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Multiple views

Despite the wealth of information contained in a a photograph, the
depth of a scene point along the corresponding projection ray is not
directly accessible in a single image

P
3D Points on the same viewing line have \Q
the same 2D 1mage: '=Q!
2D imaging results in depth information O
loss

With at least two pictures, depth can be measured by
triangulation.
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Human/Animal Visual system

It 1s the reason that most animals have at least two eyes and/or
move their head when looking around

Adapted from David Forsyth, UC Berkeley
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Visual Robot Navigation

This 1s also the motivation for equipping an autonomous robot
with a stereo or motion analysis system.

Left : The Stanford cart sports a single camera moving in discrete increments along a straight line and
providing multiple snapshots of outdoor scenes
Right : The INRIA mobile robot uses three cameras to map its environment

Forsyth & Ponce
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Human Vision

Humans have two eyes, both forward
facing but horizontally spaced by
approximately 60mm.

When looking at an object, each eye will
produce a slightly different image, as it
will be looking at a slightly different
angle.

The human brain combines both these

images into one to give a perception of
depth.

This processing 1s so quick and seamless
that the perception is that we are looking
through one big eye rather than two.

http://www.photostuff.co.uk/stereo.htm

?
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Human Vision

The brain can also determine depth and
how far objects are away from each other
by the amount of difference between the
two 1mages that it receives.

The further the subject 1s from the eye,
the less will be the difference between
the two 1mages and conversely the nearer
the subject, the greater the difference.

The left and right eyes see the sun in the
same place as it is in the distance. The
tree being much closer is seen in slightly
different places

http://www.photostuff.co.uk/stereo.htm

g Al

CS554 Computer Vision © Pinar Duygulu



Stereo vision = correspondences + reconstruction

Stereovision involves two problems:
Correspondence : Given a point p_1 1n one 1image, find the corresponding point

in the other image
Reconstruction: Given a correspondence (p I, p_r) compute the 3D coordinates

of the corresponding point in space, P

Adapted from Martial Hebert, CMU
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Stereo constraints

P

Given p in left image, where can corresponding point
p’ be?

Could be anywhere! Might not be same scene!

... Assume pair of pinhole views of static scene:

Adapted from Trevor Darrell, MIT
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Stereo constraints

Given p 1n left image, where can p’ be?

[ N

Adapted from Trevor Darrell, MIT
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Epipolar line

10

Adapted from Trevor Darrell, MIT
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Multi-view Geometry
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Relate

* 3-D points

« (Camera centers

« (Camera orientation

e Camera Intrinsics

Adapted from Trevor Darrell, MIT
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Epipolar constraint

0 \\\ | L 0’

FIGURE 11.1: Epipolar geometry: the point P, the optical centers @ and O of the two
cameras, and the two images p and p' of P all lie in the same plane.

All epipolar lines contain epipole, the image of other camera center.

O, O’ : optical centers These 5 points all belong to epipolar plane
p & p’ are the images of P >

Forsyth & Ponce
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Epipolar constraint

13

Point p’ lies on the line 1” where epipolar plane and the retina TC intersect.

The line I’ 1s the epipolar line associated with the point p

It passes through the point €’ where the baseline joining the optical centers o and O’
intersects

The points e and e’ are called the epipoles of the cameras

If p and p’ are the images of the same point P, then p’ must lie on the epipolar assoiciated
with p = Epipolar constraint

Adapted from Trevor Darrell, MIT
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Epipolar constraint

14

P

Epipolar constraint greatly limits the search of corresponding points.

Adapted from Martial Hebert, CMU
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Epipolar constraint — Calibrated case
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Assume that the intrinsic parameters of each
camera are known

Adapted from Trevor Darrell, MIT

o
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Epipolar constraint — Calibrated case
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The epipolar constraint: these vectors are coplanar:

s
CTE)- 00" x O'p' =0

Adapted from Trevor Darrell, MIT
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Epipolar constraint — Calibrated case

/ | —
| ‘\0‘ (T]S 00" xO'p'1 =0

p

P’
cl / ‘} 1:2)R

t

p,p’ are image

coordinates of p . [t X (Rpf)] =0

Pincl and c2...

c2 is related to c1 by

: = T s __ s .9
rotation R and p=(uv,1) p=@,v,I)T
translation t

Adapted from Trevor Darrell, MIT
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Epipolar constraint — Calibrated case

Review: matrix form of cross-product

The vector cross product also acts on two vectors and returns a third
vector. Geometrically, this new vector 1s constructed such that its
projection onto either of the two mput vectors 1s zero.

