Introduction

CS 554 – Computer Vision Pinar Duygulu Bilkent University

Why study computer vision?

Source: Svetlana Lazebnik, UIUC

Why study computer vision?

An image is worth 1000 words Images and movies are everywhere

Surveillance and security

Medical and scientific images

Source: Fei Fei Li, Stanford University

The goal of computer vision

• To extract "meaning" from pixels

What we see

What a computer sees

Source: S. Narasimhan

The goal of computer vision

• To extract "meaning" from pixels

Humans are remarkably good at this...

Source: "80 million tiny images" by Torralba et al.

What do you see in the picture?

Source: Martial Hebert, CMU

What do you see in the picture?

Black background Two objects One teapot One toy There is a light coming from right One object is shiny the other is not

Toy:

Consists of 5 layers, in different colors There is a text : Fisher Price The layers are in donut shape Layers are plastic Bottom is wood

Teapot:

Consists of body and handle Body is metal Handle is ceramic Handle: Dark blue on white Body : golden Reflection of toy on the body

Challenge – What do you see in the picture?

Source: Octavia Camps, Penn State

Challenge – What do you see in the picture?

A hand holding a man A hand holding a shiny sphere An Escher drawing

Source: Octavia Camps, Penn State

Perception and grouping

Subjective contours

Subjective contours

Kaniza triangle

Occlusion

* types of "junctions" give cues about surfaces, occlusion, and light.

I. Rock, The Logic of Perception, 1983.

Junctions

•The shape of junctions constrains the possible interpretations of the scene.

• Ambiguous : Paint and surface boundaries can be confused.

Adelson

Texture

Shading

Shading

Stereo

Stereo

Source: http://www.well.com/user/jimg/index.html

Parts and relations

How flexible are the spatial relations of the parts?

How good are our models?

Thompson, P. (1980). "Margaret Thatcher: a new illusion." Perception 9:483-484

How good are our models?

Thompson, P. (1980). "Margaret Thatcher: a new illusion." Perception 9:483-484

Is it only about matching?

What are our "models"?

How good are they?

Ron Rensick

Is it only about matching?

Context

Antonio Torralba

Context

a person?

Antonio Torralba

Context

a person?

Antonio Torralba

the blob is identical to the one on the previous slide after a 90deg rotation

Prior Expectations

Giuseppe Arcimboldo

Applications

Optical character recognition (OCR)

License plate readers

http://en.wikipedia.org/wiki/Automatic number plate recognition

Digit recognition yann.lecun.com

Check Entry				50
fort Back				-
DataTrade Denso Not Negotiable Still Solo Annue Sonada Solo Call March Ale Andre D Denso Back Songere No 6000 HENO Color State Solo Call Songere No 6000 HENO	<i>Ootlan '9</i> _/ 344999* 030	non tib 1 100 Voil	100 2-206. 1.10 	Roter
Batch No: 1001 Sequence No: 2 Routing No: 111907445 MERCHANT	Check Account No. 723 REMIT	Deck No.	Deck Ar 100	653.10

Source: S. Seitz, N. Snavely

Automatic check processing

Sudoku grabber http://sudokugrab.blogspot.com/

Biometrics

Fingerprint scanners on many new laptops, other devices

Face recognition systems now beginning to appear more widely http://www.sensiblevision.com/

Face detection

 Many consumer digital cameras now detect faces

Smile detection

The Smile Shutter flow

Imagine a camera smart enough to catch every smile! In Smile Shutter Mode, your Cyber-shot® camera can automatically trip the shutter at just the right instant to catch the perfect expression.

Sony Cyber-shot® T70 Digital Still Camera

Source: S. Seitz

Face recognition: Apple iPhoto software

http://www.apple.com/ilife/iphoto/

Source: S. Lazebnik, UIUC

Mobile visual search: Google Goggles Google goggles

Google Goggles in Action

Click the icons below to see the different ways Google Goggles can be used.

