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Abstract

Multimedia objects like video clips or captioned images contain data of various modalities

such as image, audio, and transcript text. Correlations across different modalities provide infor-

mation about the multimedia content, and are useful in applications ranging from summarization

to semantic captioning. For discovering cross-modal correlations, we proposed a graph-based

method, MAGIC, which turns the multimedia problem into a graph problem, by representing

multimedia data as a graph. Using “random walks with restarts” on the graph, MAGIC is

capable of finding correlations among all modalities. When applied to the task of automatic

image captioning, MAGIC found robust correlations between text and image and achieved a

relative improvement by 58% in captioning accuracy as compared to recent machine learning

techniques.

MAGIC has several desirable properties: (a) it is general and domain-independent; (b) it

can spot correlations across any two modalities; (c) it is completely automatic and insensitive

to parameter settings; (d) it scales up well for large datasets, (e) it enables novel multimedia

applications (e.g., group captioning), and (f) it creates opportunity for applying graph algorithms

to multimedia problems.

1 Introduction

Advances in digital technologies make possible the generation and storage of large amount of mul-

timedia objects such as images and video clips. Multimedia content contains rich information in

various modalities such as images, audios, video frames, time series, etc. However, making rich

multimedia content accessible and useful is not easy. Advanced tools that find characteristic pat-

terns and correlations among multimedia content are required for the effective usage of multimedia

databases.

We called a data object which has its content presented in more than one modality a mixed

media object. For example, a video clip is a mixed media object with image frames, audios, and

other information such as transcript text. Another example is a captioned image such as a news
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Figure 1: Three sample images: (a),(b) are captioned with terms describing the content; (c) is an

image to be captioned. (d)(e)(f) show the regions of images (a)(b)(c), respectively. Figures look

best in color.

picture with an associated description, or a personal photograph annotated with a few keywords

(Figure 1). In this paper, we would use the terms medium (plural form media) and modality

interchangeably.

It is common to see correlations among attributes of different modalities on a mixed media

object. For instance, a news clip usually contains human speech accompanied with images of static

scenes, while a commercial has more dynamic scenes and loud background music [30]. In image

archives, caption keywords are chosen such that they describe objects in the images. Similarly, in

digital video libraries and entertainment industry, motion picture directors edit sound effects to

match the scenes in video frames.

Cross-modal correlations provide helpful hints on exploiting information from different modal-

ities for tasks such as segmentation [16] and indexing [7]. Also, establishing associations between

low-level features and attributes that have semantic meanings may shed light on multimedia un-

derstanding. For example, in a collection of captioned images, discovering the correlations between

images and caption words, could be useful for content-based image retrieval, and image annotation

and understanding.

The question that we are interested in is “Given a collection of mixed media objects, how do

we find the correlations across data of various modalities?” A desirable solution should be able to

include all modalities of different properties, overcome noise in the data, and detect correlations
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between any subset of available modalities. Moreover, in terms of computation, we would like a

method that is scalable to the database size and does not require human fine-tuning.

In particular, we want a method that can find correlations among all attributes, rather than

just between specific attributes. For example, we want to find not just the image-term correlation

between an image and caption terms, but also term-term and image-image correlations, using one

single framework. This any-to-any medium correlation provides a greater picture of how attributes

are correlated, e.g., “which word is usually used for images with blue top,” “what words have

related semantics,” and “what objects appear often together in an image.”

We proposed a novel, domain-independent framework, MAGIC, for cross-modal correlation

discovery. MAGIC turns the multimedia problem into a graph problem, by providing an intuitive

framework to represent data of various modalities. The proposed graph framework enables the

application of graph algorithms to multimedia problems. In particular, MAGIC employs the random

walk with restarts technique on the graph to discover cross-modal correlations.

In summary, MAGIC has the following advantages:

• It provides a graph-based framework which is domain independent and applicable to mixed

media objects which have attributes of various modalities;

• It can spot any-to-any medium correlations;

• It is completely automatic (its few parameters can be automatically preset);

• It can scale up for large collections of objects.

In this study, we evaluate the proposed MAGIC method on the task of automatic image caption-

ing. For automatic image captioning, the correlations between image and text are used to predict

caption words for an uncaptioned image.

Application 1 (Automatic image captioning) Given a set Icore of color images, each with

caption words; and given an uncaptioned image Inew, find the best q (say, q=5) caption words to

assign to it.

The proposed method can also be easily extended for various related applications such as cap-

tioning images in groups, or retrieving relevant video shots and transcript words.

The paper is organized as follows. In Section 2, we discuss previous attempts on multimedia

cross-modal correlation discovery. In Section 3, we introduce the proposed method MAGIC. In

Section 4, we show that MAGIC achieves a better performance than recent machine learning

methods on automatic image captioning (a 58% improvement on captioning accuracy). In Section

5, we discuss some system issues and show that MAGIC is insensitive to parameter settings and is

robust to variability in the graph. In Section 6 , we give some conclusion remarks.
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2 Related work

Multimedia knowledge representation and application have attracted much research attention re-

cently. Mixed media objects provide opportunities for finding correlations between low-level and

concept-level features [22, 4, 28], and multi-modal correlations had been shown useful for applica-

tions such as retrieval, segmentation, classification, and pattern discovery [7]. In this section, we

survey previous work on cross-modal correlation modeling, as well as image captioning and news

event summarization, which are our application domains that we evaluate our proposed model.

Multimedia cross-modal correlation Combining information about multimedia correlations

in applications leverages all available information, and has led to improved performances in segmen-

tation [16], classification [24, 8], retrieval [43, 46, 41], and topic detection [44, 11]. One crucial step

of fusing multi-modal correlations into applications is to detect, extract and model the correlations

from data.

Previous approaches on multimedia correlation modeling employ various techniques such as

linear model [22, 39], graphical model [4, 28], statistical model [44, 16, 8], meta-classifier [43, 24],

graph partitioning [45, 11], and link analysis [41]. While some of these works proposed general

models multimedia correlation modeling, and evaluated the quality of the models by applying to

some application domains [22, 4, 28], most of these works designed specific approaches for particular

applications (e.g., [44, 43, 45]) which allow them to combine multi-modal information, as well as

leverage domain knowledge to boost performance. In this paper, we introduce a general multimedia

correlation framework, which is applied to image captioning and video summarization.

