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ABSTRACT 

 

In this paper, a novel rate-distortion optimization inspired 
3D piecewise-planar reconstruction algorithm is proposed. 
The algorithm refines a coarse 3D triangular mesh, by 
inserting vertices in a way to minimize the intensity 
difference between an image and its prediction. The 
preliminary experiments on synthetic and real data indicate 
the validity of the proposed approach. 
 

Index Terms— Rate-distortion optimal 3D 
reconstruction, piecewise planar 3D reconstruction 

 

1. INTRODUCTION 

 
In 3D TV applications, dense 3D scene representations have 
a considerable potential to remove visual redundancy in 
multi-view video and to improve the overall compression 
rate of the 3D TV bit-stream. However, in order to realize 
this goal, it is essential to have both an accurate and a 
concise representation of the scene, making it convenient to 
study the problem in rate-distortion framework. 

In one of the earliest attempts to fulfill the above 
constraint, a rate-distortion optimal 3D scene structure is 
estimated, by a joint optimization of the number of bits used 
to encode the extracted dense depth field, and the quality of 
the video frame rendered from the 3D structure, via a 
Markov random field formulation [1]. Despite the success of 
this approach, it is noted that the scene representation can 
benefit from further improvements.  

 
2. DENSE 3-D SCENE REPRESENTATION 

 
A dense 3D reconstruction can be described either by a 

point-based representation, as a depth-map that is defined on 
the same lattice with the reference frame, or by a volumetric 
representation, such as voxels, or by a parametric surface 
[10]. However, the former two ignore the scene geometry 

hence suffer from considerable redundancy [1]. This 
drawback is remedied in parametric surface based 
representations, by utilizing the fact that the constituent 
points of a scene are usually members of higher level 
geometric entities. 

Planes offer distinct advantages as basic description 
elements in such representations, since man-made 
environments and many natural scenes can be well-
approximated by planar patches. Besides, they can be 
parameterized with a small number of elements, therefore, 
efficiently represented. Finally, planes are algebraically easy 
to handle, providing considerable computational savings. 

The considerable body of research on piecewise planar 
scene representations can be categorized into two. In the 
first class, a planar surface is fit onto an irregular 3D point 
cloud. The work of Schindler is a good example, in which 
the point cloud is partitioned into cells, and RANSAC is 
utilized to determine the dominant plane in each cell [3]. In 
[2], an equivalent procedure is described for finding the 
dominant homographies induced by scene planes, in a 2D 
correspondence set.  

Since the benefits of piecewise planar scene 
representation are already known, there is a considerable 
body of research on this subject. The existing methods can 
be categorized into two main classes: Those defining the 
problem as fitting planes to an irregular 3-D point cloud, 
possibly obtained by a sparse 3-D reconstruction algorithm, 
and the others employing triangular meshes. 

The second approach is characterized by the use of 
triangular meshes, specifically Delaunay triangulation, a 
procedure to connect the points in a set to form a triangular 
mesh with certain optimality properties [4]. There exist 
successful algorithms, such as [5], utilizing only the 3D 
location information of an irregular point cloud. Image-
based-triangulation techniques also incorporate the intensity 
information. The basic algorithm employs edge swaps in a 
given 2D triangular mesh to minimize the prediction error of 
the intensity values of an image of a scene, acquired by a 



known camera [6]. In [7], this method is improved by using 
simulated annealing to explore the solution space, enhanced 
by a rich arsenal of tools in addition to edge-swap. The 
method proposed in [8] uses a similar idea to compress a 
disparity map. However, it stands from the rest by its coarse-
to-fine operation, adding new vertices to locations where the 
prediction error is largest. 

Image-based triangulation methods construct the mesh 
on the 2-D projection of the 3-D point cloud, hence, suffer 
from erroneous connections. However, on the positive side, 
unlike irregularly-shaped planes generated by plane fitting 
process, a Delaunay triangulation can be represented solely 
by its vertices. Also, rendering of triangular meshes are 
supported by hardware. These advantages justify the choice 
of triangular meshes in this study. 