_alrbz —a.b, |
ixb=|ab —alb
ab, —ab,
o —-a, a,|b, _ 7-7=0
axb= a, 0 =-a | |=¢ 720
-a, a, 0 |b,]

Adapted from Trevor Darrell, MIT
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Epipolar constraint — Calibrated case

19

Review: matrix form of cross-product

0
axb = a,

—4,

0 -—aq,

[ax] — az 0
—a, a,

Adapted from Trevor Darrell, MIT

— b |
‘E—' “r |, @e=0
=T Fm=0
a, 0 |5,
a.}'
_ax
0
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Epipolar constraint — Calibrated case
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p-[tx(Rp) =0

pr[fﬁ, Rp'=0

Adapted from Trevor Darrell, MIT
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The essential matrix

Matrix that relates image of point in one camera to a
second camera, given translation and rotation.

5 independent parameters (up to scale)

Assumes intrinsic parameters are known.

g=[t. IR

p Ep' =0

Adapted from Trevor Darrell, MIT
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The essential matrix

22

. : : : , .
gp 1s the epipolar line corresponding to p’ in the

left camera.
au + by

c=0

” p=@u,vl)

p lies on the epipolar line associated with the point p’
Adapted from Trevor Darrell, MIT

| =(a,b,c)
[-p=0
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Epipolar geometry example

23

Adapted from Martial Hebert, CMU
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What if calibration 1s unknown?

Recall calibration eqn:

'!I‘,I ‘a0 —acobfd Ty
. cdef | &}
p=Kp. where p ('ﬂ) and K ° 0 : v
| S,
- ) i) 1 |

k

~
i

\‘f“ Normalized
¥ lmage plane
J“ Physicil

retina

Adapted from Trevor Darrell, MIT
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Fundamental Matrix

25

Essential matrix for points on normalized image plane,

»' EP'=0

assume unknown calibration matrix:

yields:

p=Kp

p Fp' =

Adapted from Trevor Darrell, MIT

F=KTeK'!
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Estimating the Fundamental Matrix

26

p' Fp' =0

Each point correspondence can be expressed as a
single linear equation

‘P Fie Fis T
(1L, 1, J_1| (Pﬂ Fl,;l-g F_:_l;q) ('1_!"r ) —
Fsy  Fiz  Fis 1,

Adapted from Trevor Darrell, MIT
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Estimating the Fundamental Matrix

p' Fp' =0

Each point correspondence can be expressed as a
single linear equation

Fiqh
'/Fuz\l
Fi

Fi, Fi» Fian /o Fhy
(v, | Foy Foo Fos v | =0 (un v vwove . ov'.o.u' V.1 | Fos | =0
Fil FiE F*.--i

Adapted from Trevor Darrell, MIT
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The 8 point algorithm (Longuet-Higgins, 1981)

8 corresponding points, 8 equations.

fupd]  wiv] wy vy v v W) v\ [Fi) lrl\]
Wolth oWy Uo  walth Vovh y  uh v o 1
wauh wigvh  uws  wvsuh vavh vy uh v I, 1
wpwy  wgvy wg o wvgu vt v ouwl v For | 1
wyut  wzvl  ws wviub wvsvl o ows owl ol || Fao| |1
wguh  wewlh, wg weuh vevh v uk vl Fay l
urut  wgvh  wy vrut ovrvh ovr wh o o I 1

\ugul usvy wg wvsug vgvy vy ul vy ) \ Fia) K 1)

Invert and solve for .

(Use more points if available; find least-squares
solution to minimize Z(P?ﬂ?ﬁ)g )

1=1

Adapted from Trevor Darrell, MIT
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Improved 8 point algorithm (Normalized)

29

Hartley 1995: use SVD.

1. Transform to centered and scaled coordinates
2. Form least-squares estimate of I

3. Set smallest singular value to zero.

Adapted from Trevor Darrell, MIT
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8 point algorithm
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a)

Linear Least Squares

Hartley, 1005

Lucng ef al., 19093

2,33 pixels

(.62 pixel

056 pixel

|j|3:|
Av. Dist. 1
Av. Dist. 2

Adapted from Trevor Darrell, MIT

2.15 pixels

0.85 pixel

0.50 pixel
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8 point algorithm
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Adapted from Trevor Darrell, MIT
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8 point algorithm
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Adapted from Trevor Darrell, MIT
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Example
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(a) (b)

From Torr and Murray, “The development and comparison of robust
methods for estimating the fundamental matrix™

Adapted from David Forsyth

CS554 Computer Vision © Pinar Duygulu



34

Example

Adapted from David Forsyth
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Example
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260+
240=
290-
200
180-
160-
140
1204

e

50 180 180 200 220 240

Adapted from David Forsyth

260
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Example
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Adapted from David Forsyth
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Multiple Cameras
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Given p’,p’" 1n left and middle image, where is p”” in

a third view?