Previous work on cross-modal correlation modeling attempts to discover correlations between

low-level features [22] or mid-level concepts [4, 28]. In [22], a linear model is designed to represent

correlations between raw features of different modalities. In contrast, in [4, 28], the multi-modal

information is first classified into concepts (e.g., “human” or “explosion”), and then the interaction

between concepts are modeled using graphical frameworks [4, 28]. These approaches assume that

certain domain knowledge is given, including the specification of the concepts of interest, the basic

relations among concepts, etc.

To achieve the best performance, most of the previous studies require domain knowledge on

select appropriate parameter values, and may involve a training phase on a labeled training set.

For example, one may need to specify in details of concepts (what is a “person”), or fine-tune the

mid-level features (which clustering algorithm to use). For classifier-based approaches, decisions

about the type and parameters (kernel, etc.) of the classifier have to be made.

Ideas in link analysis have been explored for modeling cross-modal correlations. In [41], a

similarity function for web images and another one for text blocks are defined initially. The relation

between web images and the surrounding text blocks (cross-modal links) are then utilized to adjust
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the similarity distance between images for better performance on image retrieval. The initial

similarity functions between objects (web images, text blocks), which may be complicated and

difficult to obtain.

Statistical modeling of cross-modal correlation usually requires a training phase on a labeled

training set. Preparing a training set where cross-modal associations are fully labeled is not easy.

Moreover, the statistical model may be complex (with many parameters to be trained) and be

computationally costly to train.

Our proposed framework, MAGIC, does not need a training phase, and has fewer parameters

to tune. In fact, as we show later, the results are insensitive to parameter values in our experi-

ments (Section 5.1). MAGIC uses a graph to represent the relations between objects and low-level

attribute values. By relating multimedia objects via the constituent single-modal domain tokens,

MAGIC avoid detailed specifications of concepts or complicate similarity functions.

Image captioning Although a picture is worth a thousand words, extracting the abundant

information from an image is not an easy task. Computational techniques are able to derive low-

to-mid level features (e.g., texture and shape) from pixel information, however, the gap still exists

between mid-level features to concepts used by human reasoning [36, 47, 46]. One consequence of

this semantic gap in image retrieval is that the user’s need is not properly matched by the retrieved

images, and may be part of the reason that practical image retrieval is yet to be popular.

Automatic image captioning, where the goal is to predict caption words to describe image con-

tent, is one research direction to bridge the gap between concepts and low-level features. Previous

work on image captioning employs various approaches such as linear models [33, 27], classifiers

[26], language models [40, 10, 17], graphical models [3, 5], statistical models [23, 18, 13], and a

framework with user involvement [42].

Most previous approaches derive features from image regions (regular grids or blobs [10]), and

construct a model between images and words based on a reference captioned image set. Images

in the reference set are captioned by human experts, however, there is no information of the

associations between individual regions and words. Some approaches attempt to explicitly infer

the correlations between regions and words [10], with enhancements that take into consideration

interactions between neighboring regions in an image [23]. Alternatively, there are methods which

model the collective correlations between regions and words of an image [34, 35].

Comparing the performance of different approaches is not easy. Several benchmark data sets

are available, however, not all previous work reports results on the same subset of images. On the

other hand, various metrics such as accuracy, term precision and recall, and mean average precision

have been used to measure the performance. Since the perception of an image is subjective, some

work also reports user evaluation of the captioning result.

In Section 4, our proposed method, MAGIC, is applied to automatic image captioning. The
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correlations between words and images are detected and applied to predict caption words of a

previously unseen image. To better evaluate our approach, we conduct experiments on the same

data sets and report using the same performance metric which are also used in other previous works

[40, 10, 3, 5].

3 Proposed method: graph-based correlation detection model

Our proposed method for mixed media correlation discovery, MAGIC, provides a graph-based

representation for data attributes of various modalities, and a technique for finding any-to-any

medium correlation, which is based on random walks on the graph. In this section, we explain how

to generate the graph representation and how to detect cross-modal correlations.

3.1 MAGIC graph (GMAGIC)

In relational database management systems, a multimedia object is usually represented as a vector

of m features/attributes [12]. The attributes must be atomic (i.e., taking single values) like “size”

or “the amount of red color” of an image. However, for mixed media data sets, the attributes can

be set-valued, such as the caption of an image (a set of words) or the image regions.

Finding correlations among set-valued attributes is not easy: Elements in a set-valued attribute

could be noisy or missing altogether: regions in an image are not perfectly identified (noisy regions);

the image caption may be incomplete, leaving out some aspects of the content. Set-valued attributes

of an object may have different numbers of elements, and there is no given alignment between set

elements. For instance, an image may have unequal numbers of caption words and regions, where a

word may describe multiple regions and a region may be described by zero or more than one word.

We assume that the elements of a set-valued attribute are tokens drawn from a domain. We

propose to gear our method toward set-valued attributes, because they include atomic attributes

as a special case; and they also smoothly handle the case of missing values (null set).

Definition 1 (Domain and domain token) The domain Di of (set-valued) attribute i is a col-

lection of atomic values, which we called domain tokens, which are the values that attribute i can

take.

A domain can consist of categorical values, numerical values, or numerical vectors. For exam-

ple, for automatic image captioning, we have objects with m=2 attributes. The first attribute,

“caption”, has a set of categorical values (English terms) as its domain ; the second attribute,

“regions”, is a set of image regions, each of which is represented by a p-dimensional vector of p

features derived from the region (e.g., color histogram with p colors). As described later in Section

4, we extract p=30 features from each region. To establish the relation between domain tokens,
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we assume that we have a similarity function for each domain. Domain tokens are usually simpler

than mixed media objects, and therefore, it is easier to define similarity functions on domain tokens

than on mixed media objects.

Assumption 1 For each domain Di (i = 1, . . . ,m), we are given a similarity function Simi(∗, ∗)

which assigns a score to a pair of domain tokens.

For example, for the attribute “caption”, the similarity function could be 1 if the two tokens are

identical, and 0 if they are not.

