Recognition as Machine Translation:

Labeling Objects and Faces Using Large Image and Video Collections

Pinar Duygulu

Bilkent University, Turkey

Outline

- Object Recognition as Machine Translation
 - Joint work with Kobus Barnard, Nando de Freitas and David Forsyth
- Preliminary work on naming faces and objects in news videos

A novel approach for object recognition

Object recognition on large scale is linking image regions with words

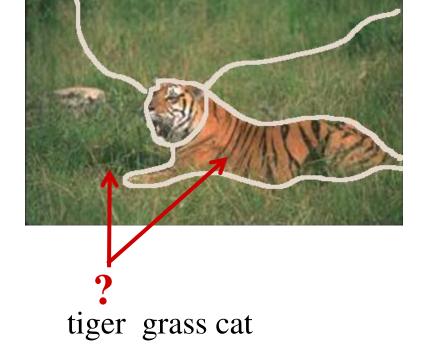
grass grass grass tiger

Use joint probability of words and Images in large data sets.

tiger grass cat

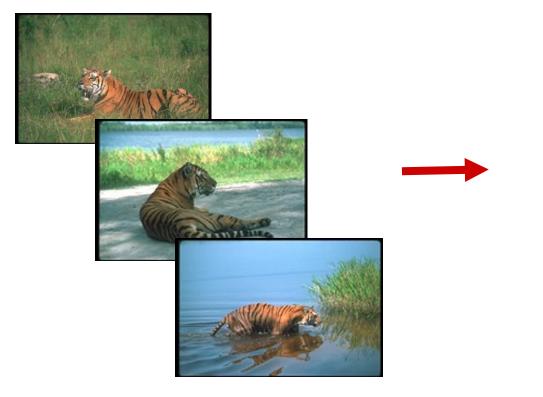
Annotation vs. Recognition

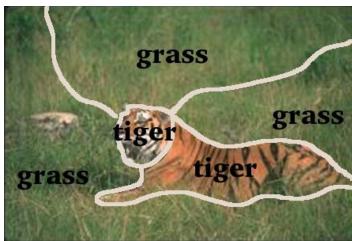
tiger grass cat



Cannot be learned from a single image

Learning recognition from large data sets





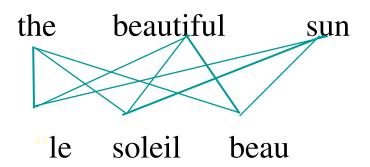
Statistical Machine Translation

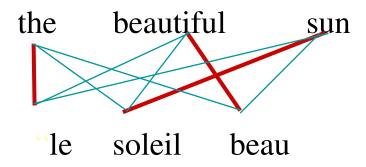
Data: aligned sentences
But word correspondences
are unknown

- •Given the correspondences, we can estimate the translation p(sun | soleil)
- •Given the probabilities, we can estimate the correspondences

Solution: enough data + EM

Brown et. al 1993





Multimedia Translation

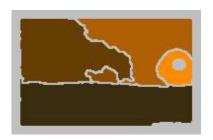
Data:

118011 WATER HARBOR SKY CLOUDS

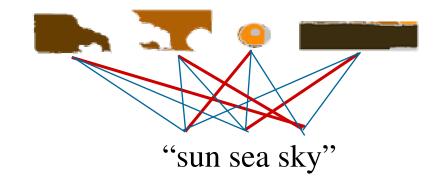
TIGER CAT WATER GRASS

1090 SUN CLOUDS WATER SKY

Words are associated with the images
But correspondences between image regions and words are unknown



"sun sea sky"

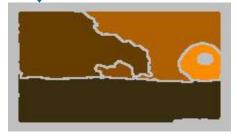


Input Representation

sun sky waves sea

word tokens

segmentation



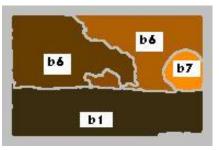
Each blob is a large vector of features

- •Region size
- Position
- Colour
- Oriented energy (12 filters)
- Simple shape features

