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Abstract

Physically-based modeling remedies the problem
of producing realistic anumation by including forces,
masses, sirain energies, and other physical quantities.
The behavior of physically-based models is governed
by the laws of rigid and nonrigid dynamics ezpressed
through a sel of equations of motion. This paper dis-
cusses various formulations for animating deformable
models. The formulations based on elasticity theory
express the interactions between discrete deformable
model poinis using the stiffness matrices. These ma-
irices store the elastic properties of the models and
they should be evolved in time according to chang-
ing elastic properties of the models. An alternative 1o
these formulations seems to be external force formula-
tions of different types. In these types of formulations,
elastic properties of the materials are represenied as
external spring or other tensile forces as opposed to
forming complicated stiffness matrices.

1 Introduction

Modeling the behavior of deformable objects is an
important aspect in realistic animation. To simulate
the behavior of deformable objects, we should approxi-
mate a continuous model by using discretization meth-
ods, such as finite difference and finite element meth-
ods. For finite difference discretization, a deformable
object could be approximated by using a grid of con-
trol points where the points are allowed to move in re-
lation to one another. The manner in which the points
are allowed to move determines the properties of the
deformable object. Simulating the physical proper-
ties (such as tension and rigidity), static shapes ex-
hibited by a wide range of deformable objects (includ-
ing string, rubber, cloth, paper, and flexible metals)
can be modeled. For example, to obtain the effect
of an elastic surface, the grid points are connected
by springs. The physical quantities, such as forces,
torques, velocities, accelerations, kinetic and poten-
tial energies, should be used to simulate the dynamics
of these objects.

There are some formulations which employ contin-
uous elasticity theory to model the shapes and mo-
tions of deformable models. The primal [1] and hybrid
[2] formulations are in this category. In these formu-
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lations, elastic properties of the materials are repre-
sented using potential energy functionals and stored
in stiffness matrices. Potential energies of deforma-
tion are defined using the concepts from differential
geometry and spline energies. However, forming the
stiffness matrices at any step of an animation is very
difficult and sometimes the differential equations that
should be solved to produce animation become ill-
conditioned.

Instead of modeling the elasticities using stiffness
matrices, the interactions between model points could
be expressed using external spring or other tensile
forces. Such formulations [3] represent the elastic
properties of the materials as external forces, as op-
posed to forming complicated stiffness matrices. Al-
though handling the elasticities using the stiffness ma-
trix approach is an elegant and a very suitable way,
external force approaches are usually more effective
and very fast.

1.1

In section 2, methods for animating deformable
models using elasticity theory, namely the primal for-
mulation and the hybrid formulation, are explained.
In section 3, other methods for the animation of de-
formable models are explained. These methods do
not employ continuous elasticity theory for deformable
models. In section 4, external force formulations for
animating deformable models are briefly explained.
Section 5 gives animation examples based on exter-
nal force approaches. Section 6 gives conclusions and
suggestions for future research.

2 Methods for Deformable Models us-
ing Elasticity Theory

Organization of the Paper

In this section, two different formulations, namely
the primal formulation and the hybrid formulation,
are explained. These methods use elasticity theory
and differential geometry to model the behavior of de-
formable models. Elasticity theory provides methods
to construct the differential equations that model the
behavior of nonrigid curves, surfaces, and solids as a
function of time.

There is also a good deal of research for deformable
models based on these formulations.



Metaxas and Terzopoulos [4] propose an approach
for creating dynamic solid models capable of real-
istic physical behaviors starting from common solid
primitives such as spheres, cylinders, cones, and su-
perquadrics. Such primitives can “deform” kinemat-
ically in simple ways. For example, a cylinder de-
forms as its radius (or height) is changed. To gain
additional modeling power they allow the primitives
to undergo parameterized global deformations (bends,
tapers, twists, shears, etc.). Even though their mod-
els’ kinematic behavior is stylized by the particular
solid primitives used, the models behave in a physi-
cally correct way with prescribed mass distributions
and elasticities. Metaxas and Terzopoulos also pro-
posed efficient constraint methods for connecting the
dynamic primitives together to make articulated mod-
els.

In [5], a physically-based model for animating
clothes on synthetic actors in motion is described by
(arignan et al. This work is based on the Lagrange
equations of motion described by Terzopoulos et al. (1]
with the damping term replaced by a more accurate
one proposed by Platt and Barr [6].