Perhaps surprisingly, with Definition 1 and Assumption 1, we can encompass all the applications

mentioned in Section 1. The main idea is to represent all objects and their attributes (domain

tokens) as nodes of a graph. For multimedia objects with m attributes, we obtain a (m + 1)-layer

graph. There are m types of nodes (one for each attribute), and one more type of nodes for the

objects. We call this graph a MAGIC graph (GMAGIC). We put an edge between every object-

node and its corresponding attribute-value nodes. We call these edges object-attribute-value links

(OAV-links).

Furthermore, we consider that two objects are similar if they have similar attribute values. For

example, two images are similar if they contain similar regions. To incorporate such information

into the graph, our approach is to add edges to connect pairs of domain tokens (attribute values)

that are similar, according to the given similarity function (Assumption 1). We call edges that

connect nodes of similar domain tokens nearest-neighbor links (NN-links).

We need to decide on a threshold for “closeness” when adding NN-links. There are many ways

to do this, but we decide to make the threshold adaptive: each domain token is connected to its k

nearest neighbors. We discuss the choice of k in Section 5.1, as well as the sensitivity of our results

to k. Computing nearest neighbors can be done efficiently, because we already have the similarity

function Simi(∗, ∗) for any domain Di (Assumption 1).

We illustrate the construction of GMAGIC graph by the following example.

Example 1 For the images {I1, I2, I3} in Figure 1, the MAGIC graph (GMAGIC) corresponding

to these images is shown in Figure 2. The graph has three types of nodes: one for the image objects

Ij’s (j = 1, 2, 3); one for the regions rj’s (j = 1, . . . , 11), and one for the terms {t1, . . . , t8}={sea,

sun, sky, waves, cat, forest, grass, tiger}. Solid arcs are the object-attribute-value links (OAV-links),

and dashed arcs are the nearest-neighbor links (NN-links).

In Example 1, we consider only k=1 nearest neighbor, to avoid cluttering the diagram. Be-

cause the nearest neighbor relationship is not symmetric and because we treat the NN-links as

un-directional, some nodes are attached to more than one link. For example, node r1 has two

NN-links attached: r2’s nearest neighbor is r1, but r1’s nearest neighbor is r6. There is no NN-link
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r7r6r1 r2 r3 r4 r5

t5t1 t3 t7t6 t8t2 t4

r8 r9 r10 r11

i3 I3I2I1

sea sun sky waves cat forest grass tiger

Figure 2: MAGIC graph (GMAGIC) corresponds to the 3 images in Figure 1. Solid edges: OAV-

links; dash edges: NN-links.

Input:

1. O: a set of n objects (objects are numbered from 1 to n).

2. D1, . . ., Dm: the domains of the m attributes of the objects in O.

3. Sim1(∗, ∗), . . ., Simm(∗, ∗): the similarity functions of domains D1, . . ., Dm, respectively.

4. k: the number of neighbors a domain token connects to.

Output:

GMAGIC : a MAGIC graph with a (m + 1)-layer structure.

Steps:

1. Create n nodes (the object nodes), one for each object. These nodes form the layer 1.

2. For each domain Di, for i = 1, . . . ,m.

(2.1) Let ni be the number of tokens in the domain Di.

(2.2) Create ni nodes (the token nodes), one for each domain tokens in Di. This is the

(i + 1)-th layer.

(2.3) Construct the OAV-links from the object nodes to these token nodes.

(2.4) Construct the NN-links between the token nodes.

3. Output the final (m+1)-layer graph, with N=n+
∑m

i=1
ni nodes, and the OAV-links and

NN-links.

Figure 3: Algorithm: GMAGIC= buildgraph(O, {D1, . . ., Dm}, {Sim1(∗, ∗), . . ., Simm(∗, ∗)}, k)

between term-nodes, due to the definition of its similarity function: 1, if the two terms are the

same; or 0 otherwise. Figure 3 shows the algorithm for constructing a MAGIC graph.

We use image captioning only as an illustration: the same framework can be generally used

for other problems. To solve the automatic image captioning problem, we also need to develop a
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Symbol Description

Sizes

n The number of objects in a mixed media data set.

m The number of attributes (domains).

N The number of nodes in GMAGIC .

E The number of edges in GMAGIC .

k Domain neighborhood size: the number of nearest neighbors that a domain token is con-

nected to.

c The restart probability of RWR (random walk with restarts, RWR).

Di The domain of the i-th attribute.

Simi(∗, ∗) The similarity function of the i-th domain.

Image captioning

Icore The given captioned image set (the core image set).

Itest The set of to-be-captioned (test) images.

Inew An image in Itest.

Gcore The subgraph of GMAGIC containing all images in Icore (Section 4).

Gaug The augmentation to Gcore containing information of an image Inew (Section 4).

GW The gateway nodes, nodes in Gcore that adjacent to Gaug (Section 4).

Random walk with restarts (RWR)

A The (column-normalized) adjacency matrix.

~vR The restart vector of the set of query objects R, where components correspond to query

objects have value 1/|R|, while others have value 0).

~uR The RWR scores of all nodes with respect to the set of query objects R.

~vq , ~uq ~vR and ~uR for the singleton query set R={q}.

~vGW , ~uGW ~vR and ~uR for RWR restarting from the gateway nodes GW .

Table 1: Summary of symbols used in the paper

method to find good caption words - words that correlate with an image, using the GMAGIC graph.

This means that, for example, for image I3, we need to estimate the affinity of each term (nodes t1,

. . ., t8) to node I3. The terms with the highest affinity to image I3 will be predicted as its caption

words.

Table 1 summarizes the symbols we used in the paper.

3.2 Correlation detection with random walks

Our main contribution is to turn the cross-modal correlation discovery problem into a graph prob-

lem. The previous section describes the first step of our proposed method: representing set-valued

mixed media objects in a graph GMAGIC . Given such a graph with mixed media information, how

do we detect the cross-modal correlations in the graph?
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We define that a node A of GMAGIC is correlated to another node B if A has an “affinity” for B.

There are many approaches for ranking all nodes in a graph by their “affinity” for a reference node.

We can tap the sizable literature of graph algorithms and use off-the-shelf methods for assigning

importance to vertices in a graph. These include the electricity based approaches [29, 9], random

walks (PageRank, topic-sensitive PageRank) [6, 15], hubs and authorities [21], elastic springs [25]

and so on. Among them, we propose to use random walk with restarts (RWR) for estimating the

affinity of node B with respect to node A. However, the specific choice of method is orthogonal to

our framework.

