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Visualization of large geometric environments has always been an exciting 
project for computer graphics practitioners. Modern graphics 
workstations allow rendering of millions of polygons per second. Although 
these systems are impressive, they cannot catch up with the quality 
demanded by graphics systems used for visualizing complex geometric 
environments. After all, in such systems the amount of data that need to be 
processed increases dramatically as well. No matter how much graphics 
hardware evolves, it looks like practitioners are going to crave for what is 
impracticable for such hardware to render at interactive frame rates. In 
this chapter, we present some modeling techniques to overcome the 
problem of graphics hardware bottleneck in a particular context, viz. 
visualization of terrains and urban environments. 

1 Introduction 

In this chapter, we first present approaches towards modeling 
complex geometric environments comprising terrain height fields 
and urban scenery. Then, we discuss techniques to reduce the 
amount of workload in the graphics pipeline, thereby overcoming 
the graphics hardware bottleneck to some extent. These techniques 
include back-face culling, which eliminates the polygons that are 
back-facing from the viewer, and view-frustum culling, which 
eliminates the primitives outside the view-frustum with respect to a 
view position (so that they are not processed further in the graphics 
pipeline), as well as view-dependent refinement to selectively refine 
different parts of a scene using different simplification criteria. We 
also briefly mention the refinement criteria used in view-dependent 
visualizations of terrains. We study issues related with urban 
visualization and especially concentrate on the occlusion culling 
process by giving a taxonomy of methods in this area. Finally, we 
discuss techniques to speed-up stereoscopic visualization where the 
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second eye image is generated from the first eye image (in contrast 
to generating them separately). As we have already noted, our 
discussion takes place in the general context of terrain and urban 
visualization. 

2 Modeling 

The word modeling usually refers to the way data are represented in 
the computer memory and the way in which they are visualized. In 
the memory, data are kept in suitable data structures that are easy to 
access for the visualization algorithm. Here, we classify the types of 
structures into two, namely, terrains and urban scenery. 

2.1 Terrain Representations 

Terrains represent one of the most complex data sets in computer 
graphics because of their nonstandard nature. There is no simple 
mathematical characterization of terrains, and hence procedural 
methods for their representation cannot be applied. The data 
acquired can be stored and used as height fields, triangulated 
irregular network models, or quadtrees. 
 

However, during the visualization of the terrains, it is 
cumbersome (and also unnecessary) to display triangles having all 
elevation points as their vertices. Therefore, the surface has to be 
approximated (while introducing some, preferably small, amount of 
error).   

2.2 Height Fields 

Terrain data are usually obtained by national imagery institutions or 
geo-science centers. One of the most common ways of acquiring 
terrain data is aerial photography and satellite imagery. Such data 
are usually in the form of grids collected at standard intervals, which 
we call the Digital Elevation Model (DEM). In DEM, the terrain 
data are not processed and the elevation values are acquired at 
regular intervals. The collection of elevation samples corresponds to 
height fields.  
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Height fields are elevation data sampled at regular intervals. The 
data acquired for terrains are stored in the DEM as height field 
representations. Naturally, this type of approach requires large 
amounts of storage because all elevation information are preserved 
regardless of the characteristics of the terrain surface. For example, 
the Digital Terrain Elevation Data (DTED) format, developed by 
NIMA (National Imagery and Mapping Agency of the U.S.), has 
two standard levels of data resolution (Fig. 1). One is DTED Level-1 
in which there are three arc-seconds between two elevation points 
and the other is DTED Level-2 in which there is one arc-second 
between two elevation points (meaning higher resolution). Other 
types of data storage methods for terrain height fields such as gray-
scale or vector format are also possible.  
 

 
Fig. 1. A sample view of height field information stored in the DEM, 
such as the DTED. 

2.2.1 Triangulated Irregular Networks 

For representing the terrain, an efficient alternative to dense grids is 
the Triangulated Irregular Network (TIN). This stores a surface as a 
set of non-overlapping contiguous triangular facets of irregular size 
and shape [ 18]. The source of digital terrain data is dense raster 
models produced by automated orthophoto machines or direct 
sensors such as synthetic aperture radar.  
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A terrain surface can be characterized by a set of surface-specific 
points (peaks, pits, and passes), and a set of lines (ridges and 
channels) which connect them. The sample points in the TIN are 
chosen so that these features are contained as subgraphs of the 
model [ 18]. 

 
The surface is modeled as a set of contiguous non-overlapping 

triangles whose vertices are located adaptively on the terrain. The 
height field data are simplified using simplification algorithms and 
the resulting model is triangulated using the Delaunay criterion, 
finally yielding a TIN.  

 
The TIN model is especially attractive because of its simplicity 

and memory efficiency. It is a significant alternative to the regular 
raster of the GRID model (Fig. 2). TINs can describe a surface at 
different resolutions.  
 

 
Fig. 2. TIN generation. 

There are three ways of storing a triangulated network [ 34]:  
 

• triangle-based structure (Table 1),  
• point-based structure ( ), and Table 2
• edge-based structure ( ). Table 3

 
The first method is better for storing attributes (e.g., slope) for 

each triangle, but uses more storage space. The second one is better 
for generating contours and uses less storage, but attributes such as 
slope must be calculated and stored separately. The third one is an 
additional structure that must be maintained. Based on edge 
definitions, it provides neighboring information. (Here, it is 
necessary to store the previous two structures.) If an application 
needs this information, this structure is suitable. 
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Table 1. Storage with triangle-based structure. 

ID Triangle Vertex Coordinates Neighbors 

0 (x01, y01, z01), (x02, y02, z02), (x03, y03, z03) 8, 9, 1 

1 (x11, y11, z11), (x12, y12, z12), (x13, y13, z13) 0, 12, 15 

...
. 