In [7], Tu and Terzopoulos propose a framework
for animation that can achieve the intricacy of motion
evident in certain natural ecosystems with minimal
input from the animator. This work uses a fish model
using spring-mass dynamics where the skeleton of the
fish is a discrete model composed of point masses and
springs between these point masses.

2.1 Primal Formulation

In this formulation, a deformable model is formu-
lated by using the material coordinates of points in
the body (denoted by ). For a solid body u =
(u1, u2, uz), for a surface u = (uy, uz) and for a curve
u = (u;) denotes the material coordinates. The Eu-
clidean 3-space positions of points in the body are

iven by time-varying vector-valued function x(u, t) =

Fx](u,t),xz(u,t),:cg(u,t)]. The body in its natural
rest state is given by x’(u) = [;z:‘l)(u),xg(u),zg(ue]
(Fig. 1). The equations of motion for a deformable
model can be written in Lagrange’s form as (which
should hold for all u in the material domain Q)

o9, 0x, 0x  Fe(x)
) Tt T

=f(x,1), (1)
where () is the mass density of the body at u, y(u)
is the damping density of the body at u, f(x,t) is the
net externally applied force, and e(x) is the energy
functional which measures the net instantaneous po-
tential energy of the elastic deformation of the body.
The shape of a body is determined by the Euclidean
distances between nearby points. As the body de-
forms, these distances change. Let u and u 4 du de-
note the material coordinates of two nearby points in
the body. The distance between these points in the
deformed body in Euclidean 3-space is given by:

dl =) Gijduidu;,

i

(2)
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Figure 1: Geometric representation of a deformable
body for primal formulation. Reproduced from [1].
Copyright 1987, Association for Computing Machinery,
Inc.

where the symmetric matrix:
., dx  Ox .

("i] (x(u)) auz (?Uj (3)
is the metric tensor, which is a measure of deformation
(the dot indicates the scalar product of two vectorsg.

Two 3D solids have the same shape (differ only by
a rigid body motion) if their 3 x 3 metric tensors are
identical forms of u = [uy,u2,ug], for all u in the
material domain Q. Two surfaces have the same shape
if their metric tensors G as well as their curvature
tensors B are identical forms of u = [uy,uy], for all
u in the material domain Q. The components of the
curvature tensor are:

0’x

Bl] (x(u)) n (‘9'(!1()'(1] ) (4)
where n = [n1, n2,n3) is the unit surface normal. See
[8] for a detailed discussion of these formulations.

Using the above differential quantities, potential
energies of deformation for use in Lagrange equations
can be defined as the norm of the difference between
the fundamental forms of the deformed body and those
of the undeformed body. This norm measures the
amount of deformation away from the natural shape
so that the potential energy is zero when the body is
in its natural shape and Increases as the model gets
increasingly deformed away from its natural shape.

If the fundamental forms associated with the nat-
ural shape are denoted by the superscript 0, then the
strain energy for a surface can be defined as

e(x) = / IG — G| + [|B — B|Zadurdus, (5)
9]

where the weighted matrix norms || - {lw: and
|| - |lw= involve the weighting functions w}; (w1, uz) and



wf;(u1,uz). These weighting functions determine the
properties of the simulated deformable material. The
weighting function w}); shows the amount of resistance
to stretching deformation, and the weighting function
wfj shows the amount of resistance to bending defor-
mation.

This energy denotes the amount of energy to restore
the deformed objects to their natural shapes. The net
external force in Lagrange’s equations is the sum of
various types of external forces, such as gravitational
force, constraint forces, etc.

To create animation with deformable models us-
ing primal formulation, the differential equations of
motion should be discretized by applying finite differ-
ence approximation methods and solving the system
of linked ordinary differential equations of motion ob-
tained in this way. At every step of an animation, a
new stiffness matrix that stores the elastic properties
of the deformable model is constructed.

To simulate the dynamics of a deformable surface,
the elastic force expression, which is an approximation
of the derivative of the expression for potential energy,
should be discretized. This discretization produces a
sparse and banded stiffness matrix. Besides this, the
mass and damping matrices for the deformable model
should be produced as diagonal matrices.

Then, the total external force for each point of the
mode] should be calculated by adding the forces ef-
fecting a point, which are gravitational, collision, con-
straint forces etc.