The “random walk with restarts” operates as follows: To compute the affinity uA(B) of node

B for node A, consider a random walker that starts from node A. The random walker chooses

randomly among the available edges every time, except that, before he makes a choice, he goes

back to node A (restart) with probability c. Let uA(B) denote the steady state probability that

our random walker will find himself at node B. Then, uA(B) is what we want, the affinity of B

with respect to A. We also call uA(B) the RWR score of B with respect to A. The algorithm of

computing RWR scores of all nodes with respect to a subset of nodes R is given in Figure 4.

Definition 2 (RWR score) The RWR score, uA(B), of node B with respect to node A is the

steady state probability of node B, when we do the random walk with restarts from A, as defined

above.

Let A be the adjacency matrix of the given graph GMAGIC , where columns of the matrix are

normalized such that each sums up to 1. Let ~uq be a vector of RWR scores of all N nodes, with

respect to a restart node q. Let ~vq be the “restart vector”, which has all N elements zero, except

for the entry that corresponds to node q, which is set to 1. We can now formalize the definition of

RWR scores (Definition 3).

Definition 3 (RWR scores computation) The N -by-1 steady state probability vector ~uq, which

contains the RWR scores of all nodes with respect to node q, satisfies the equation:

~uq = (1 − c)A~uq + c~vq, (1)

where c is the restart probability of the RWR from node q.

The computation of RWR scores can be done efficiently by matrix multiplication (Step 4.1 in

Figure 4), with computational cost scales linearly with the number of elements in the matrix A,

i.e., the number of graph edges determined by the given database. In general, the computation of

RWR scores converges after a few (∼ 10) iterations (Step 4 in Figure 4). In our experiments, each

RWR computation takes less than 5 seconds. Therefore, the computation of RWR scales well with

the database size. Fortunately, MAGIC is modular and can continue improve its performance by

including the best module [19, 20] for fast RWR computation.
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Input:

1. GMAGIC : a MAGIC graph with N nodes (nodes are numbered from 1 to N).

2. R: a set of restart nodes. (Let |R| be the size of R.)

3. c: the restart probability.

Output:

~uR: the RWR scores of all nodes with respect to R

Steps:

1. Let A be the adjacency matrix of GMAGIC . Normalize the columns of A and make each

column sum up to 1.

2. ~vR is the N -by-1 restart vector, whose i-th element ~vR(i) is 1

|R| , if node i is in R;

otherwise, ~vR(i)=0.

3. Initialize ~uR=~vR.

4. while(~uR has not converged)

4.1 Update ~uR by ~uR = (1-c)A~uR + c~vR

5. Return the converged ~uR.

Figure 4: Algorithm: ~uR = RWR(GMAGIC , R, c)

The RWR scores specify the correlations across different media and could be useful in many

multimedia applications. For example, to solve the image captioning problem for image I3 in

Figure 1, we can compute the RWR scores ~uI3 of all nodes and report the top few (say, 5) term-

nodes as caption words for image I3. Effectively, MAGIC exploits the correlations across images,

regions and terms to caption a new image.

The RWR scores also enable MAGIC to detect any-to-any medium correlation. In our running

example of image captioning, an image is captioned with the term nodes of highest RWR scores. In

addition, since all nodes have their RWR scores, other nodes, say image nodes, can also be ranked

and sorted, for finding images that are most related to image I3. Similarly, we can find the most

relevant regions. In short, we can restart from any subset of nodes, say term nodes, and derive

term-to-term, term-to-image, or term-to-any correlations. We discuss more on this in Section 4.3.

Figure 5 shows the overall procedure of using MAGIC for correlation detection.

4 Application: Automatic image captioning

Cross-modal correlations are useful for many multimedia applications. In this section, we present

results of applying the proposed MAGIC method to automatic image captioning [34, 35]. Intuitively,

the cross-modal correlations discovered by MAGIC are used in the way that an image is captioned

automatically with words that correlated with the image content.
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Step 1: Identify the objects O and the m attribute domains Di, i = 1, . . . ,m.

Step 2: Identify the similarity functions Simi(∗, ∗) of each domain.

Step 3: Determine k: the neighborhood size of the domain tokens. (Default value k = 3.)

Step 4: Build the MAGIC graph,

GMAGIC= buildgraph(O, {D1, . . ., Dm}, {Sim1(∗, ∗), . . ., Simm(∗, ∗)}, k).

Step 5: Given a query node R={q} (q could be an object or a token),

(Step 5.1) Determine the restart probability c. (Default value c = 0.65.)

(Step 5.2) compute the RWR scores:

~uR = RWR(GMAGIC , R, c).

Step 6: Objects and attribute tokens with high RWR scores are correlated with q.

Figure 5: Instructions for detecting correlations using MAGIC. Functions “buildgraph()” and

“RWR()” are given in Figures 3 and 4, respectively.

We evaluate the quality of the cross-modal correlations by MAGIC in terms of the captioning

accuracy. We show experimental results to address the following questions:

• Quality: Does MAGIC predict the correct caption terms?

• Generality: Beside the image-to-term correlation for captioning, does MAGIC capture any-

to-any medium correlations?

Our results show that MAGIC successfully exploits the image-to-term correlation to caption test

images. Moreover, MAGIC is flexible and can caption multiple images as a group. We call this

operation “group captioning” and present some qualitative results.

We also examine MAGIC’s performance on spotting other cross-modal correlations. In particu-

lar, we show that MAGIC can capture same-modal correlations such as the term-term correlations:

E.g., “given a term such as ‘sky’, find other terms that are likely to correspond to it.” Potentially,

MAGIC is also capable of spotting other correlations such as the reverse captioning problem: E.g.,

“given a term such as ‘sky’, find the regions that are likely to correspond to it.” In general, MAGIC

can capture any-to-any medium correlations.

4.1 Data set and GMAGIC graph construction

Given a collection of captioned images Icore, how do we select caption words for an uncaptioned

image Inew? For automatic image captioning, we propose to caption Inew using the correlations

between caption words and images in Icore.

