

Associating video frames with text

Pinar Duygulu and Howard Wactlar

Informedia Project School of Computer Science Carnegie Mellon University

Informedia Digital Video Understanding Project

AR 10/26/1998

* Re-Pict F Size

IDVL interface returned for "El Nino" query along with different multimedia abstractions from certain documents.

Carnegie Mellon

44 +> Te Amer

died in the floods and mudslides

Forecasters say more rain is on t

Informedia Digital Video Understanding Project

IDVL interface returned for "bin ladin" query

The results can be tuned using many classifiers

Query on "president" : association problem

gie Mellon

Approach

•Combine textual and visual features to understand how to link semantics with appearance

•Model joint statistics of visual features and words using a large collection of visual data with annotated text

Outline

•Correspondence problem between image regions and text using annotated image collections

•Correspondence problem between video frames and video

•Experiments on TREC 2001 data set

•Experiments on Chinese Cultural data set

Outline

•Correspondence problem between image regions and text using annotated image collections

•Correspondence problem between video frames and video

•Experiments on TREC 2001 data set

•Experiments on Chinese Cultural data set

Associating image regions with words

tiger grass cat

tiger cat grass

Duygulu, Barnard, de Freitas, Forsyth, ECCV2002

Associating image regions with words

Duygulu, Barnard, de Freitas, Forsyth, ECCV2002

Statistical machine translation

Data: Aligned sentences, but word correspondences are unknown

"the beautiful sun"

"le soleil beau"

Statistical machine translation

- •Given the correspondences we can estimate p(sunlsoleil)
- •Given the probabilities we can estimate the correspondences

"le soleil beau"

Enough data + EM, we can obtain the translation p(sunlsoleil)=1

Multimedia translation

Overview

Input Representation

sun sky waves sea

Image processing*

Each blob is a large vector of features

- Region size
- Position
- Colour
- Oriented energy (12 filters)
- Simple shape features

Tokenization

- Words \rightarrow word tokens
- Image segments

•represented by 40 features
(size, position, color, texture and shape)
k-means to cluster features
•best cluster for the blob → blob tokens

w3 w4 w5 w1

w6 w7 w8 w1

w12 w2 w1

Associations

 $\sum_{i=1}^{B_n} p(a_1 = i) = 1$

Initialization

Initialize translation table to blob-word co-occurrences (empirical joint distribution of blobs and words)

Expectation Maximization Algorithm

Given the translation probabilities estimate the correspondences Given the correspondences estimate the translation probabilities

EM Algorithm

Estep: Predicting correspondences from translation probabilities (for one pair)

translation probabilities

correspondences

EM Algorithm

M step Predicting translation probabilities from correspondences (for one pair)

translation probabilities

Word prediction

On a new test image
segment the image
extract the features from the regions
then, for each region

find the corresponding blob token b
use word posterior probabilities p(wlb) for predicting words

Use predicted words for •region naming •auto-annotation

Region naming

Results

plane sky

people ruins stone

sunset tree water

Auto-annotation

Using annotation performance as a proxy

CAT HORSE GRASS WATER

Using annotation performance as a proxy

Outline

•Correspondence problem between image regions and text using annotated image collections

•Correspondence problem between video frames and video

•Experiments on TREC 2001 data set

•Experiments on Chinese Cultural data set

Video

...despite heroic efforts many of the worlds wild creatures are doomed the loss of species is now the same as when the great dinosaurs become extinct will these creatures become the dinosaurs of our time today...

Input

...efforts many | of the worlds | wild creatures | are doomed | the loss of | species ...

Input

Position, Color (RGB and Lab, mean and std) Texture (Oriented energy filters, DoG)

Input

Brill's tagger is used to extract nouns

The text only corresponding to the shot can be used Or also the surrounding text within a window size can be used

Outline

•Correspondence problem between image regions and text using annotated image collections

•Correspondence problem between video frames and video

•Experiments on TREC 2001 data set

•Experiments on Chinese Cultural data set

TREC 2001 data

Number of images = 2232

7 x 7 blocks56 features extracted from each blockNumber of blob tokens = 500

Number of words = 1938

Window size for surrounding text = 5

Auto-annotations

statue(1) liberty(2)

plane(2)

robot(5)

space (1), telescope(10)

Auto-annotations

space (6), astronaut(7)

water(1) research(3)

plane(2)

space(1), world(6)

Query for "Statue of Liberty"

Associating frames and text

statue(1) liberty(2)

statue(1) liberty(2)

statue(1) liberty(3)

statue(1) liberty(3)

Outline

•Correspondence problem between image regions and text using annotated image collections

•Correspondence problem between video frames and video

•Experiments on TREC 2001 data set

•Experiments on Chinese Cultural data set

Query on "panda"

1983

Dr. Kleiman observes the female panda - a male panda's attempt to mate with her is unsuccessful

Query on "Great Wall"

Chinese Culture data set

Number of images = 3745

5 x 5 blocks 56 features extracted from each block Number of blob tokens = 1000

Number of words = 2597

Pruning data

Recall and Precision

When only the words that are associated with the frame are taken

Recall : number of correct predictions / number of actual occurrence

Precision : number of correct predictions / number of all predictions

Panda (when predicted in the first 3)

Wall (when predicted in the first 3)

Emperor (when predicted in the first 3)

Correspondence results for "panda"

number of annotations	127
number of correct annotations	42
number of incorrect annotations	85
number of predictions	121
number of correct predictions	51
number of incorrect predictions	70
annotation present not predicted	64
annotation correct not predicted	11
annotation incorrect not predicted	53
not annotated but predicted	61
not annotated but correctly predicted	25
not annotated and incorrectly predicted	36
annotated and predicted and correct	
annotated and predicted but incorrect	

Correspondence results for "panda"

Recall and precision as a function of window size

Single frame

Window size = 1

Window size = 2

Window size = 3 Carnegie Mellon

Recall and precision for some selected words as a function of window size

	panda	wall	emperor
single frame	0.7183 - 0.2044	0.8492 - 0.2281	0.6885 - 0.2242
wsize = 1	0.8182 - 0.2432	0.9180 - 0.2923	0.8744 - 0.2860
wsize = 2	0.8857 - 0.2560	0.9517 - 0.3149	0.9446 - 0.3257
wsize = 3	0.9154 - 0.2604	0.9720 - 0.3186	0.9693 - 0.3631

Conclusions

While text and images are separately ambiguous, jointly they tend not to be.

Linking visual information with text improves performance

The proposed method
Can learn correspondence between visual data and text
Unsupervised – uses the available large data sets efficiently

Can be used

•For region naming – object recognition on the large scale

- •Auto-annotation predicting words
- •Associating frames and text

Future Directions

Applying on broadcast news

A better set of features including face detectors, and moving objects

Better linguistic analysis (e.g. taking noun phrases)

Finding the best window size by statistical analysis

Thank you

http://www.informedia.cs.cmu.edu

Prediction measure as a function of window size

	PR
single frame	0.1851
wsize = 1	0.2469
wsize = 2	0.2783
wsize = 3	0.2975

Prediction measure (PR):

 $1/N \sum_{N} (\text{#correct / # actual})$