...
. 

...
. 

Table 2. Storage with point-based structure. 

ID Vertex Coordinate List of All 
Terrain 

Triangle-Based 
Structure IDs 

0 (x0, y0, z0) 8, 9, 1, 7, 12 

1 (x1, y1, z1) 3, 4, 6, 13 

...
. 

...
. 

...
. 

Table 3. Storage with edge-based structure. 

ID Point-Based Structure IDs Triangle-Based 
Structure IDs 

0 (PBID01, PBID02) LeftTBID01, RightTBID02 

1 (PBID11, PBID12) LeftTBID11, RightTBID12 

...
. 

...
. 

...
. 

 
Contour lines are one of the terrain features, representing the relief 

of the terrain with the same height. TINs can also be generated using 
elevation points along these contour lines and the interpolation is 
straightforward. However, TINs in island-like situations, as shown 
in Fig. 3, are special cases that warrant attention.  
 

In the following section, we will describe another method for 
creating terrain surfaces. This method is also adaptive but at the 
expense of more storage. In return, it supports faster queries on the 
terrain structure. 
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Fig. 3. TINs in an island-like situations should be handled with 
care. 

2.2.2 Quadtree Representation 

A quadtree is a rooted tree with internal nodes having four children. 
Each node is represented by at least four grid elevations, which 
correspond to squares. Constructing a quadtree for terrain data 
stored in a DTED file with grid elevations produces a dense 
representation of the terrain, i.e., all interval elevations are stored. 
The root node represents the whole terrain data with four corners. As 
we go down to the deeper levels in the quadtree hierarchy, the 
distance between the corners is halved and at the deepest level, there 
remains no other elevation point that is to be represented by the 
nodes of the quadtree (Fig. 4). The data structure obtained after the 
quadtree scheme applied is passed to a simplification algorithm. The 
model is simplified to eliminate the nodes having the same 
elevations within all children (Fig. 5). Further details of quadtrees 
and related hierarchical structures can be found in [ 39]. 
 

 
Fig. 4. Quadtree structure. 

The quadtree structure can be represented as a 1D array (Fig. 4). 
In this tree, each level represents a different level-of-detail on the 
terrain. In order to traverse the nodes of the quadtree, represented as 
a 1D array, the following algorithms can be used: 
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parent(int child) 
 return floor((child-1)/4); 
 
child(int parent) 
 if (level(parent)==MAXLEVEL)  
 childnode=sibling(parent); 
 else 
 childnode=(4*parent)+1; 
 return childnode; 
 
sibling(int node) 
 if (level(node)<level(node+1)) 
 return NIL; 
 else 
 if (parent(node)!=parent(node+1)) 
   return sibling(parent(node)); 
 else 
   return (node+1); 

 

Fig. 5. A simplifed quadtree representing a particular terrain 
(Grand Canyon data obtained from the United States Geological 
Survey (USGS). Processing by Chad McCabe of the Microsoft 
Geography Product Unit.). 
 

Quadtrees can be used to store indices, minimum and maximum 
elevations, and activation distances for the vertices, which are 
valuable for view-dependent refinement in terrain visualization. It is 
clear that an array-based representation can be used to eliminate the 
need for pointer manipulation. The numbering scheme used by the 
quadtree structure when it is stored in a one-dimensional array is 
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illustrated in Fig. 6. The root is labeled as 0 and the other nodes are 
numbered recursively in the counterclockwise direction. 
 

 

84 83 80 79 68 67 64 63 20 19 16 15
81 82 77 78 65 66 61 62 
72 71 76 75 56 55 60 59 

4 3 
17 18 13 14

69 70 73 74 53 54 57 58 
36 35 32 31 52 51 48 47 

8 7 12 11
33 34 29 30 49 50 45 46 
24 23 28 27 40 39 44 43 

1 2 
5 6 9 10

21 22 25 26 37 38 41 42 

Fig. 6.  Numbering scheme for quad blocks in a quadtree when it is 
stored in a 1D array with levels 2, 3, and 4.   

2.2.3 Multi-resolution Representation using Quadtrees 

Multi-resolution representation of data refers to those data 
structures, which provide a way to visualize data in different 
resolutions, depending on some criterion. In this section, we 
describe multi-resolution representation using quadtrees. For other 
methods of multi-resolution representation such as progressive 
meshes, the reader is referred to [ 26]. 
 

In order to visualize complex scenes (e.g., terrain height fields) 
at interactive frame rates, efficient data structures need to be used. 
The quadtree representation perfectly fits into grid elevation data. 
Generally, triangles are used as modeling primitives for complex 
scenes. The triangulation must be adaptive in order to reduce the 
number of polygons that should be processed and make efficient use 
of the limited memory sources. This means that high frequency 
elevation changes should be triangulated with more triangles than 
low frequency regions. While doing this, artifacts that can emerge 
on the terrain should be minimized as much as possible. 
 

For multi-resolution representations, under the assumption that 
the structure in Fig. 4 is used, each level represents a different 
resolution on the terrain. The algorithms developed for multi-
resolution representation generally make use of view-dependent 
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visualization. This means the usage of some simplification criterion 
and traversing the nodes of the multi-resolution terrain 
representation hierarchy (Fig. 4) until the criterion is met.  

2.3 Modeling of Urban Scenery 

2.3.1 Data Acquisition and Modeling 

As techniques for the acquisition of 3D data are developed, the need 
to improve current data representation and visualization methods 
becomes more pressing. These acquisition techniques and sources 
may involve:  

• aerial (satellite) imagery of earth in high resolution,  
• urban data automatically gathered by devices using laser 

range finding methods, and 
• 3D views constructed with the help of radar systems. 

