Systematic Evaluation of Machine Translation Methods for Image and Video Annotation

Paola Virga
Johns Hopkins University, USA

Pinar Duygulu
Bilkent University, Turkey

CIVR 2005
Inspiration from Machine Translation

\[p(f | e) = \sum_a p(f, a | e) \]

\[p(c | v) = \sum_a p(c, a | v) \]

Direct translation model
Discrete Representation of Image Regions (visterms) to create analogy to MT

In Machine Translation \rightarrow discrete tokens

In our task

sun sky waves sea concepts \checkmark

However, the features extracted from regions are continuous

Solution : Vector quantization \rightarrow visterms \checkmark

$\Rightarrow \{f_{n1}, f_{n2}, \ldots, f_{nm}\} \rightarrow v_k$

$V_{10} V_{22} V_{35} V_{43}$
$c_5 c_1 c_{38} c_{71}$

$V_{20} V_{21} V_{50} V_{10}$
$c_{15} c_{21} c_{83}$

$V_{78} V_{78} V_1 V_1$
$c_{21} c_{19} c_1 c_{56} c_{38}$

water harbor sky clouds sea
Image annotation using translation probabilities

$p(c \mid v)$: Probabilities obtained from direct translation

$$P_0(c \mid d_v) = \frac{1}{|d_v|} \sum_{v \in d_v} P(c \mid v)$$
Data Sets

<table>
<thead>
<tr>
<th>Data Set</th>
<th># Blocks</th>
<th># Concepts</th>
<th>Training Size</th>
<th>Test Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corel</td>
<td>24(6x4)</td>
<td>374</td>
<td>4500</td>
<td>500</td>
</tr>
<tr>
<td>TRECVID</td>
<td>35(7x5)</td>
<td>138 (75 used)*</td>
<td>34880</td>
<td>9220</td>
</tr>
</tbody>
</table>

* Most frequent
Feature selection

Features: color, texture, edge
Extracted from blocks, or around interest points

Observations

- Features extracted from blocks give better performance than features extracted around interest points
- When the features are used individually
 Edge features give the best performance
- Training using all is the best
 - Using Information Gain to select visterns vocabulary didn’t help
- Integrating number of faces increases the performance slightly

mAP values for different features
Model and iteration selection

Strategies compared
(a) IBM Model 1
(b) HMM Model on top of (a)
(c) IBM Model 4 on top of (b)

-> Observation : IBM Model 1 is the best

<table>
<thead>
<tr>
<th>Corel</th>
<th>TREC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.125</td>
<td>0.124</td>
</tr>
</tbody>
</table>

Number of iterations in Giza++ training affects the performance
-> Less iterations give better annotation performance but cannot produce rare words
Integrating word co-occurrences

- Model 1 with word co-occurrence

\[
P_1(c_i \mid d_V) = \sum_{j=1}^{C} P(c_i \mid c_j) P_0(c_j \mid d_V)
\]

- Integrating word co-occurrences into the model helps for Corel but not for TREC

<table>
<thead>
<tr>
<th></th>
<th>Corel</th>
<th>TREC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>0.125</td>
<td>0.124</td>
</tr>
<tr>
<td>Model 1 + Word-CO</td>
<td>0.145</td>
<td>0.124</td>
</tr>
</tbody>
</table>
Annotation Results (Corel set)

Top: manual annotations, bottom: predicted words (top 5 words with the highest probability)
Red: correct matches
MT Models Analysis

\[P(f \mid e) = \sum_a P(f, a \mid e) = \sum_a P(m \mid e) P(a \mid m, e) P(f \mid a, m, e) \]

✓ “f” French Sentence of length m (Concept language)
✓ “e” English Sentence of length 1 (Visterms language)
✓ “a” Alignment between the French sentence “f” and the English sentence “e”
✓ \(P(m \mid e) \) String length probability
✓ \(P(a \mid m, e) \) Alignment probability
✓ \(P(f \mid a, m, e) \) Word translation probabilities
Model 1-2-HMM