2.2 Hybrid Formulation

In this formulation, a deformable body is repre-
sented as the sum of a reference component r(u,t)
and a deformation component e(u, t) ﬁFig. 2). The po-
sitions of mass elements in the body relative to a body
frame ¢ (whose origin coincides with the body’s center
of mass and which should be evolved over time accord-
ing to the rigid body dynamics to have a rigid body
motion besides its elastic motion) is given by

q(u,t) =r(u,t) + e(u,t). (6)

Deformations are measured with respect to the ref-
erence shape r. Elastic deformations are represented
by an energy e(e), which depends on the position of
the body frame ¢.

Implementation of the hybrid formulation follows
the same steps described for the primal formulation.
The only difference is that the sparse, banded stiff-
ness matrix K is constant. The equations of motion
can be expressed in semidiscrete form by a system
of coupled ordinary differential equations. The sys-
tem contains two ordinary differential equations for
the translational and rotational motion of the model
as if all of its mass is concentrated at its center of
mass, and a system of ordinary differential equations
whose size is proportional to the size of the discrete
model. These equations are solved in tandem for each
time step with respect to the initial conditions given.
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Figure 2: Geometric representation of deformable mod-
els for hybrid formulation. Reproduced from [2]. Copy-
right 1988, Association for Computing Machinery, Inc.

3 Other Methods for the Animation of
Nonrigid Models

The formulations mentioned above employ continu-
ous elasticity theory to model the shapes and motions
of deformable models. There are other approaches to
model and animate deformable models. In this sec-
tion, some of these approaches are explained*.

Witkin et al. formulate a model for nonrigid dy-
namics based on global deformations with relatively
few degrees of freedom [10]. This model is restricted
to simple linear deformations that can be formulated
by affine transformations. The use of deformations
that are linear in the state of the system causes the
constraint matrices in equations of motion to be con-
stant. Hence, pre-inverting these matrices yields an
enormous benefit in performance.

In [11], Pentland and Williams describe the use of
modal analysis to create simplified dynamic models of
nonrigid objects. This approach breaks nonrigid dy-
namics down into the sum of independent vibration
modes. This allows Pentland and Williams to achieve
a level of control not possible with the massed equa-
tions normally used in dynamic simulation. This ap-
proach reduces the dimensionality and stiffness of the
models by discarding high-frequency modes. High-
frequency modes have no effect on linear deforma-
tions and rigid body dynamics. Both of these methods
achieve large computational savings at the expense of
limited deformations.

Another method, based on physics and optimiza-
tion theory, uses mathematical constraint methods to
create realistic animation of flexible models [6]. This
method of Platt and Barr uses reaction constraints
for fast computation of collisions of flexible models
with polygonal models, and augmented Lagrangian
constraints for creating animation effects, such as vol-

*A useful bibliography of computer animation can be found
in [9].



ume preserving squashing, and the molding of taffy-
like substances. To model the flexible objects, the fi-
nite element method is used in Platt and Barr’s work.

Thingvold and Cohen [12] define a model of elastic
and plastic B-spline surfaces which supports both an-
imation and design operations. They develop “refine-
ment” operations for spring and hinge B-spline models
which are compatible with the physics and the mathe-
matics of B-spline models. Their model can be viewed
as a continuous physical representation of a physical
model rather than the more standard discretized ge-
ometry point mass models. The motion of their mod-
els is controlled by assigning different physical proper-
ties and kinematic constraints on various portions of
the surface.

In [13], an approach to imposing and solving geo-
metric constraints on parameterized models is given.
This approach is applicable to animation as well as
model construction. Constraints are expressed as en-
ergy functions, and constraint satisfaction is achieved
by solving energy minimization problems. Although
this approach is not as realistic as the above three ap-
proaches because of the lack of physics, it is simple
and general.

Breen et al. [14] propose a physically-based model
and a sirnulation methodology, which when used to-
gether are able to reproduce many of the attributes of
the characteristic behavior of cloth. Their model uti-
lizes a microscopic particle representation that directly
treats the mechanical constraints between the threads
in a woven material rather than a macroscopic con-
tinuum approximation. Their simulation technique is
hybrid, employing force methods for gross movement
of the cloth and energy methods to enforce constraints
within the material. Although limited only to cloth
object behavior in scope, their approach is very re-
alistic since a microscopic particle representation is
utilized.

There are other physically-based models of flexi-
ble objects which are concerned only with the static
shape. Weil [15] propose a geometric approach for
interpolating surfaces to produce draped “cloth” ef-
fects. The clothes synthesized with his model con-
tain folds and appear very realistic. The cloth is as-
sumed to be rectangular, and is represented as a grid of
three-dimensional coordinates. Weil uses the catenary
curves to define the positioning of the points along a
given thread.