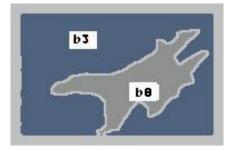
k-means to cluster features

For each blob label of the

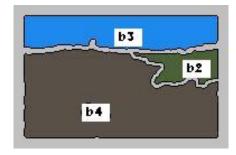
Closest cluster→ blob tokens



w6 w7 w8 w1



w3 w4 w5 w1



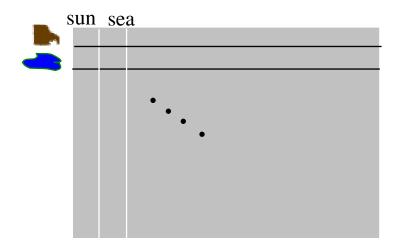
w12 w2 w1

Method

Given the translation probabilities estimate the correspondences

Given the correspondences estimate the translation probabilities

Initialization

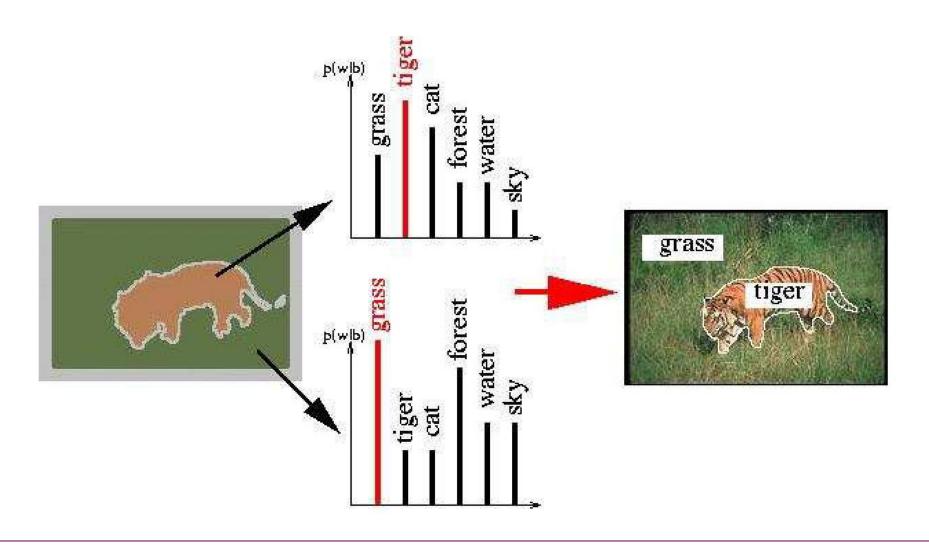


Initialize to co-occurrences

Dictionary

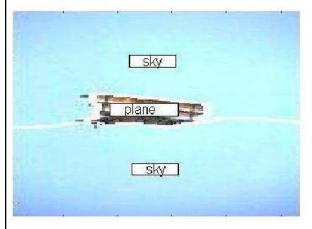
sun sky cat

Region Naming

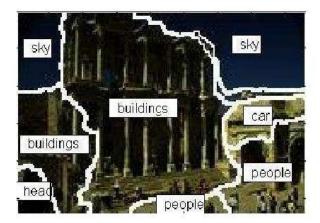


Results

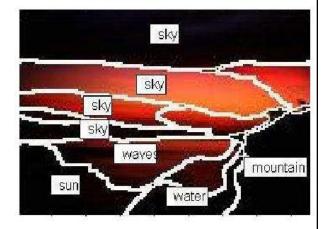
plane sky



people ruins stone



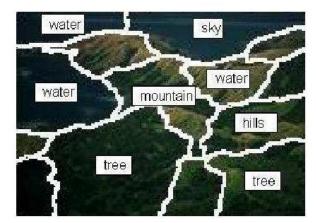
sunset tree water



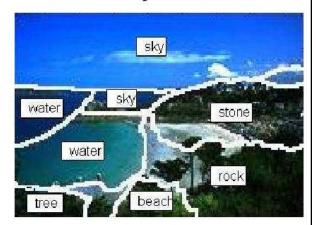
Results

hills sky tree

mountain tree water



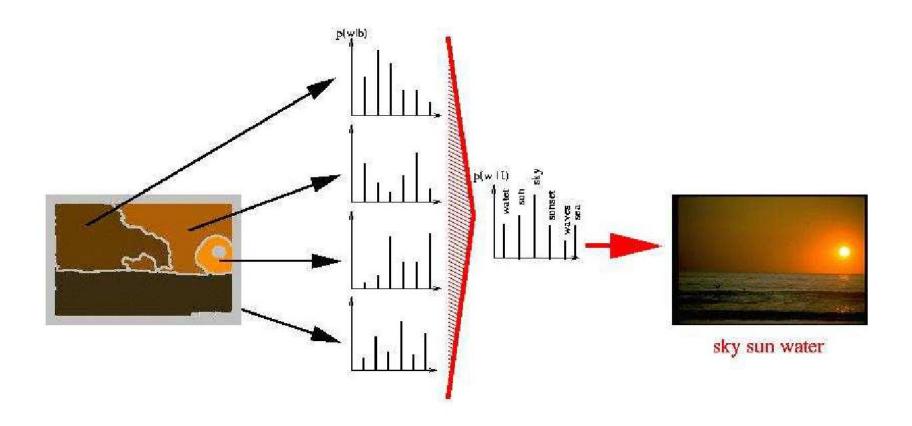
beach sky tree water



Measuring the performance

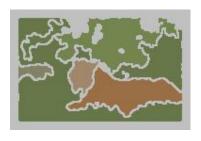
