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Disparity

FIGURE 7.3 :

Disparity occurs when
Eyes verge on one object;
Others appear at different
Visual angles

From Bruce and Green, Visual Perception,
Physiology, Psychology and Ecology

Adapted from David Forsyth, UC Berkeley
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Disparity

FP°

Right Eye
Figure 5.3.2 Crossed versus uncrossed binocular disparity.
When a point P is fixated, closer points (such as C) are displaced

outwardly in crossed disparity, whereas farther points (such as F)
are displaced inwardly in uncrossed disparity.

Adapted from David Forsyth, UC Berkeley From Palmer, “Vision Science”, MI'T Press
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Disparity

Left Eye Neither Right Eye
| BothEyes | “Gny~ | Eye | Ony | Both Eves | |

Occluded in Occluded in
Right Image Left Image

Figure 5.3.23 Da Vinci stereopsis. Depth information also
arises from the fact that certain parts of one retinal image have no
corresponding parts in the other image. (See text for details.)

From Palmer, *“Vision Science”, MIT Press

Adapted from David Forsyth, UC Berkeley
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Stereo Vision

* The whole process 1s called stereo vision and it 1s derived from
the Greek word “stereos’ which means form or solid 1.e. having
three dimensions.

* Stereoscopy is the science by which two photographs of the
same object taken at slightly different angles are viewed together,
giving an impression of depth and solidity as in ordinary human
vision.

* Stereo photography is the art of taking two pictures of the same
subject from two slightly different viewpoints and displaying
them 1n such a way that each eye sees only one of the images.

http://www.photostuff.co.uk/stereo.htm
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* Capturing the image on film requires the photographer to take two pictures
from slightly different viewpoints.

* In order to view the captured photographs, the images have to be displayed in
such a way that each of the viewer’s eyes sees only one image.

http://www.photostuff.co.uk/stereo.htm
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Anaglyph

Left Eye Image Right Eye Image
(Red channel only) (Red channel removed) (Left & Right

Anaglyph

images overlaid)

* Requires the viewer to wear glasses with red and green/cyan lenses.

* The left image has the blue and green colour channels removed to leave a purely red picture
while the right image has the red channel removed.

* The two images are superimposed into one picture which produces a picture very like the
original with a red and cyan fringes around objects where the stereo separation produces
differences in the original images.

* The red and cyan lenses in the glasses let the eyes separate the two superimposed images into
their individual components which the brain then combines to form a 3D-image.

http://www.photostuff.co.uk/stereo.htm
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Freeview

* Free Viewing, the eyes should not converge but look
parallel as if the 1image being looked at is in the distance. PSRN
* The brain is fooled into thinking that it has two separate [SHEEEss
images and creates a 3-D visualisation.

* Single Image Random Dots Stereogram (SIRDS)
* Single Image Stereogram (SIS)

* "Magic Eye" pictures are created by computer and rely on the fact that the brain
depends on matching vertical edges to synchronise the left and right images.

* The picture 1s made up of columns of patterns, which vary slightly across the
picture.

* The brain interprets the columns as left and right pairs and the slight differences
between each column define the subject e.g. the fish.

http://www.photostuff.co.uk/stereo.htm
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Random dot stereograms

10

Adapted from David Forsyth, UC Berkeley
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Random dot stereograms
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Adapted from Trevor Darrell, MIT
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Random dot stereograms

12

Figure 5.3.8 A random dot stereogram. These two images are
derived from a single array of randomly placed squares by later-
illy displacing a region of them as described in the text. When
they are viewed with crossed disparity (by crossing the eyes) so

Adapted from David Forsyth, UC Berkeley

that the right eve's view of the left image is combined with the
left eye’s view of the right image, a square will be perceived
to float above the page. (See pages 210-211 for instructions on
fusing stereograms. )

square
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Random dot stereograms

e 5.3.9 A random dot stereogram of a spiral surface. If ramp coming out of the page toward your face. This perception
se two images are fused with crossed convergence (see text on ariscs from the small lateral displacements of thousands of tiny
mages 210211 for instructions), they can be perceived as a spiral dots. (I'rom Julesz, 1971.)

Spiral ramp
Adapted from David Forsyth, UC Berkeley
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Random dot stereograms

Human binocular fusion cannot be explained by peripheral
processes directly associated with the physical retinas.