In our experiments, we use the same 10 sets of images from Corel that are also used in previous

work [10, 3], so that our results can be compared to the previous results. In the following, the 10
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captioned image sets are referred to as the “001”, “002”, ..., “010” sets. Each of the 10 data sets

has around 5,200 images, and each image has about 4 caption words. These images are also called

the core images from which we try to detect the correlations. For evaluation, accompanying each

data set, a non-overlapping test set Itest of around 1,750 images is used for testing the captioning

performance. Each test image has its ground truth caption.

Similar to previous work [10, 3], each image is represented by a set of image regions. Image

regions are extracted using a standard segmentation tool [38], and each region is represented as a

30-D feature vector. The regional features include the mean and standard deviation of RGB values,

average responses to various texture filters, its position in the entire image layout, and some shape

descriptors (e.g., major orientation and the area ratio of bounding region to the real region). The

image content is represented as a set-valued attribute “regions”. In our experiments, an image has

10 regions on average. Figure 1(d,e,f) show some examples of image regions.

The exact region segmentation and feature extraction details are orthogonal to our approach

- any published segmentation methods and feature extraction functions [12] will suffice. All our

MAGIC method needs is a black box that will map each color image into a set of zero or more

feature vectors.

We want to stress that there is no given information about which region is associated with

which term in the core image set - all we know is that a set of regions co-occurs with a set of terms

in an image. That is, no alignment information between individual regions and terms is available.

Therefore, a captioned image becomes an object with two set-valued attributes: “regions” and

“terms”. Since the regions and terms of an image are correlated, we propose to use MAGIC to detect

this correlation and use it to predict the missing caption terms correlated with the uncaptioned

test images.

The first step of MAGIC is to construct the MAGIC graph. Following the instructions for graph

construction in Section 3.1, the graph for captioned images with attributes “regions” and “terms”

will be a 3-layer graph with nodes for images, regions and terms. To form the NN-links, we define

the distance function (Assumption 1) between two regions (tokens) as the L2 norm between their

feature vectors. Also, we define that two terms are similar if and only if they are identical, i.e., no

term is any other’s neighbor. As a result, there is no NN-link between term nodes.

For results shown in this section, the number of nearest neighbors between attribute/domain

tokens is k=3. However, as we will show later in Section 5.1, the captioning accuracy is insensitive

to the choice of k. In total, each data set has about 50,000 different region tokens and 160 words,

resulting in a graph GMAGIC with about 55,500 nodes and 180,000 edges. The graph based on the

core image set Icore captures the correlations between regions and terms. We call such graph the

“core” graph.

How do we caption a new image, using the information in a MAGIC graph?’ Similar to the
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core images, an uncaptioned image Inew is also an object with set-valued attributes: “regions” and

“caption”, where attribute “caption” has null value. To find caption words correlated with image

Inew, we propose to look at regions in the core image set that are similar to the regions of Inew, and

find the words that are correlated with these core image regions. Therefore, our algorithm has two

main steps: finding similar regions in the core image set (augmentation) and identifying caption

words (RWR). Next, we define “core graph”, “augmentation” and “gateway nodes”, to facilitate

the description of our algorithm.

Definition 4 (Core graph, augmentation and gateway nodes) For automatic image caption-

ing, we define the core of the GMAGIC , Gcore, be the subgraph that constitutes information in the

given captioned images Icore. The graph GMAGIC for captioning a test image Inew is an aug-

mented graph, which is the core Gcore augmented with the region-nodes and image-node of Inew.

The augmentation subgraph is denoted as Gaug, and hence the overall GMAGIC=Gcore ∪Gaug. The

nodes in the core subgraph Gcore that are adjacent to the augmentation are called the gateway

nodes, GW.

As an illustration, Figure 2 shows the graph GMAGIC for two core (captioned) images Icore={I1,

I2} and one test (to-be-captioned) image Itest={I3}, with the parameter for NN-links k=1. The

core subgraph Gcore contains region nodes {r1, . . ., r7}, image nodes {I1, I2}, and all the term

nodes {t1, . . ., t8}. The augmentation Gaug contains region nodes {r8, . . ., r11} and the image node

{I3} of the test image. The gateway nodes are the region nodes GW={r5, r6, r7} that bridge the

Gcore and Gaug.

Different test images have different augmented graphs and gateway nodes. However, since we

will caption only one test image at a time, the symbols Gaug and GW represent for the augmented

graph and gateway nodes of the test image in question.

The first step of our image captioning algorithm, augmentation, can be done by finding the

gateway nodes - the collection of the k nearest neighbors of each region of Inew. In the second

step, we propose to use RWR, restarting from the test image-node, to identify the correlated words

(term-nodes). A predicted caption of g words for the image Inew will correspond to the g term-nodes

with highest RWR scores. Figure 6 gives the details of our algorithm.

To sum up, for image captioning, the core of the GMAGIC is first constructed based on the given

captioned images Icore. Then, each test image Inew is captioned, one by one, in steps summarized

in Figure 6.

4.2 Captioning accuracy

We measure captioning performance by the captioning accuracy, which is defined as the fraction of

terms which are correctly predicted. Following the same evaluation procedure as that in previous
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Input: 1. The core graph Gcore, an image Inew to be captioned, and

2. g, the number of caption words we want to predict for Inew.

Output: Predicted caption words for Inew.

Steps:

1. Augment the image node and region nodes of Inew to the core graph Gcore.

2. Do RWR from the image node of Inew on the augmented graph GMAGIC (Algorithm 4).

3. Rank all term nodes by their RWR scores.

4. The g top-ranked terms will be the output - the predicted caption for Inew.

Figure 6: Steps to caption an image, using the proposed MAGIC framework.
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Figure 7: Comparing MAGIC to the EM method. The parameters for MAGIC are c = 0.66 and

k = 3. The x-axis shows the 10 data sets, and the y-axis is the average captioning accuracy over

all test images in a set.

work [10, 3], for a test image which has g ground-truth caption terms, MAGIC will also predict g

terms. If p of the predicted terms are correct, then the captioning accuracy acc on this test image

is defined as

acc =
p

g
.

The average captioning accuracy acc on a set of T test images is defined as

acc =
1

T

T∑

i=1

acci,

where acci is the captioning accuracy on the i-th test image.

