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Motion
• A lot of information can be extracted from time varying 

sequences of images, often more easily than from static 
images. 
– e.g, camouflaged objects are only easily seen when they 

move. 
– the relative sizes and position of objects are more easily 

determined when the objects move. 

• For example, given an image of a moving car, deciding which 
pixels in the image represent motion can help to decide which 
pixels belong to the car, and which to the static background. 

Adapted from Robyn Owens, http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT12/node3.html
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Biological Motivation for Studying Motion 
• Estimation of the motion of predators advancing at a mobile animal is 

important to its ability to take flight away from the predator and survive
• Human beings do it all the time without even realizing it, for example, this 

is why we have saccadic eye movements (that is our eyes jump from 
focusing at one spot to another). Thus, if the scene has no motion, and we 
are still our eyes are moving. 

• Fixating on something close and very far away and moving your head 
(either sideways or forward and backward), you can notice that the retinal 
image of the close by tree moves more than the one of a distant tree, i.e. the 
motion in the retinal plane is inversely proportional to the distance from the 
retinal plane.

• Animals obtain some information about the environment structure, e.g. 
pigeons move their necks to get the so called ``motion parallax''. 

Adapted from Kosecka & Sastry
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Motion

• Studying the motion in detail, we can answer such 
questions as 
– How many moving objects there are? 
– Which directions they are moving in? 
– Whether they are undergoing linear or rotational motion? 
– How fast they are moving? 

Adapted from Robyn Owens, http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT12/node3.html
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Motion

• The analysis of visual motion consists of two stages:
– the measurement of the motion, 
– the use of motion data to segment the scene into distinct 

objects and to extract three dimensional information about 
the shape and motion of the objects. 

Adapted from Robyn Owens, http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT12/node3.html
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Motion

• There are two types of motion to consider:
– movement in the scene with a static camera, 
– movement of the camera, or ego motion. 

Since motion is relative anyway, these types of motion 
should be the same. 

However, this is not always the case, since if the scene 
moves relative to the illumination, shadow effects need 
to be dealt with. Also, specularities can cause relative 
motion within the scene. For this lecture, we will 
ignore all such complications. 

Adapted from Robyn Owens, http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT12/node3.html
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Motion

We are now considering a sequence 
of images captured over time. 

This can be viewed as adding a third 
dimension, the time t, to the image. 
That is, each pixel is not only a 
function I(x,y) of the spatial 
coordinates (x,y) but also a function
I(x,y,t) of time. 

The main issue in motion analysis is 
to recover information about the 
motion in the scene from the 
variation of the intensities I(x,y,t) 
over time.

Adapted from Martial Hebert, CMU
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Motion field

Adapted from Martial Hebert, CMU

• Given a point in the scene at position M at 
time t, the point moves to M(t+dt) after a 
small interval dt. 

• The corresponding velocity vector is 
V = dM/dt. The points M(t) and M(t+dt) 
project at points m(t) and m(t+dt) in the 
image. 

• If x(t) and y(t) are the camera coordinates 
of m(t), the apparent velocity in the image 
has components:
u = dx/dt and v = dy/dt

• Motion filed is the set of values u(x,y) and 
v(x,y) over the image 

• The problem of motion recovery is then to 
estimate u and v at the image pixels

When an object moves in front of a camera, 
there is a corresponding change in the image 
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Motion field
• If we are only dealing with rigid body translations and 

rotations, then the motion field will be continuous except 
at the silhouette boundaries of objects. 

 
 

 
 

The motion field of a moving square.

 

Adapted from Robyn Owens, http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT12/node3.html
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The motion field

 
 

 

 
 

 

Adapted from Robyn Owens, http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT12/node3.html

•In the case of pure camera translation, the direction of motion is along 
the projection ray through that image point from which (or towards 
which) all motion vectors radiate. 