Feynman [16] described a technique for modeling
the appearance of cloth. His computational frame-
work minimizes energy functions defined over a grid of
points. Feynman derives his functions from the theory
of elasticity and from the assumption that cloth is a
flexible shell.

4 External Force Formulations for De-
formable Models

In other formulations based on elasticity theory
(primal [1] and hybrid [2] formulations), the elastic
properties of the materials are stored in the stiffness
matrix. However, the formation of the stiffness ma-
trix automatically is very difficult and sometimes it

141

becomes impossible to solve the differential equations
for animating the models because of the numerical ill-
conditioning problems. An alternative to these for-
mulations is using external force formulations. In this
section, one such type of formulation, namely the ex-
ternal spring-force formulation [3], is explained. In
these types of formulations, instead of forming the
stiffness matrix automatically, elastic properties are
represented as external forces. Although handling the
elasticities using the stiffness matrix approach 1s an
elegant and a very suitable way, external force ap-
proaches are more effective and very fast.

4.1 Spring-Force Formulation for De-

formable Models

In this formulation, deformable models are dis-
cretized as a grid of control points. The inter-node
spacings on the grid are hy = Ly/N, hy = L,/M
in the horizontal and vertical directions, respectively.
Initially, we take hy = hg = h, for simplicity.

External forces may be applied to many of the grid
points at the same time. One type of such external
force can be the gravitational force. These external
forces are known. Besides, if some of the grid points
are constrained to the fixed positions in space, then
there will be some unknown constraint forces at these
points.

The line segments in the grid (Fig. 3) will correspond
to the spring elements. According to the initial posi-
tions of the grid points, there will be some spring forces
on the model.

The equations of motion for a deformable model can
be written in Lagrange’s form as follows (this should
hold for all grid points):

d? d
M e x+ C 7 (7)

We can take the elastic force expression as an ex-
ternal force fx = K(x)x , and take fx to the right
hand side of the Eq. g) This new form of the equa-
tion will simplify the formulation procedure.

The position vector x for the model points is as
follows (T denotes the transpose of a matrix):

x + K(x)x = f(x)

T

xOT

T=[ X3

T
x - Xy ] (8)
where x; represents all the position vectors of the grid
points on the i-th row, and
T

X;

X{N ] (9)
where x;; is the position vector of the grid point
(l)J) (1207 11)M1.7=07 lxaN)

In Eq. (7), M is the mass matriz, an (M + 1)(N +
1) x (M + 1)(N + 1) diagonal matrix which contains
masses of the grid points as diagonal elements, and C
is the damping matriz, an (M + 1)(N + 1) x (M +
1)(N + 1) diagonal matrix which contains dampers of
the grid points as diagonal elements.

Note that Eq. (7) can be rewritten as

d? d
Mdt2 X + Cdt x = f(x) ~ fx(x)

= [x;r,ox?,l

(10)
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Figure 3: Numbering of the grid.

In this way, there will be no need for calculating the

entries of the stiffness matrix. Instead of this, it is nec-

essary to find the expressions for the column matrix £

(external spring forces representing elasticities). The

spring force vector can also be partitioned as
5 = [ £ - f3]

(11)

where-the entries in the vector £ = [£7; £F, - - £Ty ]
correspond to the spring forces acting at the grid
points.

Using the discussion in [17] (pp. 359-362), the ter-
minal equation of a two-terminal spring component of
free length ¢ in three-dimensional space is given as

X1 — X2

foo= k| (x) —x3) = £

(12)

%1 — x|

where x; and x are the position vectors of its terminal
points. Note that calculation of the vector (x; — x2)
is essential; it also appears in the second term of this
expression. Eq. (12) can be used to obtain expressions
for the entries of fx in (11).

For the grid points not on the boundaries, the elas-
tic force is calculated by adding the spring forces ap-
plied to the grid point by its four neighbors. For the
grid points on the boundaries, three neighbors have an
effect on the elastic force. For the grid points on the
corners, only two neighbors have an effect on the elas-
tic force. See [3] for the details of calculating external
spring forces.
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4.2 Implementation of the Spring Force
Formulation

o Since the initial position vectors of the grid points
are known, the external force vector fx can be
calculated from the external force equations.

e Then by solving the differential equation in Eq.
(10) at the first step, next values of the position
vectors of the grid points are determined.

o The next value of the external force vector fx is
calculated and the process is repeated.

