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Multiple views

With at least two pictures, depth can be measured by 
triangulation.

OO
P’=Q’P’=Q’

PP
QQ     3D Points on the same viewing line have 

the same 2D image:
     2D imaging results in depth information 

loss

Despite the wealth of information contained in a a photograph, the 
depth of a scene point along the corresponding projection ray is not 
directly accessible in a single image
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Adapted from David Forsyth, UC Berkeley

Human/Animal Visual system 

It is the reason that most animals have at least two eyes and/or 
move their head when looking around
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Visual Robot Navigation

Forsyth & Ponce

Left : The Stanford cart sports a single camera moving in discrete increments along a straight line and 
providing multiple snapshots of outdoor scenes
Right : The INRIA mobile robot uses three cameras to map its environment

This is also the motivation for equipping an autonomous robot 
with a stereo or motion analysis system.
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Human Vision

• Humans have two eyes, both forward 
facing but horizontally spaced by 
approximately 60mm. 

• When looking at an object, each eye will 
produce a slightly different image, as it 
will be looking at a slightly different 
angle.

 
• The human brain combines both these 

images into one to give a perception of 
depth.

 
• This processing is so quick and seamless 

that the perception is that we are looking 
through one big eye rather than two. 

http://www.photostuff.co.uk/stereo.htm
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Human Vision

• The brain can also determine depth and 
how far objects are away from each other 
by the amount of difference between the 
two images that it receives. 

• The further the subject is from the eye, 
the less will be the difference between 
the two images and conversely the nearer 
the subject, the greater the difference. 

• The left and right eyes see the sun in the 
same place as it is in the distance. The 
tree being much closer is seen in slightly 
different places 

http://www.photostuff.co.uk/stereo.htm
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Stereo vision = correspondences + reconstruction

Adapted from Martial Hebert, CMU

Stereovision involves two problems:
Correspondence : Given a point p_l in one image, find the corresponding point 
in the other image
Reconstruction: Given a correspondence (p_l, p_r) compute the 3D coordinates 
of the corresponding point in space, P
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Stereo constraints

Adapted from Trevor Darrell, MIT
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Stereo constraints

Adapted from Trevor Darrell, MIT
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Epipolar line

Adapted from Trevor Darrell, MIT
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Multi-view Geometry

Adapted from Trevor Darrell, MIT
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Epipolar constraint

Forsyth & Ponce

O, O’ : optical centers
p & p’ are the images of P

These 5 points all belong to epipolar plane
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Epipolar constraint

Adapted from Trevor Darrell, MIT

Point p’ lies on the line l’ where epipolar plane and the retina π’ intersect. 
The line l’ is the epipolar line associated with the point p
It passes through the point e’ where the baseline joining the optical centers o and O’ 
intersects
The points e and e’ are called the epipoles of the cameras

If p and p’ are the images of the same point P, then p’ must lie on the epipolar assoiciated 
with p  Epipolar constraint
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Epipolar constraint

Adapted from Martial Hebert, CMU

Epipolar constraint greatly limits the search of corresponding points.
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Epipolar constraint – Calibrated case

Adapted from Trevor Darrell, MIT

Assume that the intrinsic parameters of each 
camera are known
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Epipolar constraint – Calibrated case

Adapted from Trevor Darrell, MIT
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Epipolar constraint – Calibrated case

Adapted from Trevor Darrell, MIT

p = (u,v,1)T p’ = (u’,v’,1)T
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Epipolar constraint – Calibrated case

Adapted from Trevor Darrell, MIT
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Epipolar constraint – Calibrated case

Adapted from Trevor Darrell, MIT
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Epipolar constraint – Calibrated case

Adapted from Trevor Darrell, MIT
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The essential matrix

Adapted from Trevor Darrell, MIT
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The essential matrix

Adapted from Trevor Darrell, MIT

p lies on the epipolar line associated with the point p’ 
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Epipolar geometry example

Adapted from Martial Hebert, CMU
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What if calibration is unknown?

Adapted from Trevor Darrell, MIT
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Fundamental Matrix

Adapted from Trevor Darrell, MIT
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Estimating the Fundamental Matrix

Adapted from Trevor Darrell, MIT
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Estimating the Fundamental Matrix

Adapted from Trevor Darrell, MIT
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The 8 point algorithm (Longuet-Higgins, 1981) 

Adapted from Trevor Darrell, MIT
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Improved 8 point algorithm  (Normalized)

Adapted from Trevor Darrell, MIT
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8 point algorithm 

Adapted from Trevor Darrell, MIT
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8 point algorithm 

Adapted from Trevor Darrell, MIT
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8 point algorithm 

Adapted from Trevor Darrell, MIT
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Example 

Adapted from David Forsyth
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Example 

Adapted from David Forsyth
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Example 

Adapted from David Forsyth
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Example 

Adapted from David Forsyth
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Multiple Cameras 

Adapted from Trevor Darrell, MIT
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Three essential matrices 

Adapted from Trevor Darrell, MIT



CS554 Computer Vision © Pinar Duygulu

39

Three essential matrices 

Adapted from Trevor Darrell, MIT
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Trinocular epipolar geometry  

Adapted from Trevor Darrell, MIT

Trifocal plane 
formed from 
trifocal lines
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Trifocal line constraint

Adapted from Trevor Darrell, MIT
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Trifocal line constraint

Adapted from Trevor Darrell, MIT
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Trifocal line constraint

Adapted from Trevor Darrell, MIT
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Trifocal line constraint

Adapted from Trevor Darrell, MIT
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Trifocal line constraint

Adapted from Trevor Darrell, MIT
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Trifocal line constraint

Adapted from Trevor Darrell, MIT
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The trifocal tensor

Adapted from Trevor Darrell, MIT
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Trifocal line constraint

Adapted from Trevor Darrell, MIT
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Line transfer

Adapted from Trevor Darrell, MIT
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Uncalibrated case

Adapted from Trevor Darrell, MIT
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Quadrifocal Geometry

Adapted from Trevor Darrell, MIT
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Quadrifocal Geometry

Adapted from Trevor Darrell, MIT
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Trifocal constraint with noise

Adapted from Trevor Darrell, MIT