Adapted from Trevor Darrell, MIT

p’

-n-nf?
.
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Three essential matrices
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Essential matrices relate each pair:

(calibrated case)

—

&

2N

823

\

p’

-n-nf?
-

Adapted from Trevor Darrell, MIT

I3
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Three essential matrices
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p?glng — 0!'
p§523p3 — 0?
pggglpl — O?

any two are independent!

can predict third point from two others.

Adapted from Trevor Darrell, MIT
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Trinocular epipolar geometry

Trifocal plane AN o point transfer:
formed from 4 Given p2 & p3, pl is

trifocal lines : :
, A‘ determined!

(without explicit depth
estimation;

only weak calibration)

o,

o g
=

Adapted from Trevor Darrell, MIT
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Trifocal line constraint
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Form the plane containing a line | and optical center
of one camera:

Adapted from Trevor Darrell, MIT
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Trifocal line constraint
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3 cameras, 3 plane equations:

L =AMT!

Figure 12.6. Thres fmages of a line deline it as the intersection of three planes in i
same pencil

Adapted from Trevor Darrell, MIT
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Trifocal line constraint
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Adapted from Trevor Darrell, MIT

'mp = 0,
L=MT]

L

L; |P=0

i

T
def ll['Ml
lg MS

If 3 lines intersect in
more than one point
(a line) this system is
degenerate and is
rank 2.
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Trifocal line constraint
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Rank of

Adapted from Trevor Darrell, MIT

r tl_ef

[
[
[

T
s
3 Ms

M

=2
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Trifocal line constraint
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Adapted from Trevor Darrell, MIT

Assume calibrated camera coordiates

M;=(Id 0)
Ms=(Ry ty)
Mz =(Rs t3)
then
I 0
L= z?%%g 11,
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Trifocal line constraint
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i 0
L= zgvzg zgtg
lg R:} l3 t_'}

Rank £ =2 means det. of 3x3 minors are zero, and
can be expressed as:

L, Gl
x| LGH | =0,
I2Gil,

with

R
Gi = t2R — Ryt

Adapted from Trevor Darrell, MIT
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The trifocal tensor
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These 3 3x3 matrices are called the trifocal tensor.

Gi — R — Rt}
the constraint

gl
Lox | Egi, | =o,
gL,

can be used for pomt or line transfer.

Adapted from Trevor Darrell, MIT
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Trifocal line constraint
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line transfer:
1
[ ~ %g%lq
| R % 1t3
I, Gl

point transfer via lines: form independent pairs of

lines through p2,p3, solve for pl.

Adapted from Trevor Darrell, MIT
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[Line transfer
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llﬁ

Adapted from Trevor Darrell, MIT

[
[

l?gﬂg

T

2

Gils
Gils
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Uncalibrated case
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Adapted from Trevor Darrell, MIT

.
L=11,KRs 1Kot

tﬁf}c:;mg tgkigtg

let N lef
Ai = K.Z'R.,gi’(,l ! a; = K:zta

My =(Ky 0), My = (AL ay),

Ms = (AKX a3)

! g oo
Rank(£) = 2 += Rank(L ( (l; X )} —Rank | T4, ITa | =2
\ - Ay Tay
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Quadrifocal Geometry

51

i

Can form a “quadrifocal tensor™

Faugeras and Mourrain (1995) have shown that it 1s algebraically
dependent on associated essential/fundamental matricies and trifocal
tensor: no new constraints added.

No additional independent constraints from more than 3 views.

Adapted from Trevor Darrell, MIT
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Quadrifocal Geometry

52

Adapted from Trevor Darrell, MIT

Figure 12.10. Given four images py . pa. ps and py of some point P and three arbitrary
image lines lz, Is and 1y passing through the points pz, ps and py, the ray passing through
O and p1 must also pass through the point where the three planes Lz, Ls and Ly formed

]]}' the prelmages of these lines intersect.
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Trifocal constraint with noise
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Figure 12,11, Trinccular constreints in the presence of calilmtion or measursmend
errors: the rays B, Fo and Ea may not interset.

Adapted from Trevor Darrell, MIT

CS554 Computer Vision © Pinar Duygulu