As initial positions, we have I # £ in general. There-
fore fx # 0. In other words, there will be some n-
ternal stresses in the system. If h = ¢, then fx = 0.
On the other hand, if hy # ho, then fx # 0 initially
(assuming that all the springs have the same lengths).
We may select the lengths of the horizontal springs
as £ = h, and the lengths of the vertical springs as
¢y = hy. In this case, fx = 0 Initially, and some of
the ¢ factors will change to ¢; and the remaining ones
to 5 in the external spring force equations. Other
modifications are also possible; e.g., on the spring co-
efficients (k).

5 Animation Examples Using External
Force Formulations

In the external force formulations, by setting the
stiffness constants to different values it is possible to
obtain different elastic properties. In Fig. 4, a surface
is assigned different elastic properties and constrained



from its center of mass. Each part of the figure shows
the form of the surface after a specific number of ani-
mation frames. Initially, the surface is flat.

In Fig. 5, a strechy sheet constrained from its four
corners falls with the effect of gravity. In Fig. 6, an
elastic surface drops over a toroid with a very small
hole. These examples are produced by the animation
system described 1n [3, 18].

Any point on a model could be constrained to a
fixed location in space so that when the model is an-
imated, the constrained points remain in their initial
positions. The constraint forces are taken into account
in the following way. When a constrained point tends
to move, an opposite force for bringing it back to its
original position is calculated and added to the total
external force for that point. Each constrained point
has an effect on the total external force for all points
in the model depending on the difference between the
body coordinates of the points. This coupling effect
is taken into account automatically according to the
elastic properties of the models.

The forces due to the collision of deformable models
with impenetrable obstacles are calculated using the
obstacle’s implicit (inside-outside) function. The ob-
stacle exerts a repulsive force on the deformable model
which can be calculated as a function of the obstacle’s
implicit function such that the force grows quickly if
the model attempts to penetrate the obstacle. This
is achieved by creating a potential energy function
around each obstacle. Then, the repulsive force due
to an impenetrable obstacle could be defined using the
surface normal vector and the implicit function of of
the deformable body’s surface.

6 Conclusion

This paper discusses different approaches for ani-
mating deformable models. Two formulations, namely
the primal and the hybrid formulations, employ elas-
ticity theory to model the behavior of deformable
models. The nonquadric energy functional in primal
formulation causes a nonlinear elastic force associated
with the deformable body to appear in the partial dif-
ferential equations of motion. Nonlinearity results be-
cause the elastic force attempts to restore the shape of
the deformed body to a rest shape. The advantage of
nonlinear elasticity is that it is in principle the most
accurate way to characterize the behavior of certain
elastic phenomena. Because of this, the primal for-
mulation is the most suitable formulation for highly
nonrigid models. However, it can lead to serious prac-
tical difficulties in the numerical implementation of
deformable models for animation since it is very diffi-
cult to form the stiffness matrix automatically.

The hybrid formulation offers a practical advantage
for fairly rigid models (the stiffness matrix is almost
constant), whereas primal formulation becomes un-
practical due to the nonquadric energy functional with
increasing rigidity and complexity of the models.

An important advantage of the primal formulation
over other formulations is that it is easier to establish
an intuitive link between the weighting functions of the
deformable models and the resulting elastic behavior.
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(e) k=30

Figure 4: Different elastic surfaces, constrained from
the center of mass, fall.



Figure 5: A strechy sheet, constrained from its four Figure 6: An elastic surface drops over a toroid with a
corners, falls. small hole.
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This is due to the nature of the weighting functions.

T

are

he advantages of the external force formulations

The elastic properties of the materials are repre-
sented as external forces, instead of using the stiff-
ness matrix approach. In this way, the problem
of automatically constructing the stiffness matrix
is avoided.

Since the stiffness matrix is not formed, mod-
els could be animated faster than the other ap-
proaches. The linear system of equations that
should be solved to compute animation frames
contains only mass and damping values which are
the diagonal entries. This allows us to use simple
linear system solving methods.

The elastic properties of the materials could be
given by setting the spring constants to proper
values.

Since such formulation model a deformable object
using a finite number of grid points, it is possi-
ble to give different elastic properties to different
parts of a model.

External force formulations will thus promise to be
more suitable to fast animation of deformable models.
The accuracy and realism needs more refinement and
development.
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Figure 5. A stretchy sheet, constrained from its four corners, falls.

Figure 6. An elastic surface drops over a toroid with a small hole.
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