Automotive safety

- <u>Mobileye</u>: Vision systems in high-end BMW, GM, Volvo models
 - Pedestrian collision warning
 - Forward collision warning
 - Lane departure warning
 - Headway monitoring and warning

Self-driving cars

Source: S. Lazebnik, UIUC
Vision-based interaction: Xbox Kinect

3D Reconstruction: Kinect Fusion

YouTube Video

3D Reconstruction: Multi-View Stereo

YouTube Video

Source: S. Lazebnik, UIUC

/ Home

- . Try it
- What is Photosynth?
- Collections
- Team blog
- Videos
- System requirements
- About us
- FAQ

The **Photosynth Technology Preview** is a taste of the newest - and, we hope, most exciting - way to **view photos** on a computer. Our software takes a large collection of photos of a place or an object, analyzes them for similarities, and then displays the photos in a reconstructed **three-dimensional space**, showing you how each one relates to the next.

http://labs.live.com/photosynth/

Based on <u>Photo Tourism technology</u> developed by Noah Snavely, Steve Seitz, and Rick Szeliski

Google Maps Photo Tours

http://maps.google.com/phototours

Earth viewers (3D modeling)

Image from Microsoft's <u>Virtual Earth</u> (see also: <u>Google Earth</u>)

Source: Szeliski, Seitz. Chen

Object recognition (in supermarkets)

LaneHawk by EvolutionRobotics

"A smart camera is flush-mounted in the checkout lane, continuously watching for items. When an item is detected and recognized, the cashier verifies the quantity of items that were found under the basket, and continues to close the transaction. The item can remain under the basket, and with LaneHawk, you are assured to get paid for it... "

Object recognition (in mobile phones)

- This is becoming real:
 ______Microsoft Research
 - Point & Find, Nokia

Special effects: shape and motion capture

Vision in space

<u>NASA'S Mars Exploration Rover Spirit</u> captured this westward view from atop a low plateau where Spirit spent the closing months of 2007.

Vision systems (JPL) used for several tasks

- Panorama stitching
- 3D terrain modeling
- Obstacle detection, position tracking
- For more, read "<u>Computer Vision on Mars</u>" by Matthies et al.

Robotics

NASA's Mars Spirit Rover http://en.wikipedia.org/wiki/Spirit_rover

http://www.robocup.org/

Source: Szeliski, Seitz. Chen

Medical imaging

3D imaging MRI, CT Image guided surgery Grimson et al., MIT

Source: Szeliski, Seitz. Chen

Why is computer vision difficult?

Challenges: viewpoint variation

Michelangelo 1475-1564

Source: Fei-Fei, Fergus & Torralba

Challenges: illumination

Challenges: scale

Source: Fei-Fei, Fergus & Torralba

Challenges: deformation

Xu, Beihong 1943

Source: Fei-Fei, Fergus & Torralba

Challenges: occlusion

Source: Fei Fei, Fergus, Torralba

Challenges: Background Clutter

2007 National Geographic Society. All rights reserved

Challenges: Motion

Source: Svetlana Lazebnik, UIUC

Challenges: object intra-class variation

Source: Fei-Fei, Fergus & Torralba

Challenges: local ambiguity

Source: Fei-Fei, Fergus & Torralba

Challenges: local ambiguity

Source: Rob Fergus and Antonic

Challenges: local ambiguity

Source: Rob Fergus and Antonic

Challenges: Inherent ambiguity

 Many different 3D scenes could have given rise to a particular 2D picture

Challenges or opportunities?

- Images are confusing, but they also reveal the structure of the world through numerous cues
- Our job is to interpret the cues!

Depth cues: Linear perspective

Depth cues: Aerial perspective

Depth ordering cues: Occlusion

Source: J. Koenderink

Shape cues: Texture gradient

Shape and lighting cues: Shading

Image source: Svetlana Lazebnik, UIUC

Position and lighting cues: Cast shadows

Source: J! Koenderink

Grouping cues: Similarity (color, texture, proximity)

Grouping cues: "Common fate"

Origins of computer vision

(a) Original picture.

(b) Differentiated picture.

L. G. Roberts <u>Machine Perception of</u> <u>Three Dimensional Solids</u>

(c) Line drawing.

(d) Rotated view.

Source: Svetlana Lazebnik, UIUC

Connections to other disciplines

Source: Svetlana Lazebnik, UIUC