 
Actually, data acquisition for terrains is less expensive than data 

acquisition for urban areas. For urban scenery creation, there are 
mainly three sources of information. 
 
1. Constructing models from building footprints:  
 
One of the main sources of information is building footprints, mostly 
available at official institutions of cartography. The buildings may 
easily be extruded from these footprints using the additional 
information stored, i.e., the number of floors or the construction 
type. However, the resultant geometry is a crude version, omitting 
many details such as balconies, pillars, etc. To make visualization 
more realistic, texturing may be applied. Moreover, there are 
techniques to automatically add selected features to the buildings, 
like balconies or windows [ 47]; see Fig. 7 for an illustration. 
 
2. Constructing building models individually, and later populating 

them in a virtual environment:  
 
In this technique, each building model is highly detailed and the 
resulting appearance is highly realistic. A sample application of this 
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method is shown in Fig 8, where we generated a virtual city 
composed of nearly 300 buildings with more than 400K polygons. 

 
Fig. 7. A scene from [ 47], where buildings are extruded and 
additional features are added to the building geometry (© Peter 
Wonka. Reprinted with permission.). 

 

Fig. 8. A virtual city that is a combination of individually modeled 
buildings. 

3. (Semi)automatic reconstruction of buildings from aerial 
photographs:  
 

There are many ways of collecting urban information from aerial 
photographs. These images are procedurally corrected and methods 
are applied to obtain 3D data of an urban area. These data are later 
geo-corrected and other information is appended to them. To give an 
example [ 36], from various image maps given as input (e.g., land-

 13



water boundaries and population density), a system generates a 
network of highways and streets, divides the land into lots, and 
creates the appropriate geometry for buildings on the respective 
allotments (Fig. 9). 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 9. A (procedurally modeled) virtual city from [ 36]. (© 
Association for Computing Machinery. Reprinted with permission.) 

2.3.2 Building Representations 

Naturally, buildings and terrain data are stored in spatial databases. 
The Database Management Systems (DBMSs) for spatial databases 
should manage access and retrieval of data to be sent to the graphics 
pipeline. There are mainly three types of building representations: 
primitive-geometry, component-based, and space-based [ 42].  

 
Primitive-geometry representation: Most architectural drawings 

can be regarded as primitive-geometry representations. This kind of 
representation is based on geometric primitives, which give no 
explicit indication of what building entities they stand for. For this 
representation, storage space that can be used for the spatial database 
is crucial; the representation detail and the features that could be 
incorporated into the database require excessive amount of storage. 

 
Component-based representation: We can cite CAD systems in 

this category. Most commercial design systems support explicit 
definitions for 3D building entities such as walls, windows, doors, 
floor slabs, and roofs. Representing buildings using this method 
allows designers to create and modify a single model rather than 
several (computationally unrelated) floor plans. In the representation 

 14



scheme, the spatial locations of the components are defined. More 
importantly, entities can be accessed based on their respective 
locations in the scene. In component-based systems, the buildings 
may be assigned additional information, such as floor count, 
occupied area, type of construction, energy type used for heating, 
purpose of use, etc. The components of the building are stored and 
relations among them are defined. When there is a need to retrieve a 
component, the relationships among the currently displayed 
components can be used. 
 

Space-based representation: This is used to define the spaces 
used by the components of buildings. Instead of obtaining spaces 
used by a component by the spatial locations of other components, 
the space is enclosed by another polygon and this polygon is used 
for space determination. The designer can achieve this by defining 
the polygons that enclose a space. In the former case, when the 
polygon is closed, floor and ceiling elements can be automatically 
generated. Thus, a space is always ensured to be a polyhedron.  

3 Visualization  

Visualization is defined as the transformation of the symbolic data 
into a geometric form to enable researchers to observe their 
simulations and computations. It can be used both for interpreting 
image data fed into a computer (=image understanding) and for 
generating images from complex multidimensional data sets 
(=image synthesis) [ 46]. Here, we use the word “visualization” to 
mean the generation of images of complex 3D scenes for different 
camera positions while moving the camera interactively (i.e., 
rendering complex scenes). If interaction is required, then the frame 
rate of the drawn scene should be more than 17 frames per second. If 
the frame rates are below this, then it means the system has a 
bottleneck either in the graphics pipeline, or in the display process. 
If the graphics load is not adjusted, then the user might experience 
problems during visualization such as jaggy motion. Taking the 
graphics hardware as a constant, the only approach that can 
overcome this bottleneck and achieve interactive frame rates is to 
adjust the load of the graphics pipeline by using suitable algorithms 
(i.e., decreasing the number of triangles processed for each frame 
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using a predefined simplification criterion). These algorithms work 
according to the viewer position. 

3.1 Culling Techniques 

Before applying a view-dependent refinement process to reduce the 
number of triangles to be rendered, the portions of the scene that will 
not be displayed for a frame should be culled. In order to send only 
the related portions of the scene to the display processor, there are 
mainly three types of culling methods to get rid of the irrelevant 
portions of the geometry. The first one is back-face culling, 
discarding those polygons whose surface normals are facing away 
from the viewer. (This works only for convex objects.) The second 
one is view-frustum culling, discarding those objects that are out of 
the field of view. The last one is occlusion culling; this eliminates 
parts that are occluded by front objects and it is especially important 
for visualization of urban scenery where the buildings are occluding 
each other for different views. Back-face culling is explained below. 
View-frustum culling for terrain data and occlusion culling for urban 
scenery are discussed later in related subsections. In the case of 
occlusion culling for terrains, it is known that this culling method 
does not increase the performance significantly [28]. 