•The point of divergence (or convergence) of all motion field vectors is 
called the focus of expansion FOE (or focus of contraction FOC). 
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Focus of Expansion – for translating camera

Adapted from Michael Black

•In the case of divergence we have forward motion of the camera

points closer to the camera move more quickly across the 
Image plane
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Focus of Expansion – for translating camera

Adapted from Trevor Darrell, MIT

and in the case of convergence, backwards motion. 
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Optical flow

 

 

 
 

 

Adapted from Robyn Owens, http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT12/node3.html

Optical flow is the apparent motion of brightness patterns in the image. Generally, 
optical flow corresponds to the motion field, but not always. 

 
 

 

For example, the motion field 
and optical flow of a rotating 
barber's pole are different. 

In general, such cases are 
unusual, and for this lecture 
we will assume that optical 
flow corresponds to the 
motion field. 
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Optical flow

 
 

 

 
 

 

Adapted from http://robotics.eecs.berkeley.edu/~sastry/ee20/vision3/node2.html

 
 

 

A Rubik's cube on a rotating turntable and 
Flow vectors calculated from comparing 
the two images of a Rubik's cube , taken 
from Russell and Norvig, ``AI, A Modern 
Approach'', Prentice Hall, 1995, 

The optical flow describes the direction and the speed of 
motion of the features in the image. 
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Optical Flow

• Figure contains two distinct 
motions:

• The can is moving more rapidly 
than the background

• This can be used for detecting 
object boundaries
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Optical flow

 

 

 
 

 

Adapted from Martial Hebert, CMU

 
 

 

Let us consider two 
frames at times t-1  and t. 

At a given pixel (x,y), the 
flow components are 
given by u(x,y) and 
v(x,y). 

At time t, pixel (x,y) has 
moved to position 
(x+u(x,y), y+v(x,y)) with 
intensity I(x+u(x,y), 
y+v(x,y), t). 
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Brightness Constancy

Adapted from Michael Black, Brown University

i.e.  the intensity of a scene point does not change over time. This implies that 
we assume Lambertian sufraces and no change in illumination during the 
interval dt.
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Brightness Constancy

Adapted from Michael Black, Brown University

This assumption of brightness conservation implies that : assuming that u and v 
are small, we can use a first order approximation:

I(x+u(x,y), y+v(x,y), t+1) = I(x,y,t)
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Optical Flow Equation

• Assuming that u and v are small we can make a 
first-order approximation 

The two derivatives are the components of the image gradient at (x,y) 
which are denoted by Ix and Iy . 

It as the difference I(x,y,t)-I(x,y,t-1)

Substituting this approximation of I(x+u(x,y), y+v(x,y), t)in the 
brightness constancy equation, we end up with the fundamental equation 
of motion:

Adapted from Martial Hebert, CMU
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Notation 

• The component of the image velocity in the 
direction of the image intensity gradient is

Adapted from Martial Hebert, CMU
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Optical flow

 
 

 

 
 

 

Adapted from http://robotics.eecs.berkeley.edu/~sastry/ee20/vision3/node2.html

 
 

 
In order to be able to measure optical flow we need to find 
corresponding points between two frames. 

One possibility would be to exploit the similarity between the 
image patches surrounding the individual points. 

Two measures of similarity:
• Sum of squared differences (SSD) 
• Cross-correlation



22

Minimize Brightness difference

Adapted from Michael Black, Brown University
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Minimize Brightness difference

Adapted from Michael Black, Brown University
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Simple SSD algorithm 

Adapted from Michael Black, Brown University
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Optical flow

 
 

 

 
 

 

Adapted from http://robotics.eecs.berkeley.edu/~sastry/ee20/vision3/node2.html

 
 

In spite of the fact that the dark square moved between the two consecutive frames, 
observing purely the cut-out patch we cannot observe any change, or we may assume 
that the observed pattern moved arbitrarily along the direction of the edge. The fact that 
one cannot determine the optical flow along the direction of the brightness pattern is 
known as aperture problem 
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Aperture Problem

