlation filtering

Say the averaging window size is 2k+1 x 2k+1:

Loop over all pixels in neighborhood around
image pixel F[i,j]

Attribute uniform weight
to each pixel

Now generalize to allow different weights depending on
neighboring pixel’s relative position:

Non-uniform weights

Source: Darrell, Berkeley

Correlation filtering

Filtering an image: replace each pixel with a linear combination of
its neighbors.

The filter “kernel” or “mask” H[u,v] is the prescription for the
weights in the linear combination.

This is called cross-correlation, denoted

Source: Darrell, Berkeley

Averaging Filter

adapted from Darrell and Freeman, MIT

Averaging Filter

adapted from Darrell and Freeman, MIT

Averaging Filter

Averaging Filter

adapted from Darrell and Freeman, MIT

Averaging Filter

adapted from Darrell and Freeman, MIT

Averaging filter

• What values belong in the kernel H for the moving average
example?

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

“box filter”

?

Source: Darrell, Berkeley

Smoothing by averaging

depicts box filter:
white = high value, black = low value

original filtered

Source: Darrell, Berkeley

Example

Source: Martial Hebert, CMU

Example

Source: Martial Hebert, CMU

Example

Source: Martial Hebert, CMU

Smoothing by averaging

Source: Martial Hebert, CMU

Smoothing by averaging

Source: Martial Hebert, CMU

Smoothing by averaging

Source: Martial Hebert, CMU

Smoothing by averaging

Source: Martial Hebert, CMU

Gaussian filter

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 2 1

2 4 2

1 2 1

• What if we want nearest
neighboring pixels to have the
most influence on the output?

This kernel is an
approximation of a
Gaussian function:

Source: S. Seitz Source: Darrell, Berkeley

A weighted average that
weights pixels at its center
much more strongly than
its boundaries

Smoothing with a Gaussian

Source: Darrell, Berkeley

Smoothing with a Gaussian

Source: Martial Hebert, CMU

Smoothing with a Gaussian

Result of blurring using
a uniform local model

Produces a set of
narrow vertical
horizontal and vertical
bars – ringing effect

Result of blurring
using a set of
Gaussian weights

Source: David Forsyth, UIUC

Smoothing with a Gaussian

Source: Martial Hebert, CMU

Gaussian filters
• What parameters matter here?

• Size of kernel or mask

– Note, Gaussian function has infinite support, but discrete filters
use finite kernels

σ = 5 with 10
x 10 kernel

σ = 5 with 30
x 30 kernel

Source: Darrell, Berkeley

Gaussian filters
• What parameters matter here?

• Variance of Gaussian: determines extent of
smoothing

σ = 2 with 30
x 30 kernel

σ = 5 with 30
x 30 kernel

Source: Darrell, Berkeley

Smoothing with a Gaussian

If is small : the smoothing will have little effect

If is larger : neighboring pixels will have larger
weights resulting in consensus of the neighbors

If is very large : details will disappear along
with the noise

Source: Martial Hebert, CMU

Gaussian filter

=1

=2

=4

Source: Torralba, MIT

Gaussian smoothing to remove
noise

Source: Martial Hebert, CMU

Gaussian smoothing to remove
noise

Source: Martial Hebert, CMU

Smoothing with a Gaussian

The effects of smoothing
Each row shows smoothing
with gaussians of different
width; each column shows
different realizations of
an image of gaussian noise.

Source: David Forsyth, UIUC

Smoothing with a Gaussian

• Filtered noise is sometimes useful

– looks like some natural textures, can be used to
simulate fire, etc.

Source: David Forsyth, UIUC

Gaussian kernel

Source: from Michael Black

Matlab
>> hsize = 10;

>> sigma = 5;

>> h = fspecial(‘gaussian’ hsize, sigma);

>> mesh(h);

>> imagesc(h);

>> outim = imfilter(im, h);

>> imshow(outim);

outim
Source: Darrell, Berkeley

Smoothing with a Gaussian

for sigma=1:3:10

 h = fspecial('gaussian‘, fsize, sigma);

 out = imfilter(im, h);

 imshow(out);

 pause;

end

…

Parameter σ is the “scale” / “width” / “spread” of the Gaussian
kernel, and controls the amount of smoothing.

Source: Darrell, Berkeley

Convolution

• Convolution:
– Flip the filter in both dimensions (bottom to top, right to left)

– Then apply cross-correlation

Notation for
convolution
operator

F

H

Source: Darrell, Berkeley

Convolution vs. correlation
Convolution

Cross-correlation

For a Gaussian or box filter, how will the outputs differ?

If the input is an impulse signal, how will the outputs differ?
Source: Darrell, Berkeley

Predict the filtered outputs

0 0 0

0 1 0

0 0 0

* = ?

0 0 0

1 0 0

0 0 0
* = ?

1 1 1
1 1 1
1 1 1

0 0 0
0 2 0
0 0 0

- * = ?