3.1.1 Back-Face Culling 

Back-face culling is the process of discarding back-facing polygons. 
It is not possible to see them because they are not facing the viewer. 
However, back-face culling works only if:  
 

• there are no holes or transparent passages in the objects, and 
• the objects are convex. 
 
Back-face culling is performed by evaluating the equations of 

the planes that form the object surface, i.e., triangles with respect to 
the viewpoint and viewing direction. Back-facing polygons are 
eliminated if the dot product of the viewing direction and polygon 
normal is greater than zero. Back-face culling is implemented in 
hardware in many graphics boards. In [ 30], some improvements are 
proposed and are compared to the hardware implementation. A sub-
linear algorithm for back-face computation is presented. The 
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polygonal model is partitioned into a hierarchy of clusters based on 
the similarity of orientation and physical proximity of polygons. The 
space is partitioned into back, front, and mixed regions with respect 
to each cluster. At run time, the algorithm uses the pre-computed 
cluster descriptions to locate the viewpoint in the corresponding 
region of each cluster. 

3.2 Visualization of Terrain Data  

Without decreasing the amount of geometry sent to the graphics 
pipeline, the quality and amount of the graphics primitives that can 
be viewed at interactive frame rates will be limited and insufficient. 
Therefore, the surface of a terrain has to be approximated up to a 
certain threshold, in order to decrease the number of triangles sent to 
the graphics pipeline without significant loss of image quality. 
While carrying out this process, the simplification part should cost 
significantly less than sending all graphics to the hardware and 
making the graphics pipeline do all the work. 

3.2.1 View-Frustum Culling for Terrain Data 

The view-frustum is a pyramid (generally chopped off using front 
and rear planes perpendicular to the viewing direction) and is based 
on the viewing parameters of the application. View-frustum culling 
process culls the parts of the view-frustum according to the six 
planes of the frustum.  

 
A sample view-frustum over a terrain can be seen in Fig. 10. 

View-frustum culling for terrain data can be done as follows. The 
quadtree is traced from top to bottom and it is determined whether 
the nodes are viewable from the current viewing direction. Nodes of 
the quadtree are visited in preorder so that if a higher-level node is 
not in the frustum, then the children of that node are not further 
checked.  

 
An efficient view-frustum culling (VFC) process is crucial to 

achieve interactive frame rates. The data structure is checked against 
the viewing frustum. To speed-up frustum culling process, frustum 
tests can be done using bounding spheres enclosing the nodes. In 
view-frustum culling, several optimizations are possible [ 24]: 
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Fig. 10. A sample view-frustum on terrain data. 

• One important optimization is to utilize the coherence 
between two frames when the user navigates through the 
terrain. If the user moves forward, then there is no need to 
cull the whole data again since the data have already been 
culled in the previous frame. So, previously culled blocks 
can be used for the current frame. This method is applicable 
if the frustum is not culled according to the far plane [2]. 

 
• Another method is deferred VFC, implying that VFC is not 

done for every frame but at predefined intervals. In this way, 
the overhead brought by the VFC step can be decreased. One 
problem with this approach is the navigation speed. If the 
user moves very fast involving rotation and backward 
motion, then the screen may not refresh on time. 
Accordingly, this approach is suitable for slow motion 
walkthroughs.  

 
• As another approach, VFC depending on the deviation of the 

viewer location may be used. Deviation based culling is 
suitable for walkthroughs in which the viewer navigates very 
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fast. The VFC algorithm can be run only if the user moves a 
prespecified distance from the previously culled position.  

 
If the data are large, then we have to test for the far plane too. In 

this case, an altitude-based scheme can be used for far plane distance 
determination. If the altitude of the viewer is at lower levels in the 
data, the far plane is brought closer to the viewer, proportional to the 
altitude of the viewer because it may not be possible to see farther 
distances. This approach establishes a balance between the frustum 
distance and the data resolution, depending on the type of the data. 
For view-frustum culling in urban sceneries, the quadtree node 
explained above could be replaced with objects in the urban scene, 
where the application of it is straightforward. 

3.2.2 View-Dependent Visualization using Quadtrees 

During the visualization process, there is no reason to send the parts 
of the scene that cannot be seen from the viewer’s position and 
viewing direction. The fundamental idea in view-dependent 
rendering is to perform culling of these unnecessary data and reduce 
the workload of graphics hardware. However, whenever view-
dependent rendering is mentioned, usually only multi-resolution 
representations come to mind. A multi-resolution representation 
deals with simplifying parts of the scene, when the detailed view is 
not needed. View-dependent rendering covers all visibility 
algorithms, which try to speed up the rendering performance, 
because all culling algorithms are based on the viewer’s position and 
viewing direction.  

 
View-dependent rendering is mostly performed on-the-fly, in 

order to reduce the cost of secondary storage and provide a more 
realistic view of the scene. An alternative to dynamic view 
dependent visualization, where the scene is simplified on-the-fly 
based on the current view, using precomputed Level-of-Detail 
(LOD) samples during a fly-through is also commonplace. 
Simplification algorithms are applied to obtain a hierarchy of 
successively coarser approximations for the objects. Such multi-
resolution hierarchies have been used in LOD based rendering 
schemes to achieve better frame rates per second [ 20,  33]. These 
hierarchies usually have a number of distinct levels of detail, usually 
five to 10 for a given object or a part of terrain [ 49]. During the 
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visualization, if certain error criteria are satisfied, then one of the 
static detail levels is chosen and the object is displayed at that level. 
 

The trend in surface simplification moved from statically defined 
levels of detail to dynamically created levels of detail after mid 
1990’s. Wavelet usage [ 16] and progressive meshes [ 26,  27,  28] 
have advanced simplification work a step further. These methods 
produce a continuous LOD through the entire scene, instead of a 
discrete number of levels of detail. Progressive meshes offer an 
elegant solution for continuous representation of polygonal meshes, 
which can be adapted to almost any kind of scene objects. In [ 49], 
the authors describe improvements on progressive meshes, by 
defining merge trees for performing edge collapses that permit 
adaptive refinement around any vertex. Progressive mesh usage is 
also adapted to regular grid approaches [ 32]. 
 