Instead, 1t must involve the central nervous system and an

imaginary cyclopean retina that combines the left and right
image stimuli as a single unit

Adapted from David Forsyth, UC Berkeley
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Stereo vision = correspondences + reconstruction

15

Stereovision involves two problems:
Correspondence : Given a point p, in one image, find the corresponding point in

the other image
Reconstruction: Given a correspondence (p,, p,) compute the 3D coordinates of

the corresponding point in space, P

Adapted from Martial Hebert, CMU
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Binocular Stereo
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Left

Adapted from Michael Black
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Binocular Stereo
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Adapted from Michael Black

Right
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Binocular Stereo
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Adapted from Michael Black

Right
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Binocular Stereo

19

Adapted from Michael Black

Right
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Binocular Stereo
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Adapted from Michael Black

e
hv—'

binocular disparity

From known geometry
of the cameras and
estimated disparity,
recover depth in the
scene

Right
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Depth Estimation

21

Adapted from Michael Black

Image
plane

Focal length f _—
t - ~ )
ﬁ_d_,.f-”"ﬁ- Center of Virtual
projection Image
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Depth Estimation

22

Adapted from Michael Black

P=(X.Y.2)
Image X ﬂf.ff"'fj-
plane T
—f o
lrf_,_,f"’fd; 9 : Virtual
Image
X'Y.7)
X
' - — ‘X'f =] — Y' - — )
fo X'==fZ ¥=of-
x=-X", y=-Y
X T
(X.1.2)>(y)=(f . f )
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Depth Estimation

23

Adapted from Michael Black
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Depth Estimation

24

Adapted from Michael Black
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Depth Estimation

Ol I.DI - (.{Y.Y._Z)

B+

Adapted from Michael Black
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Depth Estimation
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P =% \L————

P=(X.Y.Z)

Pr=X

Adapted from Michael Black
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Depth Estimation

27

X
Y,=—f— B
VA s X=X+ f—=
d V4
X-B
Y =—f 7
B
=Y ¢

Adapted from Michael Black

P=(X.Y.Z)
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Depth Estimation

28

/B

X, X,

-

7 =

disparity

For a calibrated camera, we know f and

the baseline B.

Then depth can be computed from

disparity. P=(X.1.2)

Adapted from Michael Black
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Correspondence

29

Z(x,y) 1s depth at pixel (x, y)
d(x. v) 1s disparity

Estimate:
Z(x.y)=

d(x,v)

Left

Search for best match

Adapted from Michael Black

Right
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Correspondence

30

Adapted from Michael Black

Z(x, v) 1s depth at pixel (x. v)
d(x, v) 1s disparity

Estimate:
Z(x.y)=

d(x.y)

Left

Do I need to consider
this region?
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Correspondence

31

Possible matches for p, are constrained to lie
along the epipolar line in the other image

Adapted from Michael Black
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Rectification

32

Fortunately, given the epipolar geometry of the setereo pair, there always
exists a transformation that maps the images into a pair of images with the
epipolar lines parallel to the rows of the image. This transformation 1s called
rectification. Images are almost always rectitied before searching for
correspondences in order to simplify the search.

Adapted from Martial Hebert, CMU

Searching along epipolar lines at arbitrary orientation 1s intuitively expensive.
It would be nice to be able to always search along the rows of the right image.
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Rectification

33

‘{)

n

a

¢ - C,

We know that, given a plane P in space, there exists two homographies Hyand H, that map
each image plane onto P. That 15, 1f py1s a point in the left image, then the corresponding point
in P is Hp (in homogeneous coordinates). I we map both images to a common plane P such
that P 1s parallel to the line C,C_ then the pair of virtual (rectified) images 1s such that the
epipolar lines are parallel. With proper choice of the coordinate svstem. the epipolar lines are

parallel to the rows of the image.

The alzorithm for rectification 1s then:
= Select a plane P parallel to C C,
« Define the left and right image coordinate systems on P

= Construct the rectification matrices Hy and H, from P and the virtual image’s coordinate

EVELZIMS.




Rectification Results

34

Adapted from G. Hager, JHU

Rectification Results

.2 rad

4 rad
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Rectification

35

Adapted from Martial Hebert, CMU
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Disparity

Assuming that images are rectified to simplify things, given two corresponding
points p, and p,. the difference of their coordinates along the epipolar line x-x,
1= called the disparity d. The digparity is the quantity that 1s directly measured
from the correspondence.

