Object Recognition as Machine Translation: Learning a Lexicon for a Fixed image Vocabulary

Pinar Duygulu, Kobus Barnard, Nando de Freitas and David Forsyth

UC Berkeley Digital Library Project UBC Computer Science

Funding provided by NSF Digital Library Initiative II. Kobus Barnard also receives funding from NSERC (Canada) Pinar Duygulu is also supported by TUBITAK (Turkey)

Problems in Object Recognition

•What is an object ?

•How to model?

Our Approach

Object recognition on a large scale is linking words with image regions

Use joint probability of words and pictures in large datasets

tiger grass cat

Auto-Annotating Images

Finding words for the images

Barnard, Forsyth (ICCV 2001), Barnard, Duygulu, Forsyth (CVPR 2001)

Other related work : Maron 98, Mori 99

Annotation vs Recognition

Cannot be solved with one example

Statistical Machine Translation

Data: Aligned sentences, but word correspondences are unknown

"the beautiful sun"

Brown, Della Pietra, Della Pietra & Mercer 93

Statistical Machine Translation

Given the correspondences, we can estimate the translation p(sunlsoleil)

Given the probabilities, we can estimate the correspondences

Statistical Machine Translation

Enough data + EM, we can obtain the translation p(sun|soleil)=1

"the beautiful sun"

"le soleil beau"

Multimedia Translation

Corel Database

392 CD's, each consisting of 100 annotated images.

Input

Image processing*

sun sky waves sea

Each region is described by a set of features

- Region size
- Position
- Color
- Oriented energy (12 filters)
- Simple shape features

*Thanks to Blobworld team [Carson, Belongie, Greenspan, Malik], N-cuts team [Shi, Tal, Malik]

Tokenization

- Words \rightarrow word tokens
- Image segments
 - •represented by 40 features (size, position, color, texture and shape)
 - •k-means to cluster features
 - •best cluster for the blob \rightarrow blob tokens

Data

160 CD's100 images in each

10 sets each : randomly selected 80 CD's ~6000 training ~2000 test 150-200 word tokens 500 blob tokens

Segmentation about a month

beach people sun water

jet plane sky

cat grass tiger water

Assignments

$$\sum_{i=1}^{B_{n}} p(a_{1} = i) = 1$$

Assignments

$$\sum_{i=1}^{B_n} p(a_2 = i) = 1$$

Assignments

$$\sum_{i=1}^{B_n} p(a_3 = i) = 1$$

Initialization

Initialize translation table to blob-word cooccurences (emprical joint distribution of blobs and words)

Expectation Maximization

Given the translation probabilities estimate the correspondences Given the correspondences estimate the translation probabilities

EM algorithm

E step : Predicting correspondences from translation probabilities (for one pair)

EM algorithm

Mstep : Predicting translation probabilities from correspondences (for one pair)

Dictionary

Labeling Regions

On a new image •Segment the image

•For each region

• Find the blob token

•Look at the word posterior given the blob

Labeling Regions

Labeling Regions

Display only maximal probable word

Measuring Performance

First strategy--score by hand

Second strategy--use annotation performance as a proxy.

First Strategy Score by hand

Average performance is four times better than guessing the most common word

("water")

Second Strategy Use Annotation

tiger cat grass water

Automatic : Don't need to do by hand

Annotating Images

Measuring Annotation Performance

Actual Keywords GRASS TIGER CAT FOREST

and the second

CAT HORSE GRASS WATER

Measuring Annotation Performance

Improving the System

•Refusing to predict

•Merging indistinguishable words

Refusing to predict

Null and fertility problems simple solution to null - refusing to predict

if p(word | blob) > threshold

predict a word otherwise assign null

Examples (null threshold = 0.2)

Recall and Precision (for null threshold from 0 to 0.5)

Clustering Indistinguishable Words

merge words which can't be told apart

e.g. locomotive vs. train

Examples

Future Directions (machine learning)

Estimate where a minimal amount of supervision can be most helpful (and provide it)

Future Directions (computer vision)

Propose good features to differentiate words that are not distinguishable (e.g., eagle and jet)

Future Directions (computer vision)

Propose region merging based on posterior word probabilities

Propose merging

Conclusions

Recognition on the large scale

Unsupervised - using the available data efficiently

Learn what to recognize

The End