With quadtree representation, the grid structure of the elevation 
data is explored. The grid structure naturally lends itself to the 
quadtree representation. Each sequence of nine vertices 
comprehends to a quad block as in Fig. 11. These elevation points 
are selected in such a manner that no cracks occur during the 
simplification process and the elevation differences without the 
vertices do not disturb the quality of the resultant scene much – in 
any case, not more than a prespecified threshold value. The 
threshold values are defined in view of the simplification criterion 
employed by the simplification algorithm. 
 

 
Fig. 11.  The distance δ between original and removed 
positions of the tested vertex. 
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There are several methods and criteria to simplify the data. The 
criterion for the evaluation of removal depends on several factors. 
One of these methods is screen-space error criterion. In this 
method, elevation differences are taken into account to evaluate a 
vertex for removal (Fig. 12). The number of projected pixels for the 
vertex is calculated for this purpose (Fig. 11). If the projected size of 
an object is below a prespecified threshold (in terms of pixels), then 
the vertices and associated triangles within this object are removed. 
If this size is greater than the pre-specified pixel tolerance, then the 
vertex is kept.  
 

The problem here is that if the viewer is looking at the terrain 
from above, then the number of projected pixels to the camera plane 
will be very small, causing the vertex to be considered as 
unimportant and yielding to the elimination of it. This especially 
becomes a problem for stereoscopic visualizations where the 
preservation of the depth information is crucial. The problem can be 
illustrated via an example (Fig. 12). Suppose we are looking at a 
tower from above and we use the screen-space error tolerance. Since 
the projection of the elevation difference will be very small with 
respect to the position of the eye, the tested vertices will be 
removed, although they are important to the viewer (i.e., they will 
make the viewer see the height of the tower when viewed in stereo). 
Thus, while the screen-space error metric is suitable for the 
monoscopic view [ 32], it degrades the stereo effect and may result in 
incorrect stereoscopic vision. 

 

 

Fig. 12. Screen-space error metric. (a) Side view of a quad block. 
(b) Top view of the same block. (c) Edge removal by screen-space 
error-based algorithm when the block is viewed from the top. 
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Instead of using screen space error criterion, another one, called 
distance-based angular error metric, is defined [ 24]. This 
simplification criterion is suitable for both monoscopic and 
stereoscopic visualization, and yields faster algorithms for 
simplification. The elevation and distance of objects from the viewer 
are two important criteria that make us appreciate depth and 
differentiate between objects. Therefore, the threshold value must be 
specified adaptively so that it takes into account both of these 
parameters to reflect the correct depth information. Details of 
distance-based angular error threshold can be found in [ 24]. 
 

In order to prevent cracks over the terrain during simplification 
and provide a suitable heuristic for morphing to eliminate popping 
artifacts while switching between different resolutions of the terrain, 
a valid triangulation should be maintained. The vertex activation 
scheme using distance-based angular error threshold decides to 
activate or deactivate a vertex using the precomputed vertex 
activation values, and the distances between the viewer and the 
vertex location. Then, the area is triangulated accordingly. The 
vertex activation scheme is based on assigning correct activation 
distances to each vertex from the lowest level up to highest using a 
maximization operation and during visualization only measuring the 
distance between the viewer and the vertex. The details of vertex 
activation and triangulation can be found in [ 24]. 

3.3 Visualization of Urban Scenery 

Urban visualization requires culling of unnecessary data, in order to 
navigate through the scene at interactive frame rates. Creating tight 
approximations of the data that need to be processed by the graphics 
hardware requires efficient occlusion culling algorithms. Besides, 
most of the current algorithms are either for architectural 
walkthroughs, in which there are large occluders hiding the most of 
the geometry behind them, or conservative methods for outdoor 
visualization. 
 

For interactive walkthroughs of large building models or city-
like scenes, a system must store in memory and render only a small 
portion of the model at each frame. The most important challenge is 
to identify the relevant portions of the model, swap them into 
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memory by using a robust spatial database access, and render at 
interactive frame rates as the user changes position and viewing 
direction. 

3.3.1 Occlusion Culling with Preprocessing 

Occlusion culling algorithms can be classified based on targeted 
environments. They are generally effective in densely occluded 
scenes and do not offer much in terrain like scenes [28]. On the 
other hand, LOD control and impostors contribute mostly in wide-
open sparsely occluded situations. The first classification is based on 
the suitability of the data for occlusion culling. According to this 
classification, in the first category there are algorithms that are 
suitable for scenes where much of the geometry is hidden behind 
potential occluders. In the second category, there are algorithms 
developed for general scenes. These are so complex that use of some 
special hardware might be more suitable. Most current occlusion 
culling algorithms work with occluders much smaller than they 
could actually handle and often need human intervention for finding 
effective occluders (or send hidden geometry to graphics pipeline 
unnecessarily). Therefore, tightness of the estimation of occluded 
parts is an important issue to be considered. 
 

Most of the visibility-culling algorithms have computationally 
intensive preprocessing stages [ 15,  20,  21,  25,  31]. Preprocessing 
generally includes the computation of some kind of hierarchical data 
structure to store the scene and finding visible objects and majority 
of occluders for previously determined view cells. The clustering 
schemes are carefully chosen so that the algorithms make use of the 
data structures created during this step. For walkthroughs of outdoor 
environments, controlled subdivision using data structures like BSP 
trees or quadtrees is suitable [ 5, 19,  25, 35]. A 3D spatial 
partitioning data structure such as a quadtree, octree or kD-tree can 
be used for general fly-through application [ 12]. The visibility octree 
is an adaptive data structure that stores potentially visible sets at its 
terminal nodes [ 40,  50]. Unlike uniform grid structures, its size 
depends on the nature of the scene. Different schemes for occlusion 
culling are applied after this clustering step has been performed. 
 