In this paper, a simple, coarse-to-fine, 3-D piecewise 
planar reconstruction algorithm is proposed. The algorithm 
starts with a coarse mesh, two images of the scene and the 
corresponding cameras, and uses the intensity prediction 
error to drive the mesh refinement process. 

 
3. RATE- DISTORTION EFFICIENT PIECEWISE 

PLANAR 3-D RECONSTRUCTION  

 
3.1. Motivation 

 

A rate-distortion efficient representation should provide, 
ideally, the least distortion possible for a given number of 
vertices. A sequential distortion minimization algorithm can 
proceed either in a fine-to-coarse, or a coarse-to-fine 
fashion. The former leads to a more complex cost function 
with local minima, and the computationally infeasible 
practice of extracting information only to discard later on. 
Coarse-to-fine approach avoids both, and in addition, is 
amenable to progressive coding and construction of scalable 
bit streams. Hence, in this study, a coarse-to-fine approach is 
adopted. Such an algorithm is identified by two rules, 
governing the location and the amount of refinement. The 
location is chosen to maximally reduce the distortion in the 
representation, while the amount is dictated by the available 
number of bits, by, for example, a compression block. These 
principles are depicted in Figure 1. 

In order to develop an algorithm in a rate-distortion 
framework, exact definitions of rate and distortion are 
required. In this study, rate is defined as the number of 
vertices in the mesh. However, the choice of distortion 
metric is not straightforward. In the literature, PSNR of a 

predicted image is the most popular distortion metric, 
despite its oversensitivity to the geometric errors. Also, 
minimization of an image-based error introduces a 
projective distortion to the structure estimate in case of 
erroneous camera estimates. The alternative is geometry-
based error metrics, assessing how well the point cloud is 
modelled by the current scene representation. 

When accurate camera matrices are available, the 
minima of both of these metrics coincide. Otherwise, 
minimizing the image distortion transfers the error to the 
structure and vice versa. This observation explains the 
popularity of PSNR in novel view synthesis and image 
prediction problems [1]. 
 
3.2. Proposed Method 

 

The proposed algorithm aims to achieve a rate-distortion 
efficient and accurate 3D scene geometry representation, 
with distortion measured as the prediction error of the 
intensity values of a target image from a reference image. 
The inputs to the algorithm are an initial mesh with typically 
4-8 vertices to define a bounding polygon for the scene 
(required by the incremental Delaunay triangulation 
algorithm), a reference image, a target image for distortion 
measurement, and the corresponding projective camera 
matrices. 

The first step is to identify a patch that requires 
refinement. To this aim, a prediction of the target image is 
constructed, by transferring the pixels in the reference image 
to the image plane of the camera corresponding to the target 
image. The pixels are transferred via the homographies 
induced by the planar patches in the mesh, representing the 
current 3D scene geometry estimate. The patch, whose 
corresponding region in the target has the largest intensity 
prediction error, is marked for refinement.  

The next step is to determine the location of the 3D 
vertex to be added. To this aim, in both reference and target 
images, the regions corresponding to the projection of the 
patch to be refined are declared as region-of-interests (ROI). 
Then, in each ROI, a set of prominent features which will 
allow an accurate 3D position estimate are extracted by 
Harris corner detector. To find the matching features, 
guided matching is employed. This is a technique that makes 
use of the fact that fundamental matrix constrains the 
possible matches of a feature in an image to a line in the 
other image [11]. The fundamental matrix can be easily 
computed from the camera matrices, given as input. For each 
matching pair, there is a corresponding 3D vertex.  

The vertex that is to be added to the mesh is chosen as 
the one, which has the least conformity to the current scene 
geometry estimated for the ROI. This can be measured by 
the distance of the 3D vertices to the plane. However, this 
metric has a geometric significance only when calibrated 
cameras are available. Use of a projective metric, such as 
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Figure 1: 3D reconstruction in rate-distortion framework. 



symmetric transfer error [11], removes this necessity. It is 
defined as 
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where x1 and x2 are the homogeneous coordinates of the 
matching pair and H is the homography induced by the 
planar patch, relating the ROIs. 