It turns out that the position of the corresponding 3-D point P can be computed
from py and d. assuming that the camera parameters are known.

d=

Il-I

Adapted from Martial Hebert, CMU
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Disparity

37

Adapted from Martial Hebert, CMU

Larger disparity = closer to camera
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Stereopsis

38

If a single image point is observed at any given time
Stereo vision is easy

Adapted from David Forsyth, UC Berkeley

However, each picture consists of hundreds/thousands of
pixels, therefore it is very hard to find the correct
correspondences
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Ordering constraint

“It is reasonable to assume that the order of matching nnage
features along a pair of epipolar lines is the inverse of the
order of the corresponding surface attributes along the
curve where the epipolar plane intersects the observed
object’s boundary.”

This is the so-called ordering constraint introduced by |Baker
and Binford, 1981; Ohta and Kanade. 19835].

Adapted from Trevor Darrell, MIT

CS554 Computer Vision © Pinar Duygulu



40

Three constraints : / Q /

Compatibility : black dots can only match black dots , or more generally, two image
features can only match if they have possibly arisen from the same physical marking

Uniquness : a black dot in one image matches at most one black dot in another image

Continuity : the disparity of matches varies smoothly almost everywhere in the image

CS554 Computer Vision © Pinar Duygulu



Correspondence 1s ambiguous

41

I

¥

Three constraints:
» compatibility

* uniqueness -

* continuity

Works well on RDS....but not so well on natural images...

Adapted from Trevor Darrell, MIT
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Correspondence using window matching

42

Pomts are highly mdividually ambiguous. ..

More unique matches are possible with small regions
of 1image.

LEIl ragnr

55D error h

disppariry

Adapted from Michael Black
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Finding Correspondences

43

Wipy

Adapted from Martial Hebert, CMU

Wip,)
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Sum of squared distances

44

Raght
W Wp
Jlﬂ-. L
:f" al ml e °

w; and wy,, are corresponding m by m windows of pixels.

The SSD cost measures the intensity difference as a function of disparity :
SSD,(x.y.d)=" Y (I (x'.y")-Iy(x~d.y"))

(2.3 )l (x.)

Adapted from Michael Black
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Image Normalization

45

« Even when the cameras are i1dentical models, there can be
differences 1n gain and sensitivity.

« The cameras do not see exactly the same surfaces, so their
overall light levels can differ.

 For these reasons and more, 1t 1s a good 1dea to normalize
the pixels in each window:

T _ 1 P - o
= 7o) ZI (1,v) Average pixel
(e v)el, (x.v)
I = I, )] Window magnitud
H Hﬁ’;.{x,g-} — Z[ (11,v)] Vindow magnitude
(u)elW, (x.y)
- I(x. v .y . .
I(x,y)= I( f} ) Normalized pixel
H B HH-':H(L_\:}
Adapted from Darrell
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Images as vectors

Left i “Unwrap”

& | B image to form
E vector, using

raster scan order

row 1 n
w
L m ; ; row?2 | |m
AN
Each window is a vector —
. T g . ]-VL
in an m- dimensional .
vector space. row 3
Normalization makes | |
them unit length.

Adapted from Darrell
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Images as vectors

47

Adapted from Darrell
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Possible metric

48

Adapted from Darrell

Distance?

W

Wwy(d)

Angle?
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Possible metric

(Normalized) Sum of Squared Differences

. (d) Cop(d) = Y [L(v) - L (—d.v)]

(uv)el, (x.v)

= v, =1 (@)
Normalized Correlation

Cye(d) = ZI u, V) (u—d,v)

(uv)elm, (x.y)

=W, - Wp(d)=cosl

~

—wy(d)|

®

d_

= argmax  w; - wy(d)

Adapted from Darrell
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Matching using correlation

50

Images courtesy of Point Grey Research

Adapted from Michael Black

Disparity Map
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Matching using correlation

- "3’1’
- \‘

(3) (c)

FIGURE 12.13: Correlation-based stereo matching: (a) a pair of stereo pictures; (b) a
texture-mapped view of the reconstructed surface; (c) comparison of the regular (left)
and refined (right) correlation methods in the nose region. Reprinted from [Devernay and

Faugeras, 1994], Figures 5, 8 and 9.

Adapted from Darrell
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Problems with window methods

52

Patch too small?

Patch too large?

Can try variable patch size [Okutomi and Kanade],

or arbitrary window shapes [Veksler and Zabih]

Should match between physically meaningtul
quanties, and at multiple scales [Marr]...

Adapted from Trevor Darrell, MIT

CS554 Computer Vision © Pinar Duygulu



Window size

53

Better results with adaptive window

« T.Kanade and M. Okutomi,
., Proc. International Conference on Robotics
and Automation, 1991.

« D. Scharstein and R. Szeliski.