Adapted from Martial Hebert, CMU

Consider one point in the image. We are computing the gradient in a small window around this 
point (the “aperture”). 
Within this small window, the intensity varies in the direction of the gradient, but not in the 
direction perpendicular to the gradient. 
In terms of edges: the intensity varies across the edge but not along the edge. 
As a result, a motion (u,v) that is parallel to the edge can never be recovered. In other words, 
even though the flow has two coordinates, only one of them (in the direction of the gradient) can 
be recovered. 
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Aperture Problem

Adapted from Michael Black, Brown University
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Aperture Problem

Adapted from Martial Hebert, CMU

The optical flow equation gives us one constraint per 
pixel, but we have two unknowns u and v. Therefore, the 
flow cannot be recovered unambiguously from this 
equation alone. The problem is under-constrained.

Because of the under-constrained nature of the problem. 
One can solve the optical flow only by adding more 
constraints to the optical flow equation.
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Constant flow

Adapted from Martial Hebert, CMU

Suppose that we assume that the flow is constant 
(u,v) over a small region W in the image. The idea 
being that there is enough variation of gradient within 
W in order to recover the flow. We can express the 
fact that the optical flow equation is satisfied at every 
point of W by saying that the function E defined by:

is close to 0. More formally, the constant flow (u,v) 
most consistent with the intensity values in W is 
found as:
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Constant flow

Adapted from Martial Hebert, CMU

The minimization can be expressed as a simple least-squares problem:

Therefore, assuming constant flow over a region, motion can be estimated 
directly by a simple least squares estimation.
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Feature Tracking

Adapted from Martial Hebert, CMU

1 ) Extract features - The features that are most often used are the corner features

2) Track the features from frame to frame. For this, we are going to 
assume that the frame are spaced closely enough in time that the 
motion between frames is small.
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Feature Tracking

Adapted from Martial Hebert, CMU

Given a feature at location (xo,yo) in one image I1, the tracking problem is to basically find the

position (xo+u,yo+v) of the corresponding feature in the next image in the sequence I2, where u

and v are the components of the motion field at (xo,yo). Let us define a window W around (xo,yo)

The set of pixels inside W in I1 is denoted by W(I1). Assuming that the window is not too large, we 
can assume that the motion field is constant inside W. Therefore, we can use the constant flow 
algorithm to recover u and v. This is recovered by minimizing in u and v the quantity:

It turns out that the solution is given by:
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Feature Tracking

Adapted from Martial Hebert, CMU

Remarkably, the matrix involved in this calculation is exactly the 
same as the matrix used in the corner detector!! 

This is not surprising: The matrix characterizes the 2-D 
distribution of the gradient vectors in W, and this relation states 
that the variation of intensity over time is the product of the 
motion vector by the gradient distribution. 

Note in particular that the matrix is singular when W contains an 
edge (gradient in one direction only) which is exactly when the 
motion vector cannot be recovered.
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Feature Tracking – Iterative algorithm

Adapted from Martial Hebert, CMU

the feature tracking algorithm 
involves solving for the constant 
motion inside W by inverting the 
“corner” matrix. This gives the 
offset (u,v) to the position in the 
next image.

At each iteration the window 
W is shifted by the recovered 
motion to W’. The pixels 
W(I1) and W’(I2) are then 
compared (using SSD for 
example). If they are too 
different, that means that the 
motion (u,v) is not quite 
correct and another iteration 
of the constant flow is 
applied, replacing W by W’. 
The iterations continue until 
(u,v) because very small or 
the windows match.
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Limits of the local gradient method

Adapted from Trevor Darrell, MIT
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Feature Tracking

Adapted from Martial Hebert, CMU

Since we are interested in the motion of the center point (xo,yo) of W, it 
might be useful to give more weight to the pixels at the center of W than 
to those at the periphery. This is achieved by multiplying the values 
Ix(x,y) and Iy(x,y) by a weight w(x,y) which is maximum at the center 
and tapers off at the edges of W (a Gaussian, for example.)