The goal of an efficient visibility-culling algorithm is to 
calculate a conservative and fast elimination of those parts of the 
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scene that are definitely invisible. This means that if an object is 
visible it is certainly displayed. In the meantime, some unnecessary 
parts are sent to graphics pipeline. Object space algorithms are the 
ones that geometrically make computations on the scene and decide 
whether the objects are visible or not [ 8,  9,  10,  25,  29,  43]. The 
general approach of the previous work is to select some polygons to 
act as virtual occluders and check if they occlude any objects seen 
from the viewer. To reduce the cost of checking, occludees are 
usually approximated by bounding volumes. There is a conservative 
visibility preprocessing method for outdoor environments, which is 
described in [ 8]. A conservative superset of visible objects is 
computed for each cell by searching for a strong occluder for each 
object such that it cannot be seen from any point in the cell. The 
cellulization approach applied in this work is regular grid approach, 
which may not fit to real outdoor environments. The cellulization 
approach is best suited for architectural walkthroughs. In case of 
outdoor visualizations, a suitable cellulization is needed, which is 
not straightforward. Still, after suitable cellulization of the navigable 
area, most of the approaches used to visualize the indoor 
environments can also be used for outdoor environments. 
  

Mostly, the target data for occlusion culling algorithms influence 
the way algorithms are designed. If an urban walkthrough restricts 
the viewer to move along the road paths, then cells should be 
associated with the roads only. For building interiors or ship-like 
scenes, most visibility algorithms decompose the model into cells [ 8, 
 20,  21,  43]. An occlusion region can be specified by an object space 
occlusion-culling algorithm using supporting planes [ 10]. These 
cells are connected by portals and the inter-cell visibility is 
computed. Since the walls of the buildings or doors of ships occlude 
a large amount of the geometry behind them, precomputing the 
potentially visible sets (PVSs) and later using this information to 
cull the invisible objects may be a promising approach [ 17,  20,  21, 
 43,  44]. This has the disadvantage of requiring large secondary 
storage for the PVS information. There are some algorithms to 
compress the data constituting the PVSs [ 3,  37,  38]. 
 

Conservative algorithms classify regions as invisible when they 
are completely occluded. Partially occluded objects are sent to the 
graphics pipeline as a whole. For urban environments that have less 
hidden geometry behind the objects, occlusion culling with a few 
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large occluders is a popular approach. The navigable area is again 
subdivided into cells in many approaches and for each frame, a 
small set of (about five to 30) occluders that are likely to occlude a 
large part of the model is selected. The reason why these algorithms 
select only a small set of occluders is that the amount of data needed 
to store the potentially visible set for each cell is large. The selection 
schemes differ among the algorithms with respect to errors 
introduced into the resultant image, accurateness of the selection, 
tightness of the conservativeness, and the data that are needed to be 
stored with this potentially visible set [1,  14,  29]. 
 

Under the aforementioned classification, object space methods 
can be regarded as output sensitive algorithms. Output sensitive 
algorithms have their runtime depend only on the size of the output, 
and not the input. In the case of image based algorithms, the main 
idea for achieving the goal is to perform visibility computations for 
each frame by scan conversion of some potential occluders and 
checking if the projections of the other objects fall inside the image 
area of the projection of the occluders. Examples include the 
hierarchical z-buffer algorithm [ 22], hierarchical tiling algorithm 
[ 23], hierarchical occlusion maps [ 51], and others [ 4,  6,  11,  15,  45, 
 48]. Some of these classify the scene into both scene data structure 
and image replaceable parts, namely near and far fields. This sort of 
occlusion culling is very similar to radiosity calculations [ 7]. In 
image-based simplification methods, the whole scene parts are 
replaced with an impostor – a generated image of the scene [ 13,  41]. 
Unfortunately, one impostor is usually valid for a few frames and 
must be updated frequently. Other approaches use textured depth 
meshes that incorporate depth information for efficient impostor 
update. One of the advantages of image space algorithms is that the 
target data can be very complex (for which object space algorithms 
are at a disadvantage) and the occluded objects are within a very 
tight estimation range. A common deficiency of image space 
algorithms is that they are mostly hardware dependent and the 
screen resolution is fixed. 

3.4 Stereoscopic Visualization 

In stereoscopic visualization (Fig. 13), the two views must be 
generated fast enough to achieve interactive frame rates. Apparently, 
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there will be limitations in terms of the features that could be 
incorporated to increase the realism (in comparison to monoscopic 
visualizations). Since the amount of data that can be processed 
decreases drastically, complex visualizations, such as visualization 
of urban scenery over a terrain, cannot be achieved easily.  
 

There is some work done to decrease the time needed for 
generating the second eye image so that complex stereoscopic 
visualizations become possible. For this purpose, an algorithm has 
been proposed to speed up the generation of stereo pairs for 
stereoscopic view-dependent visualizations [ 24]. The algorithm, 
called Simultaneous Generation of Triangles (SGT), generates the 
triangles for the left and right eye images simultaneously using a 
single draw-list, thereby avoiding the need for performing the view 
frustum culling and the vertex activation operations needed for 
view-dependent refinement twice. 

4 Summary 

In this chapter, we presented some approaches toward terrain and 
urban scenery modeling. We discussed techniques to reduce the 
amount of workload in the graphics pipeline, thereby overcoming 
the graphics hardware bottleneck. 
 