(Seitz) International Journal of Computer Vision, 28(2):155-174, July 1938

Adapted from Michael Black
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Stereo Results

54

— Data from University of Tsukuba

Window-based matching
(best window size)

Adapted from Michael Black

Ground truth

Ground truth

(Seitz)
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Multi — scale edge matching

1. Convolve the two (rectified) images with V2G, filters of increasing standard
deviations o1 < 02 < 03 < 74.

[ el

. Find zero crossings of the Laplacian along horizontal scanlines of the filtered
Lnages.

3. For each filter scale ¢. match zero crossings with the same parity and rouglhily
equal orlentations in a [—ws. +uwy] disparity range. with w, = 220,

4. Use the digparities [ound at larger scales to control eye vergence and cause
unmatched reglons at smaller scales to come Into correspondence,

Forsyth & Ponce
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Marr-Poggio Algorithm

Search for edges, a.k.a. ““zero crossings™: (more
during edge detection lectures...)

Matching zero-crossings at a single scale

SoriorTe

Matching zero-crossings at multiple scales

e

mcale O —
Width 1 :Mamh > = :Dfﬂge': > L

[X]

——

L
o J\} Rermatch | 14\,}
cale O=C Fi _

Adapted from Trevor Darrell, MIT

CS554 Computer Vision © Pinar Duygulu



Correspondence

57

Adapted from Darrel & Freman
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Correspondence

58

Left scanline

Adapted from Michael Black
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Correspondence

59

HEEEEENENEEEEE
l‘|I|
\|
\
II
Oy \ Or
i
IIII\I‘
Left scanline R Right scanline
|I i
o |\
HEEEE [ 11 1]
\\-‘-"\-\.
TTTT———— Match
—
T Match
T
Occlusion ———— Matrh Disocclusion

Adapted from Michael Black
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Search over correspondences

60

Occluded Pixels

Left scanline HEEEEEEEEEEEEEE

/

Right scanline LT T TTTLEORLTUTL UL |

Three cases:
— Sequential — cost of match
— Occluded — cost of no match

— Disoccluded — cost of no match

Adapted from Trevor Darrell, MIT
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Dynamic programming

61

Occluded Pixels

[TERTTTTITITTITT1]

Start

Left scanline

&3

AU UBIS YT 1Y

LT PP PP PP TTT0]

Adapted from Trevor Darrell, MIT

End

Dynamic programming
yields the optimal
path through grid.
This is the best set of
matches that satisfy
the ordering
constraint
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Stereo Matching with Dynamic Programming

Occluded Pixels

Left scanline

* Enforces ordering
constraint.

Start * Given appropriate cost

n functions, solves for
S best path (matches,
c [ Z occlusions,
= I 2 disocclusions).
= L
Z M @

— End

Adapted from Michael Black

CS554 Computer Vision © Pinar Duygulu



DP vs. edges

63

Edges:

DP:

* Which method is better?
— Edges are more “meaningful™ [Marr]...but hard to find!
— Edges tend to fail in dense texture (outdoors)

— Correlation tends to fail in smooth featureless areas

Adapted from Trevor Darrell, MIT
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Computing correspondences

64

Both methods fail for smooth surfaces

There 1s currently no good solution to the
correspondence problem

Adapted from Trevor Darrell, MIT
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Three (calibrated) views

65

Adding a third camera eliminates the ambiguity inherent in two-view point matching

Adapted from Trevor Darrell, MIT
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RANSAC

66

* Do £ times:
— Draw set of 8 correspondences
— Fit F to the set

— Count the number d of correspondences that are
closer than 7 to the fitted epipolar lines

—1td=>d ., recompute fit error using all the
correspondences

« Return best fit found

Adapted from Martial Hebert, CMU
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Adapted from Martial Hebert, CMU
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Adapted from Martial Hebert, CMU
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2D homographies

2-D Homographies | P’ ',

2D homographies transforms points from one plane to another

Adapted from Martial Hebert, CMU
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2D homographies
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Adapted from Martial Hebert, CMU
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2D homographies

71

p’ q’

q

p’=H,p q’=H,q

It we choose the plane of one of the images from a set of images obtained by
rotating the camera around the optical center, for each 1mage, there exists an
homography which maps the pomt p in the original image plane to the
reference image plane. If we map all the points from all the images into the
reference image plane. we obtain a single image, a mosaic, which contains the
data from all the input images.

Adapted from Martial Hebert, CMU
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2D homographies

72

Adapted from Martial Hebert, CMU
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