To deal with larger motions, it can be advantageous to first reduce the 
images (after smoothing) and recover the motion at a coarse scale before 
recovering motion at full resolution. Incidentally, this class of trackers is 
called the Lucas-Kanade tracker.
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Pyramid : Coarse to fine

Adapted from Trevor Darrell, MIT
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Pyramid : Coarse to fine

Adapted from Trevor Darrell, MIT
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Visual Tracking

Adapted from G. Hager, JHU

Tracking is the problem of generating an inference about the motion of an object given a sequence of 
images.

-Motion Capture: if we can track a moving person accurately, then we can make an accurate record of 
their motions. Once we have this record, we can use it to drive a rendering process; for example, we might 
control a cartoon character, thousands of virtual extras in a crowd scene, or a virtual stunt avatar. 
Furthermore, we could modify the motion record to obtain slightly different motions. This means that a 
single performer can produce sequences they wouldn’t want to do in person.

-Recognition From Motion: the motion of objects is quite characteristic. We may be able to determine the 
identity of the object from its motion; we should be able to tell what it’s doing. –

-Surveillance: knowing what objects are doing can be very useful. For example, different kinds of trucks 
should move in different, fixed patterns in an airport; if they do not, then something is going very wrong. 
Similarly, there are combinations of places and patterns of motions that should never occur (no truck 
should ever stop on an active runway, say). It could be helpful to have a computer system that can monitor 
activities and give a warning if it detects a problem case.

-Targeting: a significant fraction of the tracking literature is oriented towards (a) deciding what to shoot 
and (b) hitting it. Typically, this literature describes tracking using radar or infra-red signals (rather than 
vision), but the basic issues are the same — what do we infer about an object’s future position from a 
sequence of measurements? (i.e. where should we aim?)
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Visual Tracking

Adapted from G. Hager, JHU
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Visual Tracking

Adapted from G. Hager, JHU
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Application

Adapted from Trevor Darrell, MIT
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Model-based Brightness Constraints: on Direct Estimation of Structure and Motion

http://www.ai.mit.edu/people/gideon/Demos/DirectMethods/Demo1.html
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Structure from Motion
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Structure from Motion
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Applications of Optical flow

Adapted from Michael Black, Brown University
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Applications of Optical flow

Adapted from Michael Black, Brown University
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Multiple Motions

Adapted from Michael Black, Brown University
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Multiple Motions

Adapted from Michael Black, Brown University
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Layered Representation

Adapted from Michael Black, Brown University
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Multiple Motions

Adapted from Michael Black, Brown University
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Layered Image Representation

Adapted from Martial Hebert

Instead of using only the egomotion 
estimated over the entire image, we 
need to segment out the various 
layers from the image.



53

Layered Image Representation

Adapted from Martial Hebert
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Dominant Motion

Adapted from Martial Hebert
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Layered Image Representation

http://www-bcs.mit.edu/people/jyawang/demos/garden-layer/layer-demo.html Wang & Adelson
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Layered Image Representation

http://www-bcs.mit.edu/people/jyawang/demos/garden-layer/layer-demo.html Wang & Adelson
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Layered Image Representation

http://www-bcs.mit.edu/people/jyawang/demos/garden-layer/layer-demo.html Wang & Adelson
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Layered Image Representation - Application

http://www-bcs.mit.edu/people/jyawang/demos/garden-layer/layer-demo.html Wang & Adelson

video editing and video manipulation 
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Transparency

Adapted from Michael Black, Brown University
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Transparency

Adapted from Michael Black, Brown University
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Background Subtraction

Adapted from Martial Hebert, CMU

It is important to segment the moving objects from the background either when viewing a scene 
from a fixed camera or after stabilization of the camera motion.

very important in many applications: surveillance, intelligent rooms, compression (MPEG-7), etc.
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Background Subtraction

• Even simple image differencing provides an edge detector for the 
silhouettes of texture-free objects moving over any static 
background. 

