__M ._‘—'h —-“m_:.x SEARCH ______ 'ﬁm__w

‘ -

digital video llhmrv

N e F B =

Associating video frames with text

Pinar Duygulu and Howard Wactlar

Informedia Project
School of Computer Science
Carnegie Mellon University

Carnegie Mellon




Informedia Digital Video Understanding Projec

= W Infoumedha DVLS v. 220
Fie Edt MNawoste Opfions [

g [asts ‘Wiesdow Help  Commenisl

Gesrch srvpwhers [encept the bile Geld) fo:
1 Hing

1 Jush what is ol nine? Thete teemngly unnela, . 3|
AT T I T T TN ET -
Clea AR UrdsEcl | [AND- maich of lewss ™
12 of 215 results (oach page sored by date): all of *
Ming ®

LBl v o weovdd B Bephilipht & o= pollive

Infoamedha-ll Prolotyps
E| oo ellects™ histaiical hackgioued

27| Mo aflects™ Foods facus HmEE

!gg!g! EL NINO STRIKES

"#H: "
Bogota,
COLOMBLA'
(=

LimaN B8
PERU

& o PR
Elp2t = | Ra-Pick | 5 o

IDVL interface returned for "El Nino" query along wit_h differ-ent
multimedia abstractions from certain documents.

Carnegie Mellon




Informedia Digital Video Understanding Projec
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Approach

*Combine textual and visual features
to understand how to link semantics with appearance

*Model joint statistics of visual features and words using
a large collection of visual data with annotated text
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Outline

*Correspondence problem between image regions and text
using annotated 1mage collections

*Correspondence problem between video frames and video

eExperiments on TREC 2001 data set

eExperiments on Chinese Cultural data set
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Outline

*Correspondence problem between video frames and video

eExperiments on TREC 2001 data set

eExperiments on Chinese Cultural data set
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Associating image regions with words

tiger grass cat

tiger cat grass

Duygulu, Barnard, de Freitas, Forsyth, ECCV2002 Carnegie Mellon




Associating image regions with words

tiger cat grass

Duygulu, Barnard, de Freitas, Forsyth, ECCV2002 Carnegie Mellon




Statistical machine translation

Data: Aligned sentences, but word
correspondences are unknown

29

“the beautiful sun

“le soleil beau”

Brown1993
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Statistical machine translation

*Given the correspondences we can estimate p(sunlsoleil)

*Given the probabilities we can estimate the correspondences

29

“the beautiful sun

“le soleil beau”

Enough data + EM, we can obtain the translation p(sunlsoleil)=1
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Multimedia translation
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Overview

training

FI Expectation
Tokenization Maximization
Algorithm
training images with
annotated text

probability

testing

= | Tokenization

.| Prediction

Region AUto
naming annotaton

tesr image
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Input Representation

sun sky waves sea

Image
processing™

Each blob is a large
vector of features

« Region size

e Position

e Colour

* Oriented energy (12 filters)
e Simple shape features
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Tokenization

- Words =2

- Image segments

erepresented by 40 features
(size, position, color, texture and shape)
k-means to cluster features
*best cluster for the blob 2

w3 w4 wi wl wb w7 w8 wl wl2 w2 wl
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Associations

“sun sea sky”
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Initialization

Initialize translation table

to blob-word co-occurrences
(empirical joint distribution
of blobs and words)
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Expectation Maximization Algorithm

l

Given the translation Given the correspondences
probabilities estimate estimate the translation

the correspondences probabilities
A

Dempster77 Carnegie Mellon




EM Algorithm

E SteQ . Predicting correspondences from translation probabilities
(for one pair)

translation probabilities correspondences

wl w2 ~
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bl
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~
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/

wl w2 W4J
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wl w2 w6
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EM Algorithm

M step

(for one pair)

Predicting translation probabilities from correspondences

correspondences translation probabilities

==

bl b3 b4 wl w2
I bl
wl w5 b2

-’

==
b2 bl bS5

wl w2 W4J

bl b2
I

wl w2 w6
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Word prediction

On a new test image
esegment the 1mage
ecxtract the features from the regions
ethen, for each region
find the corresponding blob token b
use word posterior probabilities p(wlb) for predicting words

Use predicted words for
*region naming
eauto-annotation

Carnegie Mellon




Region naming
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Auto-annotation

sky sun water

Carnegie Mellon



Using annotation performance as a proxy

Actual Keywords GRASS TIGER CAT FOREST

Predicted Words CAT HORSE GRASS WATER
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Using annotation performance as a proxy
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Outline

*Correspondence problem between image regions and text
using annotated 1mage collections

eExperiments on TREC 2001 data set

eExperiments on Chinese Cultural data set
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Video

et easasd nseanasesnnnnnss -t-t:uudln

..despite heroic efforts many of the worlds wild creatures are
doomed the loss of species 1s now the same as when the great
dinosaurs become extinct will these creatures become the
dinosaurs of our time today...