Source: Darrell, Berkeley

Practice with linear filters

adapted from Darrell and Freeman, MIT

Practice with linear filters

adapted from Darrell and Freeman, MIT

Practice with linear filters

0 0 0

0 1 0

0 0 0

Original Filtered

(no change)

Source: D. Lowe Source: Darrell, Berkeley

Impulse

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

f [m,n] I g h[m k,n l]g[k,l]
k,l

g[m,n]

h[m,n]

f[m,n]

=

Source: Torralba, MIT

Practice with linear filters

0 0 0

1 0 0

0 0 0

Original

?

Source: D. Lowe Source: Darrell, Berkeley

Practice with linear filters

0 0 0

1 0 0

0 0 0

Original Shifted left

by 1 pixel

with

correlation

Source: D. Lowe Source: Darrell, Berkeley

Shifts

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

f [m,n] I g h[m k,n l]g[k,l]
k,l

g[m,n]

h[m,n]

f[m,n]

=

2pixels

Source: Torralba, MIT

Practice with linear filters

adapted from Darrell and Freeman, MIT

Practice with linear filters

adapted from Darrell and Freeman, MIT

Practice with linear filters

adapted from Darrell and Freeman, MIT

Sharpening

adapted from Darrell and Freeman, MIT

Sharpening

adapted from Darrell and Freeman, MIT

Practice with linear filters

Original

1 1 1
1 1 1
1 1 1

0 0 0
0 2 0
0 0 0

-

Sharpening filter
- Accentuates differences with
local average

Source: D. Lowe Source: Darrell, Berkeley

Filtering examples: sharpening

Source: Darrell, Berkeley

Rectangular filter

g[m,n]

h[m,n]

=

f[m,n]

Source: Torralba, MIT

Source: Fei Fei Li, Stanford

Rectangular filter

g[m,n]

h[m,n]

=

f[m,n]

Source: Torralba, MIT

Rectangular filter

g[m,n]

h[m,n]

=

f[m,n]

Source: Torralba, MIT

Integral image

Source: Torralba, MIT

Shift invariant linear system

• Shift invariant:

– Operator behaves the same everywhere, i.e. the value of
the output depends on the pattern in the image
neighborhood, not the position of the neighborhood.

• Linear:

– Superposition: h * (f1 + f2) = (h * f1) + (h * f2)

– Scaling: h * (k f) = k (h * f)

Source: Darrell, Berkeley

Properties of convolution
• Linear & shift invariant

• Commutative:

f * g = g * f

• Associative

(f * g) * h = f * (g * h)

• Identity:

unit impulse e = […, 0, 0, 1, 0, 0, …]. f * e = f

• Differentiation:

Source: Darrell, Berkeley

Separability

• In some cases, filter is separable, and we can factor into two
steps:

– Convolve all rows

– Convolve all columns

Source: Darrell, Berkeley

Separability

• In some cases, filter is separable, and we can factor into two
steps: e.g.,

What is the computational
complexity advantage for a
separable filter of size k x k, in
terms of number of operations
per output pixel?

 f * (g * h) = (f * g) * h

g

h

f

Source: Darrell, Berkeley

Advantages of separability

adapted from Larry Davis, University of Maryland

Seperable Gaussian

Advantages of Gaussians

adapted from Larry Davis, University of Maryland

Effect of smoothing filters

Additive Gaussian noise Salt and pepper noise

Source: Darrell, Berkeley

Median filter

• No new pixel values

introduced

• Removes spikes: good

for impulse, salt &

pepper noise

Source: Darrell, Berkeley

Median filter

Salt and
pepper noise

Median
filtered

Source: M. Hebert

Plots of a row of the image

Source: Darrell, Berkeley

Median filter

• Median filter is edge preserving

Source: Darrell, Berkeley

Boundary issues

• What is the size of the output?

• MATLAB: filter2(g, f, shape)

– shape = ‘full’: output size is sum of sizes of f and g

– shape = ‘same’: output size is same as f

– shape = ‘valid’: output size is difference of sizes of f and g

f

g g

g g

f

g g

g g

f

g g

g g

full same valid

Source: S. Lazebnik Source: Darrell, Berkeley

Boundary issues
• What about near the edge?

– the filter window falls off the edge of the image

– need to extrapolate

– methods:

• clip filter (black)

• wrap around

• copy edge

• reflect across edge

Source: S. Marschner Source: Darrell, Berkeley

Boundary issues

• What about near the edge?

– the filter window falls off the edge of the image

– need to extrapolate

– methods (MATLAB):

• clip filter (black): imfilter(f, g, 0)

• wrap around: imfilter(f, g, ‘circular’)

• copy edge: imfilter(f, g, ‘replicate’)

• reflect across edge: imfilter(f, g, ‘symmetric’)

Source: S. Marschner Source: Darrell, Berkeley

Borders

From Rick’s book Source: Torralba, MIT

