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Image Mosaics

Goal

* Stitch together several images into a seamless composite

Adapted from Steven Seitz, University of Washington




Motivation

* Are you getting the whole picture?
— Compact Camera FOV = 50 x 35°

Adapted from Brown & Lowe
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Motivation

* Are you getting the whole picture?
— Compact Camera FOV = 50 x 35°

— Human FOV =200 x 135°
— Panoramic Mosaic =360 x 180°

Adapted from Brown & Lowe
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How to create panoramas?

* Ordering = matching images

Adapted from Brown & Lowe
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How to create panoramas?

* Ordering != matching images




Recognising Panoramas

Adapted from Brown & Lowe
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Basic Procedure

Take a sequence of 1images from the same position

* Compute transformation between second 1image
and first

* Shift the second 1image to overlap with the first
* Blend the two together to create a mosaic
* If there are more 1mages, repeat

Adapted from Steven Seitz, University of Washington




Aligning Images
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Translations are not enough to align images

Adapted from Steven Seitz, University of Washington
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Image Reprojection

The mosaic has a natural interpretation in 3D

* The images are reprojected onto a
common plane

* The mosaic 1s formed on this plane

Adapted from Steven Seitz, University of Washington




Image Reprojection

Basic question

* How to relate two images from the same camera center?
— how to map a pixel from PP1 to PP2

PP2

Answer

» Cast a ray through each pixel in PP1
* Draw the pixel where that ray intersects PP2

PP1

Adapted from Steven Seitz, University of Washington




Image Reprojection
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Observation

* Rather than thinking of this as a 3D reprojection, think of it
as a 2D image warp from one image to another

Adapted from Steven Seitz, University of Washington




Homographies
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Perspective projection of a plane
e [ots of names for this:

homography, texture-map, colineation, planar projective map
* Modeled as a 2D warp using homogeneous coordinates

To apply a homography H
* Compute p’ = Hp (regular matrix multiply)

* Convert p’ from homogeneous to 1image coordinates
— divide by w (third) coordinate

Adapted from Steven Seitz, University of Washington




Image Warping
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Adapted from Steven Seitz, University of Washington maps to
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Homographies
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Adapted from Martial Hebert, CMU




Homographies

Adapted from Serge Belongie
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Homographies
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In inhomogenous coordinates (z}, = z9/z and yh = s/ ),

Hyyzy + Hygyy + Hizz
Hziz1 + Haoyy + Hazz
Hyyxy 4 Hoaoyr + Hozzy
Hyzy + Hyoyy + Hazzy

Without loss of generality, set z; = 1 and rearrange:

.I_
Iy =

Yy =

zy(Hayzy + Hagyn + Haz) = Huay + Hiann + His
Uo(H3yzy + Hagyn + Hag) = Hoywy + Hopyy + Hog

Adapted from Serg. _ _____
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Homographies
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Adapted from Serge Belongie
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Image Blending

Adapted from Steven Seitz, University of Washington




Image Blending : Feathering
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Adapted from Steven Seitz, University of Washington




Image Blending : Effect of window size
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Adapted from Steven Seitz, University of Washington
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Image Blending : Effect of window size

ity of Washington

Adapted from Steven Seitz, Univers




Pyramid Blending
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(d)

Create a Laplacian pyramid, blend each level

* Burt, P. J. and Adelson, E. H.,
Transactions on Graphics, 42(4), October 1983, 217-236.

Adapted from swven seiz, umversity 01 wasngon
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Image Editting
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For more info: Perez et al, SIGGRAFH 2003
htip:fresearch.microsofi.comivision/cambridge/papersiperez  sigqraph03.pdf

Adapted from Steven Seitz, University of Washington




Image war;
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Given a coordinate transform (x’,y’) = h(x,y) and a
source image f(x,y), how do we compute a
transformed image g(x’,y’) = flh(x,y))?

Adapted from Steven Seitz, University of Washington




Forward warj
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Send each pixel f(x,y) to its corresponding location
(x’,y)) = h(x,y) In the second image

Q: what if pixel lands “between” two pixels?

Adapted from Steven Seitz, University of Washington




Forward warping
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Send each pixel f(x,y) to its corresponding location
(X’,y) = h(x,y) in the second image

Q: what if pixel lands “between” two pixels?

A: distribute color among neighboring pixels (x',y’)
— Known as “splatting”

Adapted from Steven Seitz, University of Washington




Inverse warping
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Get each pixel g(x’,y’) from its corresponding location
(x,y) = h(x’,y) in the first image

Q: what if pixel comes from “between” two pixels?

Adapted from Steven Seitz, University of Washington




Inverse warping
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Get each pixel g(x’,y’) from its corresponding location
(x,y) = h’(x’,y’) in the first image

Q: what if pixel comes from “between” two pixels?
A: resample color value

Adapted from Steven Seitz, University of Washington




Autostitching
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Method so far 1s not completely automatic
-need to know which pairs fit together

AutoStitch, by Matthew Brow and David Lowe
-based on feature matching techniques

Adapted from Steven Seitz, University of Washington




Autostitching — Feature Matching
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* SIFT Features
— Geometrically invariant to similarity

transforms,
» some robustness to affine change

— Photometrically invariant to affine changes in
Intensity
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Adapted from Brown & Lowe



Autostitching

Adapted from




Autostiching
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Adapted from Steven Seitz, University of Washington
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Matching Features
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What do we do about the “bad” matches?

Adapted from Steven Seitz, University of Washington




RAndom SAmple Consensus (RANSAC)
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Select one match, count inliers

Adapted from Steven Seitz, University of Washington




Least Squares Fit
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Find “average” translation vector

Adapted from Steven Seitz, University of Washington




RAndom SAmple Consensus (RANSAC)
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Popular approach for robust model fitting with outliers

RANSAC loop:
> 1. Select K feature matches (at random)
< 2. Fitmodel (e.g., homography) based on these features

3. Count inliers:

— number of other features that fit the model to within some
specified threshold

4. The model with the largest number of inliers wins
9. Re-fit the model based on all of these inliers

More info:
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL COPIES/FISHER/RANSAC/

Adapted from Steven Seitz, University of Washington
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Adapted from




Autostitching — RANSAC for Homography

Adapted from Brown & Lowe




Autostitching — Finding the Panoramas
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Adapted from Brown & Lowe




Autostitching — Finding the Panoramas
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Adapted from Brown & Lowe




Autostitching — Finding the Panoramas
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Adapted from Brown & Lowe




Autostitching — Finding the Panoramas
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Adapted from Brown & Low .
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Autostitching — More Examples

Adapted from Brown & Lowe
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Autostitch

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html
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Autostitch

25 of 57 images aligned

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html
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Autostitch

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html
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Autostitch

Final result

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html