Figure 7 shows the average captioning accuracy on the 10 image sets. We compare our results

with those reported in [10]. The method in [10] is one of the most recent and sophisticated: it
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Figure 8: Comparing MAGIC with LDA and HAM. The mean and variance of the average accu-

racy over the 10 Corel data sets are shown at the y-axis - LDA: (µ, σ2)=(0.24,0.002); HAM: (µ,

σ2)=(0.298,0.003); MAGIC : (µ, σ2)=(0.3503, 0.0002). µ: mean average accuracy. σ2: variance of

average accuracy. The length of the error bars at the top of each bar is 2σ.

models the image captioning problem as a statistical translation modeling problem and solves it

using expectation-maximization (EM). We refer to their method as the “EM” approach. The x-axis

groups the performance numbers of MAGIC (white bars) and EM (black bars) on the 10 data sets.

On average, MAGIC achieves captioning accuracy improvement of 12.9 percentage points over the

EM approach, which corresponds to a relative improvement of 58%.

We also compare the captioning accuracy with even more recent machine vision methods [3],

on the same data sets: the Hierarchical Aspect Models method (“HAM”), and the Latent Dirichlet

Allocation model (“LDA”). Figure 8 compares MAGIC with LDA and HAM, in terms of the mean

and variance of the average captioning accuracy over the 10 data sets. Although both HAM and

LDA improve on the EM method, they both lose to our generic MAGIC approach (35%, versus

29% and 25%). It is also interesting that MAGIC gives significantly lower variance, by roughly

an order of magnitude: 0.002 versus 0.02 and 0.03. A lower variance indicates that the proposed

MAGIC method is more robust to variations among different data sets.

Figure 9 shows some examples of the captions given by MAGIC. For the test image I3 in Figure

1, MAGIC captions it correctly (Figure 9(a)). In Figure 9(b), MAGIC surprisingly gets the word

“mane” correctly; however, it mixes up “buildings” with “tree” (Figure 9(c)).

4.3 Generalization

MAGIC treats information from all media uniformly as nodes in a graph. Since all nodes are

basically the same, we can do RWR and restart from any subset of nodes of any medium, to detect
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(a) (b) (c)

Truth cat, grass, mane, cat, sun, water,

tiger, water lion, grass tree, sky

MAGIC grass, cat, lion, grass, tree, water,

tiger, water cat, mane buildings, sky

Figure 9: Terms are ordered by their given importance. Figures look best in color.

any-to-any medium correlations. The flexibility of our graph-based framework also enables novel

applications, such as captioning images in groups (group captioning). In this subsection, we show

results on (a) spotting the term-to-term correlation in image captioning data sets, and (b) group

captioning.

Beyond image-to-term correlation MAGIC successfully exploits the image-to-term correla-

tion for captioning images. However, the MAGIC graph GMAGIC contains correlations between all

media (image, region, and term). To show how well MAGIC works on objects of any medium, we

design an experiment to identify correlated captioning terms, using the term-to-term correlation in

the graph GMAGIC .

We use the same 3-layer MAGIC core graph Gcore that was constructed in the previous sub-

section for automatic image captioning. Given a query term t, we use RWR to find other terms

correlated with it. Specifically, we perform RWR, restarting from the query term(-node). The

terms deemed correlated with the query term are term(-node)s that receive high RWR scores.

Table 2 shows the top 5 terms with the highest RWR scores for some query terms. In the table,

each row shows the query term at the first column, followed by the top 5 correlated terms selected by

MAGIC (sorted by their RWR scores). The selected terms make a lot of sense, and have meanings

related with the query term. For example, the term “branch”, when used in image captions,

is strongly related to forest- or bird- related concepts. MAGIC shows exactly this, correlating

“branch” with terms such as “birds”, “owl” and “nest”.

A second, subtle observation, is that our method does not seem to be biased by frequent words.

In our collection, the terms “water” and “sky” are more frequent than the others (like the terms

“the” and “a” in normal English text). Yet, these frequent terms do not show up too often in
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Query term 1 2 3 4 5

branch birds night owl nest hawk

bridge water arch sky stone boats

cactus saguaro desert sky grass sunset

car tracks street buildings turn prototype

f-16 plane jet sky runway water

market people street food closeup buildings

mushrooms fungus ground tree plants coral

pillars stone temple people sculpture ruins

reefs fish water ocean coral sea

textile pattern background texture designs close-up

Table 2: Correlated terms of some query terms

Table 2, as a correlated term of a query term. It is surprising, given that we did nothing special

when using MAGIC: no tf/idf weighting, no normalization, and no other domain-specific analysis.

We just treated these frequent terms as nodes in our MAGIC graph, like any other nodes.

Group captioning The proposed MAGIC method can be easily extended to caption a group of

images, considering all of them at once. This flexibility is due to the graph-based framework of

MAGIC, which allows augmentation of multiple nodes and doing RWR from any subset of nodes.

To the best of our knowledge, MAGIC is the first method that is capable of doing group captioning.

Application 2 (Group captioning) Given a set Icore of color images, each with caption words;

and given a (query) group of uncaptioned images {I ′
1
, . . ., I ′t}, find the best g (say, g=5) caption

words to assign to the group.

Possible applications for group captioning include video segment captioning, where a video

segment is captioned according to the group of keyframes associated with the segment. Since

keyframes in a segment are related, captioning them as a whole can take into account the inter-

keyframe correlations, which are missed if each keyframe is captioned separately. Accurate captions

for video segments may improve performances on tasks such as video retrieval and classification.

The steps to caption a group of images are similar to those for the single-image captioning

outlined in Figure 6. A core MAGIC graph is still used to capture the mixed media information of

the given collection of images. The differences for group captioning are, instead of augmenting the

single-image to the core and restarting from it, now we augment all t images in the query group

{I ′
1
, . . ., I ′t} to the core, and restarts randomly from one of the images in the group (i.e., each with

probability 1/t to be the restart node).
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(a) (b) (c)

Truth sun, water, sun, clouds, sun, water

tree, sky sky, horizon

MAGIC tree, people, water, tree, sky, sun

sky, water people, sky

Group sky, water, tree, sun

Figure 10: Group captioning: Captioning terms with highest RWR scores are listed first.