I(x,y,t) I(x,y,t+1) I(x,y,t+1) - I(x,y,t)
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Motion in real images

Adapted from G. Hager, JHU
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Motion in real images

Adapted from G. Hager, JHU
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Background Subtraction

Adapted from Martial Hebert, CMU

The first simple idea would be to identify those pixels that are on 
moving objects by simply thresholding the difference of intensity 
It(x,y) - I t-1(x,y) between the pixel values at times t and t-1, or to 
threshold the difference between the current image and the 
background image I(x,y) - Ig(x,y). 

This approach will not work in general because of the key 
problems in motion segmentation. In particular the changing 
background: On a pixel by pixel basis, the background is never 
stationary. The pixel values change constantly due to gradual 
changes in illumination, and small motion in the environment (for 
example tree leaves in the wind.)
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Background Model

Adapted from Martial Hebert, CMU

The main problem is that each pixel in the 
background varies in a different way over 
time. We need to represent the variation 
pattern of each pixel as computed from 
observing sequences of training images 
from the background. We’ll assume for 
now that we have a set of T images It of 
the background to use for training. We can 
characterize the variation of each pixel 
over time by a probability distribution Pb, 
meaning that Pb(I(x,y) = v) is the 
probability that pixel (x,y) has value v if it 
is in the background.

The background is modeled on a pixel-by-pixel basis 
by computing at each pixel: the mean m of the pixel 
value over time, and the standard deviation s. Each 
pixel is then assumed to have a normal (Gaussian) 
distribution N(µ,σ).

A pixel in the new image is classified as a foreground 
pixel if |I(x,y) - µ| > kσ. k controls the confidence 
with which we want to detect foreground pixels. k = 3 
implies 99% confidence.
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Mixture Models

Adapted from Martial Hebert, CMU

The problem with this approach is that the normal 
distribution may be too simplistic of a model. For 
example, because of small motions in the background 
scene, a given pixel may be on, for example, three 
different regions. In that case the sigma of the pixel 
values may be artificially large and lead to wrong 
segmentation results. A improved approach is to 
represent the distribution of each pixel in the 
background as a weighted sum of normal 
distributions (called a “mixture of Gaussians”). Each 
Gaussian is weighted according to the frequency with 
which it explains the background.

Pixels that are more than two standard 
deviations away from all the 
components of the mixture model are 
classified as background pixels.
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Linear Prediction and Adaptation

Adapted from Martial Hebert, CMU

the background may change gradually over time, for example, 
because of gradual changes in lighting. As a result, the model 
computed from initial training images is no longer valid after 
observing the scene for some time.

Therefore, the background model needs to be updated over 
time. In general, a linear update isused, of the form:

model at time t+1 = (1-α) (model at time t) + α (new data)

α is the learning rate. If α is close to 1, the model is 
re-created everytime new data arrives; if α is close to 
0, the background model changes very slowly over 
time.
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Hysteresis Thresholding

Adapted from Martial Hebert, CMU

moving objects typically form connected 
regions in the image. It is important to 
perform the segmentation in a way that 
favors connected regions.

The previous techniques tend to generate 
fragmented regions because some pixels 
that are part of the moving object may 
have values that are too close to the 
background values and are therefore not 
classified as foreground pixels.

Pixels are first classified as foreground 
using a conservative threshold Th. Those 
pixels are part of foreground objects with 
high confidence. Then, any pixel that is 
connected to a foreground pixel and  
satisfies a less conservative threshold Tl 
is also classified as foreground. This 
approach tends to generate connected 
regions and to compromise between 
detection of spurious foreground points 
and fragmentation of regions.