- •Do we predict the right words?
- •Are they on the right blob?

Visual inspection answers both of the questions, but it is not possible to do for a large number of images



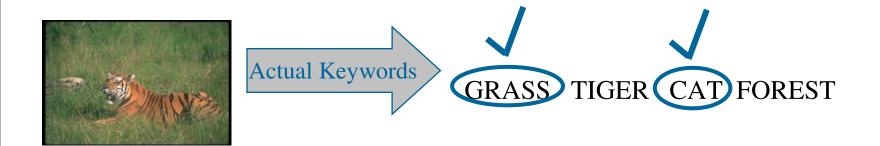
Measuring Annotation Performance

GRASS TIGER CAT FOREST



CAT HORSE GRASS WATER

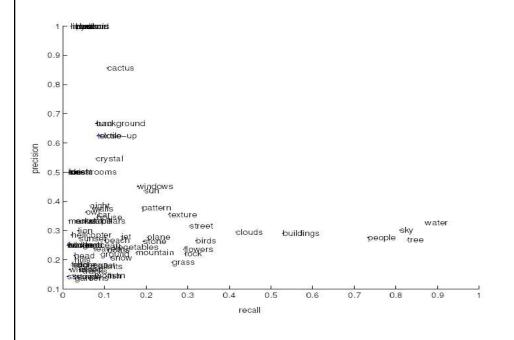
Measuring Annotation Performance

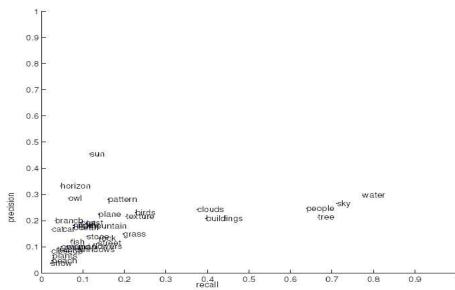


Word Prediction Measure

set	training	standard test	novel test
001	0.2708	0.2171	0.2236
002	0.2799	0.2262	0.2173
003	0.2763	0.2288	0.2095
004	0.2592	0.1925	0.2172
005	0.2853	0.2370	0.2059
006	0.2776	0.2198	0.2163
007	0.2632	0.2036	0.2217
008	0.2799	0.2363	0.2102
009	0.2659	0.2223	0.2114
010	0.2815	0.2297	0.1991

Recall versus Precision





training

test

Refusing to predict

Null and fertility problems simple solution to null - refusing to predict

```
If prob(word | blob ) > threshold then predict the word else assign NULL
```