In the case of terrains, the most important problem is multi-
resolution representation and simplification without significant loss 
of accuracy. In order to achieve this, an approach using quadtrees 
has been presented. Urban sceneries are somewhat different from 
terrains; they are more component based. An important problem is 
occlusion culling, because most geometry may be discarded without 
sending it to the graphics pipeline. In order to achieve these goals 
the algorithms must be adaptive: the algorithm should cost less 
compared to sending whole geometry to the graphics hardware and 
letting the machine do all the work and should keep accuracy of the 
geometry high as much as possible. 

 
There may be other approaches to terrain and urban modeling, 

not mentioned in this chapter. However, we believe that the ones 
studied here constitute a useful, promising bunch. 
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Fig. 13. Stereoscopic projection with left and right eye frustums. 

References 

1. C. Andùjar, C. Saona-Vàzquez, I. Navazo, and P. Brunet. Integrating 
Occlusion Culling and Levels of Detail Through Hardly-Visible Sets. 
Computer Graphics Forum, 19(3):499–506, 2000. 

2. U. Assarsson and T. Möller, Optimized View Frustum Culling 
Algorithms for Bounding Boxes, Journal of Graphics Tools, 5(1): 9-
22, 2000. 

3. C. L. Bajaj, V. Pascucci, and G. Zhuang. Progressive Compression and 
Transmission of Arbitrary Triangular Meshes. In Proceedings of  IEEE 
Visualization, pages 307–316, 1999. 

4. D. Bartz, M. Meißner, and T. Hüttner. OpenGL-Assisted Occlusion 
Culling for Large Polygonal Models. Computers & Graphics, 
23(5):667–679, 1999. 

5. J. Bittner, V. Havran, and P. Slavik. Hierarchical Visibility Culling 
with Occlusion Trees. In Proceedings of Computer Graphics 
International, pages 207–219, 1998. 

6. B. Chen, J. E. Swan, E. Kuo, and A. E. Kaufman. LOD-Sprite 
Technique for Accelerated Terrain Rendering. In Proceedings of IEEE 
Visualization, pages 291–298, 1999. 

7. Y.-Y. Chuang and M. Ouhyoung. Clustering and Visibility 
Preprocessing of Hierarchical Radiosity for Object-Based 
Environment. In Proceedings of Computer Graphics Workshop’95, 
pages 102–111, 1995. 

8. D. Cohen-Or, G. Fibich, D. Halperin, and E. Zadicario. Conservative 
Visibility and Strong Occlusion for Viewspace Partitioning of Densely 
Occluded Scenes. Computer Graphics Forum, 17(3):243–254, 1998. 

 27



9. S. Coorg and S. Teller. Temporally Coherent Conservative Visibility. 
In Proceedings of ACM Symposium on Computational Geometry, 
pages 78–87, 1996. 

10. S. Coorg and S. Teller. Real-Time Occlusion Culling for Models with 
Large Occluders. In Symposium on Interactive 3D Graphics, pages 
83–90, 1997. 

11. L. Darsa, B. Costa, and A. Varshney. Walkthroughs of Complex 
Environments Using Image-Based Simplification. Computers & 
Graphics, 22(1):55–69, 1998. 

12. D. Davis, W. Ribarsky, T. Y. Jiang, N. Faust, and S. Ho. Real-Time 
Visualization of Scalably Large Collections of Heterogeneous Objects. 
In Proceedings of IEEE Visualization, pages 437–440, 1999. 

13. X. Decoret, F. Sillion, G. Schaufler, and J. Dorsey. Multi-Layered 
Impostors for Accelerated Rendering. Computer Graphics Forum, 
18(3):61–73, 1999. 

14. L. Downs, T. Möller, and C. H. Sèquin. Occlusion Horizons for 
Driving Through Urban Scenes. In SIGGRAPH’01 Proceedings, pages 
121–124, 2001. 

15. F. Durand, G. Drettakis, J. Thollot, and C. Puech. Conservative 
Visibility Preprocessing Using Extended Projections. In 
SIGGRAPH’00 Proceedings, pages 239–248, 2000. 

16. M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. 
Stuetzle. Multiresolution Analysis of Arbitrary Meshes. In 
SIGGRAPH’95 Proceedings, pages 173–182, 1995. 

17. C. Erikson, D. Manocha, and W. V. Baxter. HLODs For Faster 
Display of Large Static and Dynamic Environments. In 
SIGGRAPH’01 Proceedings, pages 111–120, 2001. 

18. R. J. Fowler and J. J. Little. Automatic Extraction of Irregular Network 
Digital Terrain Models. Computer Graphics, 1979. 

19. H. Fuchs. On Visible Surface Generation by a Priori Tree Structures. 
In SIGGRAPH’80 Proceedings, pages 124–133, 1980. 

20. T. A. Funkhouser, C. H. Sèquin, and S. J. Teller. Management of 
Large Amounts of Data in Interactive Building Walkthroughs. In 
Proceedings of Symposium on Interactive 3D Graphics, pages 11–20, 
1992. 

21. C. Gotsman, O. Sudarsky, and J. A. Fayman. Optimized Occlusion 
Culling Using Five-Dimensional Subdivision. Computers & Graphics, 
23(5):645–654, 1999. 

22. N. Greene. Hierarchical Z-buffer Visibility. In SIGGRAPH’93 
Proceedings, pages 231–238, 1993. 

23. N. Greene. Efficient Occlusion Culling for Z-Buffer Systems. In 
SIGGRAPH’99 Proceedings, pages 78–79, 1999. 

24. U. Güdükbay and T. Yılmaz. Stereoscopic View-dependent 
Visualization of Terrain Height Fields. IEEE Transactions on 
Visualization and Computer Graphics, 8(4):330–345, 2002. 