Figure 10 shows the result of using MAGIC for captioning a group of three images. MAGIC

found reasonable terms for the entire group of images: “sky”, “water”, “tree”, and “sun”. Caption-

ing multiple images as a group takes into consideration the correlations between different images

in the group, and in this example, this helps reduce the scores of irrelevant terms such as “people”.

In contrast, when we caption these images individually, MAGIC selects “people” as caption words

for images in Figure 10(a) and (b), which do not contain people-related objects.

5 System Issues

MAGIC provides an intuitive framework for detecting cross-modal correlations. The RWR compu-

tation in MAGIC is fast that it scales linearly with the graph size. For example, a straightforward

implementation of RWR can caption an image in less than 5 seconds.

In this section, we discuss system issues such as parameter configuration and fast computation.

In particular, we present results showing

• MAGIC is insensitive to parameter settings, and

• MAGIC is modular that we can easily employ the best module to date to speedup MAGIC.

5.1 Optimization of parameters

There are several design decisions to be made when employing MAGIC for correlation detection:

what should be the values for the two parameters: the number of neighbors k of a domain token,
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Figure 11: The plateau in the plot shows that the captioning accuracy is insensitive to value of the

number of nearest neighbors k. Y-axis: Average accuracy over all images of data set “006”. The

restart probability is c=0.66.

and the restart probability c of RWR? And, should we assign weights to edges, according to the

types of their end points? In this subsection, we empirically show that the performance of MAGIC

is insensitive to these settings, and provide suggestions on determining reasonable default values.

We use automatic image captioning as the application to measure the effect of these parameters.

The experiments in this section are performed on the same 10 captioned image sets (“001”, ...,

“010”) described in Section 4.1, and we measure how the values of these parameters effect the

captioning accuracy.

Number of Neighbors k The parameter k specifies the number of nearest domain tokens to

which a domain token connects via the NN-links (Section 3.1). With these NN-links, objects

having little difference in attribute values will be closer to each other in the graph, and therefore,

are deemed more correlated by MAGIC. For k=0, all domain tokens are considered distinct; for

larger k, our application is more tolerant to the difference in attribute values.

We examine the effect of various k values on image captioning accuracy. Figure 11 shows the

captioning accuracy on the data set “006”, with the restart probability c=0.66. The captioning

accuracy increases as k increases from k=1, and reaches a plateau between k=3 and 10. The

plateau indicates that MAGIC is insensitive to the value of k. Results on other data sets are

similar, showing a plateau between k=3 and 10.

In hindsight, with only k=1, the collection of regions (domain tokens) is barely connected,

missing important connections and thus leading to poor performance on detecting correlations. At

the other extreme, with a high value of k, everybody is directly connected to everybody else, and

there is no clear distinction between really close neighbors or just neighbors. For a medium number
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Figure 12: The plateau in the plot shows that the captioning accuracy is insensitive to value of the

restart probability c. Y-axis: Average accuracy over all images of data set “006”. The number of

nearest neighbors per domain token is k=3.

of neighbors k, the NN-links apparently capture the correlations between the close neighbors, and

avoid noise from remote neighbors. Small deviations from that value make little difference, which is

probably because that the extra neighbors we add (when k increases), or those we retained (when

k decreases), are at least as good as the previous ones.

Restart probability c The restart probability c specifies the probability to jump back to the

restarting node(s) of the random walk. Higher value of c implies giving higher RWR scores to nodes

closer in the neighborhood of the restart node(s).

Figure 12 shows the image captioning accuracy of MAGIC with different values of c. The data

set is “006”, with the parameter k=3. The accuracy reaches a plateau between c=0.5 and 0.9,

showing that the proposed MAGIC method is insensitive to the value of c. Results on other data

sets are similar, showing a plateau between c=0.5 and 0.9.

For web graphs, the recommended value for c is typically c=0.15 [14]. Surprisingly, our experi-

ments show that this choice does not give good performance. Instead, good quality is achieved for

c=0.6 ∼ 0.9. Why is this discrepancy?

We conjecture that what determines a good value for the restart probability is the diameter of

the graph. Ideally, we want our random walker to have a non-trivial chance to reach the outskirts

of the whole graph. If the diameter of the graph is d, the probability that the random walker (with

restarts) will reach a point on the periphery is proportional to (1 − c)d.

For the web graph, the diameter is estimated to be d=19 [1]. This implies that the probability
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wregion

wterm 0.1 1 10

0.1 0.370332 0.371963 0.370812

1 0.369900 0.370524 0.371963

10 0.368969 0.369181 0.369948

Table 3: Captioning accuracy is insensitive to various weight settings on OAV-links to the two

media: region (wregion) and term (wterm).

pperiphery for the random walker to reach a node in the periphery of the web graph is roughly

pperiphery = (1 − c)19 = (1 − 0.15)19 = 0.045 . (2)

In our image captioning experiments, we use graphs that have three layers of nodes (Figures

2). The diameter of such graphs is roughly d=3. If we demand the same pperiphery as equation (2),

then the c value for our 3-layer graph would be

(1 − 0.15)19 = (1 − c)3 (3)

⇒ c = 0.65 , (4)

which is much closer to our empirical observations. Of course, the problem requires more careful

analysis - but we are the first to show that c=0.15 is not always optimal for random walk with

restarts.

Link weights MAGIC uses a graph to encode the relationship between mixed media objects and

their attributes of different media. The OAV-links in the graph connect objects to their domain

tokens (Figure 2). To give more attention to an attribute domain D, we can increase the weights

of OAV-links that connect to tokens of domain D. Should we treat all media equally, or should

we weight OAV-links according to their associated domains? How should we weight the OAV-links?

Could we achieve better performance on weighted graphs?

We investigate how the change on link weights influences image captioning accuracy. Table 3

shows the captioning accuracy on data set “006” when different weights are assigned on the OAV-

links to regions (weight wregion) and those to terms (wterm). For all cases, the number of nearest

neighbors is k=3 and the restart probability is c=0.66. The case where (wregion, wterm)=(1,1) is

that of the unweighted graph, and is the result we reported in Section 4. As link weights vary from

0.1, 1 to 10, the captioning accuracy is basically unaffected. The results on other data sets are

similar - captioning accuracy is at the same level on a weighted graph as on the unweighted graph.