Pinar Duygulu, October 2004

Recognition as Machine Translation

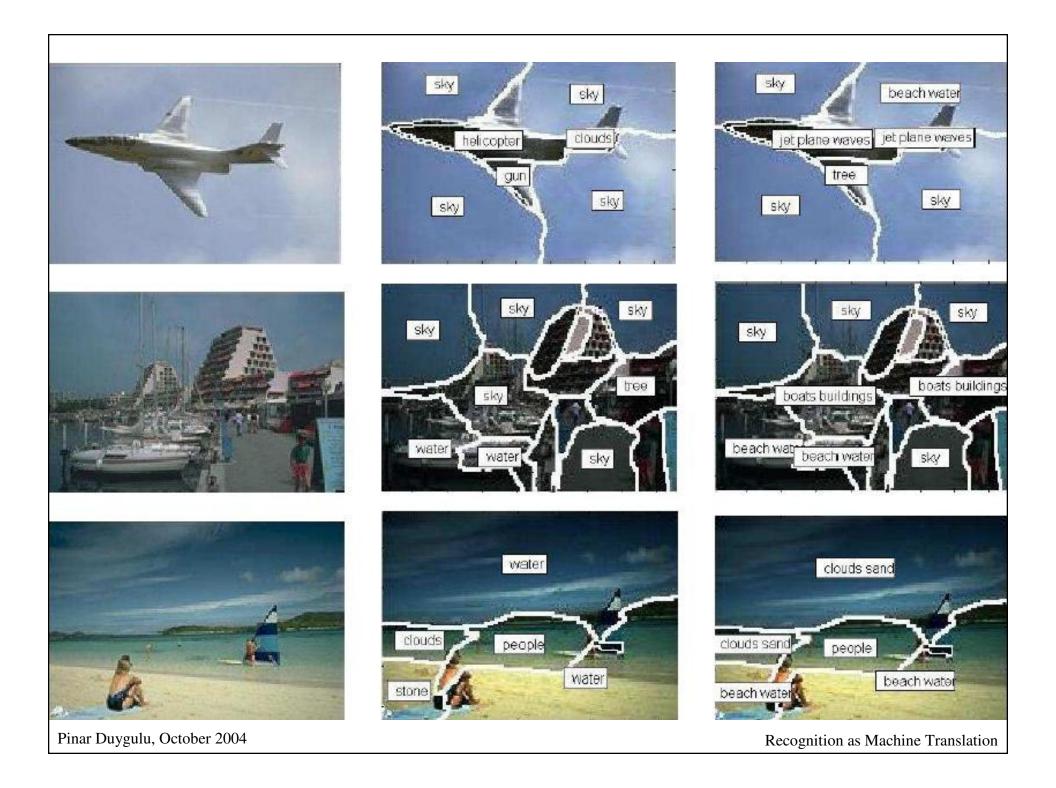
Merging Indistinguishable words

Some words cannot be set apart

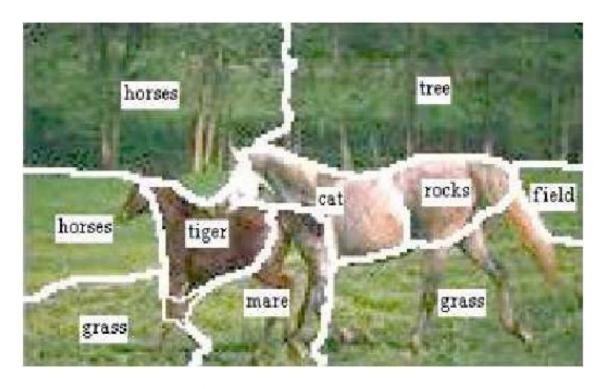
either they are synonyms (e.g. locomotive and train)

or they are indistinguishable using the current feature set (e.g. eagle and jet)

construct a similarity matrix based on the posterior probabilities Then, use N-cuts for clustering



Integrating supervised data



a small amount of supervised data can be helpful for breaking symmetries for a better clustering

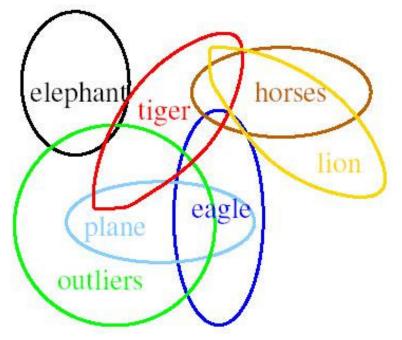
Integrating labeled data

A set of regions are labeled manually

6 CDs, 10 images from each: eagles, elephants, tigers, horses, planes, lions

For improving clustering

Apply linear discriminant analysis 21 label words + outlier = 22 labeled classes



For fixing correspondences

Set the alignments between the labeled regions and the corresponding words to 1, and the others to 0