Model 1 assumptions:
\[P(m | e) = \mathcal{E}(m | l) \]
\[P(a | m, e) = (l + 1)^{-m} \quad \text{Each Alignment is equally probable} \]
\[P(f | a, m, e) = \prod_{j=1}^{m} t(f_j | e_{a_j}) \]

Model 2 assumptions:
String length probabilities and Translation word probabilities as Model 1

\[P(a | m, e) = \prod_{j=1}^{m} P(a_j | j, l, m) \quad \text{The alignment depends on the position of the concept} \]

The concept sentence associated to the image can be one of the following: \{sun, sky, waves, sea\} \{sun, waves, sea, sky\} \{sky, sun, sea, waves\} \{sky, sea, waves, sun\} The position of a concept in the annotation depends only on the annotator and not on the image itself.

sun sky waves sea
IBM Model 1-2 & HMM (cont..)

Model 1 assumptions:

\[P(m \mid e) = \epsilon(m \mid l) \]
\[P(a \mid m, e) = (l + 1)^{-m} \quad \text{Each Alignment is equally probable} \]
\[P(f \mid a, m, e) = \prod_{j=1}^{m} t(f_j \mid e_{a_j}) \]

HMM Model assumptions:

String length probabilities and Translation word probabilities as Model 1

\[P(a \mid m, e) = \prod_{j=1}^{m} P(a_j \mid a_{j-1}, l, m) \quad \text{The alignment depends on the previous alignment} \]

- Concepts as “sun” and “sky” are usually in adjacent blocks
- Given the lack of structure of the “concept” sentence, a possible scenario is:

1. Sky Zebra Grass \[P(a_j \mid \text{Zebra} \rightarrow \text{B9}, l, m) \]
2. Grass Zebra Sky \[P(a_j \mid \text{Zebra} \rightarrow \text{B9}, l, m) \]

* The model favors alignments close to each other.
IBM Model 3-4-5

\[P(f | e) = \sum_a P(f, a | e) = \sum_{\tau, \pi \in \{f, a\}} P(\Phi | e)P(\tau | \Phi, e)P(\pi | \tau, \Phi, e) \]

- \(P(\Phi | e) \) Fertility probability
 Fertility is the number of concepts associated with a visterm. In our task such number does not depend on the concept but on the image itself. Depending on the resolution of the image a particular visterm can be associated with one or more concepts.

- \(P(\pi | \tau, \Phi, e) \) Distortion probability
 The concept of distortion is used to deal with different language word orders: English is an SVO language while Arabic is a VSO language. It is not possible to apply it to our task since the “concept” language lacks of structure.
Inspiration from CLIR

- Treat Image Annotation as a Cross-lingual IR problem
 - Visual Document comprising visterms (target language) and a query comprising a concept (source language)

\[
p(c \mid d_v) = \lambda \left(\sum_{v \in V} p(c \mid v)p(v \mid d_v) \right) + (1 - \lambda) p(c \mid G_C) \\
\]

\text{same} \forall d_v
Inspiration from CLIR

- Treat Image Annotation as a Cross-lingual IR problem
 - Visual Document comprising visterms (target language) and a query comprising a concept (source language)

\[
p(c \mid d_v) = \sum_{v \in d_v} p(v \mid d_v) p(c \mid v)
\]

- Image does not provide a good estimate of \(p(v \mid d_v)\)
- Tried \(p(v)\) and \(DF(v)\), DF works best

\[
\text{score}(c \mid d_v) = \sum_{v \in d_v} DF_{\text{Train}}(v) p(c \mid v)
\]
Annotation Performance on TREC

<table>
<thead>
<tr>
<th>Model 1</th>
<th>0.124</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIR using Model 1</td>
<td>0.126</td>
</tr>
</tbody>
</table>

Significant at p=0.04

Average Precision values for the top 10 words
For some concepts we achieved up to 0.6
Conclusions

The simplest Translation Model (IBM Model 1) outperforms the more sophisticated ones.

Why:

1. IBM Models and HMM Model are suited for syntactically rich languages.

 Translations from Arabic to English are better than from Chinese to English.

2. The two-dimension image structure gets flattened, it is only partially preserved the horizontal order.

3. The length of the two parallel sentences ("concept" sentence and "visterms” sentence) are dramatically different, m<<l.