The mesh is updated with the vertex which has the 
largest symmetric distance error. The procedure is repeated 
until either the intensity prediction error converges, or the 
available bit budget is completely used up. The flow of the 
algorithm is presented below. 
 
Algorithm: Piecewise-Planar Reconstruction 

 
Input: Initial (bounding) mesh, a reference image, a target 
image and the associated cameras 
1. Until the prediction error converges or bit budget is 

depleted 
2. Transfer the 2D points in the reference frame to the 

target frame, and compute the intensity prediction error 
in the regions corresponding to each planar patch. 

3. Project the patch with the largest prediction error to the 
images to determine the ROIs. Extract new features and 
construct a correspondence set using guided matching in 
these ROIs. 

4. Compute symmetric transfer error for each pair. 
Determine the pair with the largest transfer error, and 
add the corresponding 3D vertex to the mesh.  

5. Go to Step 1. 
 

Notice that, the algorithm minimizes the intensity prediction 
error, an image-based metric. However, new vertices are 
selected with respect to the symmetric transfer error, a 
geometric metric. Such an approach limits the distortion in 

the geometry, but obviously, the optimality of the chosen 
vertex is somewhat compromised. 

 
4. EXPERIMENTAL RESULTS 

 
The algorithm is first tested on synthetic data, “Cube” 

(Figure 2), for which the ground-truth of the camera and 
geometry is available. Starting from a 4-point mesh, the 
algorithm successfully recovers all 12 points of the structure, 
while minimizing the prediction error during the process, as 
depicted in Figure 3. It should be noted that, depending on 
the constraints on the rate (i.e. number of points), 3-D 
recovery could be stopped at any point, i.e. the algorithm 
allows scalability. 

Next, the algorithm is tested on “Venus” [12] (Figure 
4), a data set for which only the uncalibrated cameras are 
known. The process, as depicted in Figure 6, starts with an 
8-point reconstruction, and the prediction error converges at 
40 points. The errors due to the automatic localization of the 
features and matching limit the residual error. 

Finally, the algorithm is run on “Cliff”, a real sequence 
acquired from broadcast TV content (Figure 5), for which no 
information on cameras is available. The cameras, and the 
features are computed by the method described in [9]. The 
process starts with an 8-point mesh and the prediction error 
converges around 100 points (Figure 7). The increase in the 
residual error with respect to “Venus” can be attributed 
primarily to the errors in the camera matrices. 
 

5. CONCLUSION 

 
In this paper, a piecewise planar 3-D reconstruction 
algorithm is proposed. The algorithm starts with an initial 
coarse mesh, and seeks to achieve a favorable point in rate-
distortion curve by refining the mesh by adding vertices to 
the worst planes, determined by the prediction error. The 
experiments indicate that the proposed algorithm can yield 
efficient representations, thus an important step towards 
rate-distortion optimal 3-D reconstruction. However, in 

Figure 2: “Cube”. Upper-left: Reference image. Upper-

Right: Target image. Lower-left: Prediction, 4 points. 
Lower-right: Prediction, 11 points. 

 

Figure 3: Rate-distortion curve for “Cube” 
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applications in which camera and structure is not available 
and should be estimated from the sequence, the algorithm 
might face with some performance issues. 
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Figure 5: “Cliff”. Upper-left: Reference image. Upper-

Right: Target image. Lower-left: Prediction, 8 points. 
Lower-right: Prediction, 100 points. 

Figure 4: “Venus”. Upper-left: Reference image. Upper-

Right: Target image. Lower-left: Prediction, 8 points. 
Lower-right: Prediction, 40 points. 

Figure 7: Rate-distortion curve for “Cliff” 
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Figure 6: Rate-distortion curve for “Venus” 
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