This experiment shows that an unweighted graph is appropriate for our image captioning appli-

cation. We speculate that an appropriate weighting for an application depends on properties such
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as the number of attribute domains (i.e., the number of layers in the graph), the average size of a

set-valued attribute of an object (such as, average number of regions per image), and so on. We

plan to investigate more on this issue in our future work.

5.2 Speedup graph construction by approximation

The proposed MAGIC method encodes a mixed media data set as a graph, and employs the RWR

algorithm to find cross-modal correlations. The construction of the GMAGIC graph is intuitive and

straightforward, and the RWR computation is light and linear to the data base size. One step

which is relatively expensive is the construction of NN-links in a MAGIC graph.

When constructing the NN-links of a MAGIC graph, we need to compute the nearest neighbors

for every domain token. For example, in our image captioning experiments (Section 4.1), to form

the NN-links among region-nodes in the MAGIC graph, k-NN searches are performed 50,000 times

(one for each region token) in the 30-dimensional region-feature space.

In MAGIC, the NN-links are proposed to capture the similarity relation among domain tokens.

The goal is to associate tokens that are similar, and therefore, it could be suffice to have the NN-

links connect to neighbors which are close enough, even if they are not exactly the closest ones.

The approximate nearest neighbor search is usually faster, by trading accuracy for speed. The

interesting questions are: How much speedup could we gain by allowing approximate NN-links?

How much is the performance reduction by approximation?

For efficient nearest neighbor search, one common way is to use a spatial index such as R-tree

[37], which give exact nearest neighbor in logarithmic time. Fortunately, MAGIC is modular and

we can pick the best module to perform each step. In our experiments, we used the approximate

nearest neighbor method (ANN) [2], which supports both exact and approximate nearest neighbor

search. ANN estimates the distance to a nearest neighbor up to (1+ε) times the actual distance:

ε = 0 means exact search, no approximation; bigger ε values give rougher estimation.

Table 4 lists the average wall clock time to compute the top 10 neighbors of a region in the

10 Corel image sets of our image captioning experiments. Compared to the sequential search,

the speedup of using a spatial method increases from 12.1 to 51.1, from exact search to a rough

approximation of epsilon = 0.8. For the top k=3 nearest neighbors (the setting used in our

experiments), the error percentage is at most 0.46% for the roughest approximation, equivalent to

making one error in every 217 NN-links. The sequential search method is implemented in C++,

and is compiled with the code optimization (g++ -O3).

The small differences on NN-links do not change the characteristic of the MAGIC graph signif-

icantly, and has limited affect on the performance of image captioning. At ε=0.2, no error is made

on the NN-links in the MAGIC graph, and therefore the captioning accuracy is the same as exact

computation. At ε=0.8, the average captioning accuracy decreases by just 1.59 percentage point,
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ANN Sequential search (SS)

ε=0 ε=0.2 ε=0.8

Elapse time (msec.) 3.8 2.4 0.9 46

Speedup to SS 12.1 19.2 51.1 1

Error (in top k=10) - 0.0015% 1.67% -

Error (in top k=3) - - 0.46% -

Table 4: Computation/approximation trade off in the NN-link construction among image regions.

The distance to a neighboring point is approximated to within (1+ε) times the actual distance.

ε=0 indicates the exact k-NN computation. Elapse time: average wall clock time for one nearest

neighbor search. Speedup: the ratio of elapse time, with respect to the time of sequential search

(SS). Error: the percentage of mistakes made by approximation in the k nearest neighbors. The

symbol “-” means zero error.
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Figure 13: Using approximate NN-links (epsilon=0.8) reduces captioning accuracy by just 1.59%

on the average. X-axis: 10 data sets. Y-axis: average captioning accuracy over test images in a

set. The parameters for MAGIC are c = 0.66 and k = 3.

averaged over the 10 Corel image sets (Figure 13).

6 Conclusions

Mixed media objects such as captioned images or video clips contain attributes of different modal-

ities (image, text, or audio). Correlations across different modalities provide information about

the multimedia content, and are useful in applications ranging from summarization to semantic

captioning. In this paper, we developed MAGIC, a graph-based method for detecting cross-modal
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correlations in mixed media data set.

There are two challenges in detecting cross-modal correlations, namely, representation of at-

tributes of various modalities and the detection of correlations among any subset of modalities.

MAGIC turns the multimedia problem into a graph problem, and provides an intuitive solution

that easily incorporates various modalities. The graph framework of MAGIC creates opportunity

for applying graph algorithms to multimedia problems. In particular, MAGIC finds cross-modal

correlations using the technique of random walk with restarts (RWR), which accommodates set-

valued attributes and data noise with no extra effort.

We applied MAGIC for automatic image captioning. By finding robust correlations between text

and image, MAGIC achieved a relative improvement by 58% in captioning accuracy as compared to

recent machine learning techniques (Figure 8). Moreover, the MAGIC framework enabled novel data

mining applications, such as group captioning where multiple images are captioned simultaneously,

taking into account the possible correlations between the multiple images in the group (Figure 10).

Technically, MAGIC has the following desirable characteristics:

• It is domain independent: The Simi(∗, ∗) similarity functions (Assumption 1) completely

isolate our MAGIC method from the specifics of an application domain, and make MAGIC

applicable to detect correlations in all kinds of mixed media data sets.

• It requires no fine-tuning on parameters or link weights: The performance is not sensitive to

the two parameters - the number of neighbors k and the restart probability c, and it requires

no special weighting scheme like tf/idf for link weights (Section 5.1).

• It is fast and scales up well with the database/graph size.

• It is modular and can easily tap recent advances in related areas (e.g., fast nearest neighbor

search) to improve performance (Section 5.2).

We are pleasantly surprised that such a domain-independent method, with no parameters to

tune, outperformed some of the most recent and carefully tuned methods for automatic image

captioning. Most of all, the graph-based framework proposed by MAGIC creates opportunity for

applying graph algorithms to multimedia problems. Future work could further exploit the promis-

ing connection between multimedia databases and graph algorithms, including multi-modal event

summarization [32, 31], outlier detection, and other data mining task that require the discovery of

correlations as its first step.
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