25. J. Heo, J. Kim, and K. Wohn. Conservative Visibility Preprocessing 
for Walkthroughs of Complex Urban Scenes. In Proceedings of ACM 
Symposium on Virtual Reality Software and Technology, pages 115–
128, 2000. 

26. H. Hoppe. Progressive Meshes. In SIGGRAPH’96 Proceedings, pages 
99–108, 1996. 

 28



27. H. Hoppe. Efficient Implementation of Progressive Meshes. 
Computers & Graphics, 22(1):27–36, 1998.  

28. H. Hoppe. Smooth View-Dependent Level-of-Detail Control and its 
Application to Terrain Rendering. In Proceedings of IEEE 
Visualization, pages 35–42, 1998. 

29. J. T. Klosowski and C. T. Silva. Efficient Conservative Visibility 
Culling Using the Prioritized-Layered Projection Algorithm. IEEE 
Transactions on Visualization and Computer Graphics, 7(4):365–379, 
2001. 

30. S. Kumar, D. Manocha, W. Garrett, and M. Lin. Hierarchical Back-
Face Computation. Computers & Graphics, 23(5):681–692, 1999. 

31. F. A. Law and T. S. Tan. Preprocessing Occlusion for Real-Time 
Selective Refinement. In Proceedings of Symposium on Interactive 3D 
Graphics, pages 47–54, 1999. 

32. P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust, and G. 
Turner. Real-Time Continuous Level of Detail Rendering of Height 
Fields. In SIGGRAPH’96 Proceedings, pages 109-118, 1996. 

33. P. W. C. Maciel and P. Shirley. Visual Navigation of Large 
Environments Using Textured Clusters. In Proceedings of Symposium 
on Interactive 3D Graphics, pages 95–102, 1995. 

34. S. Murai. GIS Workbook CD-ROM Version 1.0, Japan Association of 
Remote Sensing. 1999. 

35. B. Naylor. Partitioning Tree Image Representation and Generation 
from 3D Geometric Models. In Proceedings of Graphics Interface, 
pages 201–212, 1992. 

36. Y. I. H. Parish and P. Müller. Procedural Modeling of Cities. In 
SIGGRAPH’01 Proceedings, pages 301–308, 2001. 

37. J. Popovic and H. Hoppe. Progressive Simplicial Complexes. In 
SIGGRAPH’97 Proceedings, pages 217–224, 1997. 

38. J. Rossignac. Geometric Simplification and Compression in 
Multiresolution Surface Modeling. SIGGRAPH’97 Course Notes #25, 
1997. 

39. H. Samet. The Quadtree and Related Data Structures. ACM 
Computing Surveys, 16(2):187–260, 1984. 

40. C. Saona-Vàzquez, I. Navazo, and P. Brunet. The Visibility Octree: A 
Data Structure for 3D Navigation. Computers & Graphics, 23(5):635–
643, 1999. 

41. F. Sillion, G. Drettakis, and B. Bodelet. Efficient Impostor 
Manipulation for Real-Time Visualization of Urban Scenery. In 
Proceedings of Eurographics’97, pages 207–218, 1997. 

42. G. Suter and A. Mahdavi. Performance-Inspired Building 
Representations for Computational Design. In Proceedings of Building 
Simulation, Vol.3, pages 1203–1210, 1999. 

43. S. J. Teller and C. H. Sequin. Visibility Preprocessing for Interactive 
Walkthroughs. In SIGGRAPH’91 Proceedings, pages 61–69, 1991. 

44. S. Teller. Visibility Computations in Densely Occluded Environments. 
Ph.D. thesis, University of California, Berkeley, 1992. 

45. M. Wand, M. Fischer, I. Peter, F. M. auf der Heide, and W. Straßer. 
The Randomized Z–Buffer Algorithm: Interactive Rendering of 
Highly Complex Scenes. In SIGGRAPH’01 Proceedings, pages 361–
370, 2001. 

 29



 30

46. A.Watt and M. Watt, Advanced Animation and Rendering Techniques: 
Theory and Practice, Addison-Wesley, 1997. 

47. P. Wonka. Occlusion Culling for Real-Time Rendering of Urban 
Environments. Ph.D. Thesis, University of Vienna, 2001. 

48. P. Wonka, M. Wimmer, and F. X. Sillion. Instant Visibility. In 
Proceedings of Eurographics, 20(3):411–421, 2001. 

49. J. C. Xia, J. El-Sana, and A. Varshney. Adaptive Real-Time Level-of-
Detail Based Rendering for Polygonal Models. IEEE Transactions on 
Visualization and Computer Graphics, 3(2):171–183, 1997. 

50. K. Yamaguchi, T. L. Kunii, K. Fujimura, and H. Toriya. Octree-
Related Data Structures and Algorithms. IEEE Computer Graphics and 
Applications, 4(1):53–59, 1984. 

51. H. Zhang, D. Manocha, T. Hudson, and K. E. Hoff III. Visibility 
Culling Using Hierarchical Occlusion Maps. In SIGGRAPH’97 
Proceedings, pages 77–88, 1997. 

 
 

 


	Terrain Representations
	Height Fields
	Triangulated Irregular Networks
	Quadtree Representation
	Multi-resolution Representation using Quadtrees

	Modeling of Urban Scenery
	Data Acquisition and Modeling
	Building Representations

	Culling Techniques
	Back-Face Culling

	Visualization of Terrain Data
	View-Frustum Culling for Terrain Data
	View-Dependent Visualization using Quadtrees

	Visualization of Urban Scenery
	Occlusion Culling with Preprocessing

	Stereoscopic Visualization