Integrating supervised data

first three words predicted

label	method 1	method 2	method 4
tiger	elephant horses field	tiger null water	tiger null water
plane	sky plane forest	plane sky null	plane null sky
runway	null sky eagle	runway plane eagle	runway plane eagle
field	plane null sky	null horses field	field null elephant
horses	tiger null forest	null tiger tree	horses null tiger
sky	forest sky tiger	sky eagle null	sky null eagle
elephant	sky null grass	tree elephant null	elephant null tree
grass	horses null plane	grass horses null	grass horses field
tree	plane sky runway	elephant horses null	tree field horses
water	tiger plane water	water null sky	water null sky
lion	tiger null plane	grass lion tiger	lion grass tiger

	clustering	training
1	k-means	unlabeled data + EM
2	labeled data	unlabeled data + EM
3	labeled data	nearest neighbor classifier
4	labeled data	labeled data + EM

Method 3 (supervised method) has more false positives

Associating video frames with text

Query on "president"

Association problem

Associating video frames with text

Solving correspondences in broadcast news for better retrieval & sense disambiguation

..tanks on the street ...

...start attacking on houses by helicopters and tanks...

..fuel tank...

Face Recognition by resolving correspondences between named entities and faces

Data Set

- TRECVID2003 video retrieval evaluation data provided by NIST
- 120 hours of news videos (ABC and CNN) from 1998

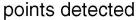
Concepts

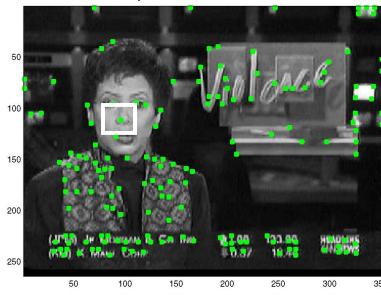
man-made object

car
transportation
vehicle
outdoors
non-studio setting
nature-non-vegetation
snow

138 concepts15 hours of video is manually annotated by around 100 people

Representation





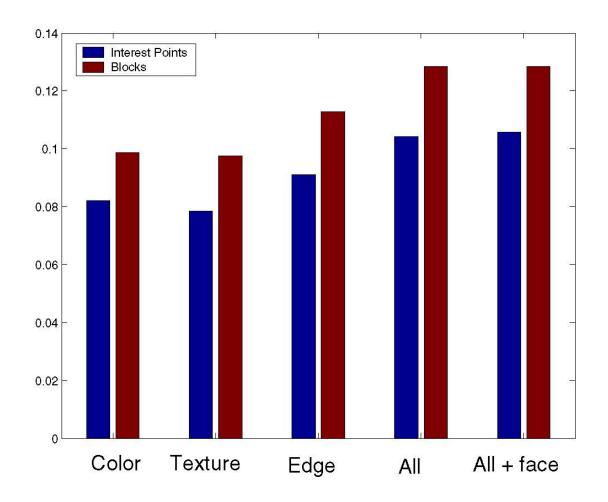
Features extracted

- Lab Moments
- Smoothed Edge Orientation Histogram
- Grey-level Co-occurrence matrix

1000 visual tokens

138 concepts

Feature comparison



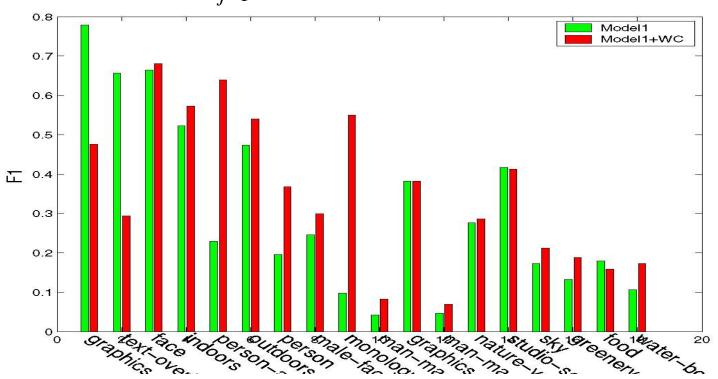
mAP values for different features

Integrating Language Modeling

Word co-occurrences as a simple language model

$$P_1(c_i | v) = \sum_{j=1}^{|C|} P(c_i | c_j) P_0(c_j | v)$$

v: visual tokens, c: concepts



Training: 9413 shots, Test: 4787 shots

Lab Moments

F1 = (recall + precision) / 2

Concepts versus Speech Transcripts

Concepts

Requires manual annotation

Noisy

Limited set of vocabulary

Speech transcripts and closed captions

Available for almost all the videos

Free text which usually does not correspond to the visual cues

Text is not associated with the frames

...despite heroic efforts many of the worlds wild creatures are doomed the loss of species is now the same as when the great dinosaurs become extinct will these creatures become the dinosaurs of our time today...