Carnegie Mellon




Input

Ias A et A e as e s i nsnanandns

...efforts many | of the worlds | wild creatures | are doomed | the loss of | species ...
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Input

Position,

Color
(RGB and Lab, mean and std)

Texture
(Oriented energy filters, DoG)
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Input

Ias A et A e as e s i nsnanandns

...efforts many | of the worlds | wild creatures | are doomed | the loss of | species ...

Brill’s tagger 1s used to extract nouns

The text only corresponding to the shot can be used
Or also the surrounding text within a window size can be used
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Outline

*Correspondence problem between image regions and text
using annotated 1mage collections

*Correspondence problem between video frames and video

eExperiments on Chinese Cultural data set
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TREC 2001 data

Number of images = 2232

7 x 7 blocks

56 features extracted from each block
Number of blob tokens = 500
Number of words = 1938

Window size for surrounding text = 5
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Auto-annotations

space (1), telescope(10) robot(5)
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Auto-annotations

[ = 8
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spdce (6), astronaut(7)

=

water(1) research(3)

space(1), world(6)
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Query for “Statue of Liberty”
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Associating frames and text

statue(1) liberty(2) statue(1) liberty(3)
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Outline

*Correspondence problem between image regions and text
using annotated 1mage collections

*Correspondence problem between video frames and video

eExperiments on TREC 2001 data set
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Query on “panda”

iman obzerves the female panda - a male panda's attempt to mate with her is
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Query on “Great Wall”

EEMU Informedia Yideo Library L

File Edit Mavigste Options Data ‘Window Help

7 :Filmstrip: Shi Huangdi decided to join together various defensive walls in northern C... I:I]i]

ml 1 11
1 5 xzi i mﬁs]
- B Shi Huangdi decided to join together various defensive wallz in northem China into one enomous
& wall, the Great Wall of China

4:33 of 423
Tatal Shats: 39

T rezer
China's first emperar may have succeeded in 2]
his ambitious plans for Chinese unity, but he
also knew that his new empire could be
threatened by the nomadic tribal peoples of
the north. Itwas to deal with this potential
threat that Shi Huangdi ordered the
construction of the most astanishing defensive
fortification ewver seen on Earth. Shi knew that
itwould be difficult to wipe out the wandering
narthern tribesmen. Instead he decided to
rmake his nation secure from the inside. Mary
northern Chinese states had already built
defensive walls with the same intention. Now
the emperar decided ta join them all together
into one enormous wall, the [ElER ll of
WIS The Great'Wall of Chinais classified
as one of the Sewven YWWonders of the \Woaorld but
not as one of the Sewven Wonders of the
AncientWaorld, The classical writers of the
west had no knowledge of its existence. If they
had, itwould hawe been on the list. It stretches
from the Gulf of Ba Hai all the way to Gansu
Frovince in the west of the country. As the
crove flies, this is a distance of some 1,400
miles across terrain that is often tough and =
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Chinese Culture data set

Number of images = 3745
5 x 5 blocks
56 features extracted from each block

Number of blob tokens = 1000

Number of words = 2597
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Pruning data

0
2
o
[
1k}
g
=
B
[=]
S

Eliminate the words
if frequency <=5 or
frequency > 250

Number of words = 626

Number of images = 2785
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Recall and Precision
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Panda (when predicted in the first 3)
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Wall (when predicted in the first 3)
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Correspondence results for “panda”

number of annotations
number of correct annotations

number of incorrect annotations

number of predictions
number of correct predictions

number of incorrect predictions

annotation present not predicted
annotation correct not predicted

annotation incorrect not predicted

not annotated but predicted

not annotated but correctly predicted
not annotated and incorrectly predicted
annotated and predicted and correct

annotated and predicted but incorrect




Correspondence results for “panda”
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Recall and precision
as a function of window size
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Recall and precision for some selected words
as a function of window size

I o N A
0.7183 - 0.2044 | 0.8492 - 0.2281 0.6885 - 0.2242
0.8182 - 0.2432 | 0.9180 - 0.2923 0.8744 - 0.2860

0.8857 - 0.2560 | 0.9517 - 0.3149 0.9446 - 0.3257
0.9154 - 0.2604 | 0.9720 - 0.3186 0.9693 - 0.3631
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Conclusions

While text and images are separately ambiguous, jointly
they tend not to be.

Linking visual information with text improves performance

The proposed method
*Can learn correspondence between visual data and text
*Unsupervised — uses the available large data sets efficiently

Can be used

eFor region naming — object recognition on the large scale
e Auto-annotation — predicting words

e Associating frames and text
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Future Directions

Applying on broadcast news

A better set of features including face detectors, and
moving objects

Better linguistic analysis (e.g. taking noun phrases)

Finding the best window size by statistical analysis

Carnegie Mellon




— g i . . —

3

digital video llhmrv ‘retrieve

Thank you

http://www.informedia.cs.cmu.edu
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Prediction measure
as a function of window size

0.1851 Prediction measure (PR):

1/N X (#correct / # actual)
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