Associating key-frames with surrounding text

...efforts many | of the worlds | wild creatures | are doomed | the loss of | species ...

Brill's tagger is used to extract nouns Stop words and rare words are eliminated

News videos - structured

Taking the surrounding words are problematic Use structure to obtain story segments

anchor anchor – reporter dialogs logos overview

News story weather commercials sports

Using delimiters to obtain story segments

Remove commercials

Remove graphics

Remove anchor frames but use text

•Idea: A story segment starts or ends with a delimiter or with an anchor/reporter shot

Associating text with frames

w1 w2 w10 w1 w5 w6 w2 w1 w4 w10 w5 w3 w11

. . .

Color tokens: 1-230 (quantized using G-means)

Num faces (1/2/>=3)

building

road

outdoor

car

Semantic retrieval

!! only single occurrence per segment

Search on clinton

20 / 130 (15%)

27 / 133 (20%)

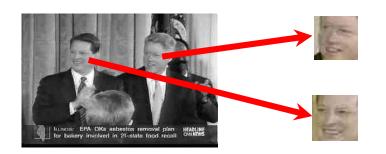
Search on fire

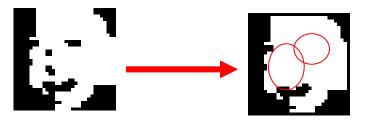
11 / 44 (25%)

15 / 38 (40%)

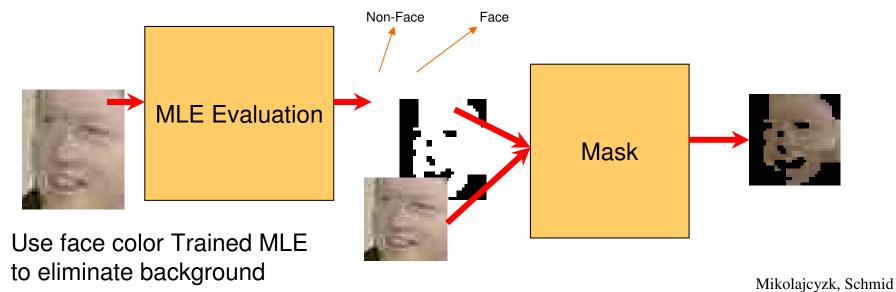
Detecting Faces

Detect Faces





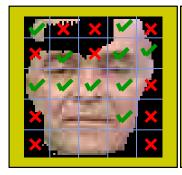
Improve amount of "face" by filling regions of the mask



Pinar Duygulu, October 2004

Recognition as Machine Translation

Methodology

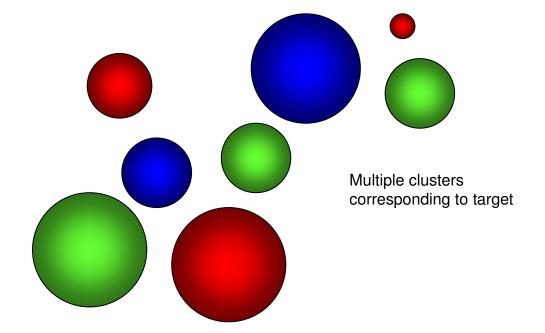


Similarity < Threshold

- Good Match
- × Not enough Data

Join Similar faces together to obtain clusters of images.

Label the cluster with most possible name extracted from speech data.



Results

Sam Donaldson



Anchor (ABC)

Unknown

Anchor (CNN)

Summary & Future Directions

- •When text and visual features are combined it is possible to do many interesting tasks
- •Object recognition on the very large scale can be viewed as translation of regions to words
- •Important objects
- People
- Objects that move
- •Use temporal information and associate the motion with words
- •There are many other available multi-modal data sets
- Recognizing words in Ottoman documents