
Vol.:(0123456789)

Multimedia Tools and Applications (2024) 83:20243–20263
https://doi.org/10.1007/s11042-023-16164-5

1 3

Learning visual similarity for image retrieval with global
descriptors and capsule networks

Duygu Durmuş1 · Uğur Güdükbay1 · Özgür Ulusoy1

Received: 26 July 2022 / Revised: 7 May 2023 / Accepted: 3 July 2023 /
Published online: 31 July 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Finding matching images across large and unstructured datasets is vital in many computer
vision applications. With the emergence of deep learning-based solutions, various visual
tasks, such as image retrieval, have been successfully addressed. Learning visual similar-
ity is crucial for image matching and retrieval tasks. Capsule Networks enable learning
richer information that describes the object without losing the essential spatial relation-
ship between the object and its parts. Besides, global descriptors are widely used for rep-
resenting images. We propose a framework that combines the power of global descriptors
and Capsule Networks by benefiting from the information of multiple views of images to
enhance the image retrieval performance. The Spatial Grouping Enhance strategy, which
enhances sub-features parallelly, and self-attention layers, which explore global dependen-
cies within internal representations of images, are utilized to empower the image repre-
sentations. The approach captures resemblances between similar images and differences
between non-similar images using triplet loss and cost-sensitive regularized cross-entropy
loss. The results are superior to the state-of-the-art approaches for the Stanford Online
Products Database with Recall@K of 85.0, 94.4, 97.8, and 99.3, where K is 1, 10, 100, and
1000, respectively.

Keywords Deep learning · Neural networks · Capsule networks · Global descriptors ·
Image retrieval · Triplet loss · Cost-sensitive regularized cross-entropy loss

1 Introduction

Deep convolutional neural networks can be utilized for various tasks such as image classi-
fication, object detection, and image retrieval. An image retrieval system enables browsing
and retrieving images relevant to the given query image from a large dataset of images.
Searching and finding matching images across a large and unstructured image collection is
a common problem in computer vision systems [31]. Image similarity and representation
are significant for image retrieval. Thus, learning visual similarity is crucial, and visual

 * Uğur Güdükbay
 gudukbay@cs.bilkent.edu.tr

1 Department of Computer Engineering, Bilkent University, Bilkent, Ankara 06800, Turkey

http://orcid.org/0000-0001-5356-5943
http://orcid.org/0000-0003-2462-6959
http://orcid.org/0000-0002-6887-3778
http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-023-16164-5&domain=pdf

20244 Multimedia Tools and Applications (2024) 83:20243–20263

1 3

representation becomes critical to image matching and retrieval tasks due to adverse effects
of angle, background clutter, or illumination. The best-performing approaches benefit
from the local invariant features, such as scale-invariant feature transform (SIFT) [29], and
strategies, such as bag-of-words (BoW) [41], and vector of locally aggregated descriptors
(VLAD) [17].

In recent years, convolutional neural networks (CNNs) have become popular with the
outperforming performance in computer vision tasks such as image retrieval [51]. In the
latest works for image retrieval, based on the activations within CNNs, global descrip-
tors generated by sum pooling of convolutions (SPoC) [3], generalized mean pooling
(GeM) [34], attention-aware generalized mean pooling (AGeM) [11], maximum activa-
tion of convolutions (MAC) [47], have been used for computer vision tasks, especially for
visual recognition [7]. Furthermore, several recent works benefit from using the output of
the last fully connected layers as global image descriptors in the case of limited descriptor
dimensionality [29]. Even if global descriptors’ success varies by dataset, global descrip-
tors lead to various image representations by activating different images’ regions.

Hinton et al. [38] introduce an alternative neural network based on capsules and an
algorithm for dynamic routing between capsules that learns to encode valuable informa-
tion about the objects without losing the intrinsic spatial relationship between the parts and
wholes. Unlike max-pooling used in CNNs, capsule networks do not discard information
about the precise position of the parts of objects within the image [38]. It is because pool-
ing operations confuse the information about the instantiation characteristics. The routing-
by-agreement in capsule networks utilizes modules and capsules rather than max-pooling,
while capsules replace scalar outputs in CNNs with vector outputs. Thus, capsule networks
recognize the images invariant to viewpoint since this architecture can inherently learn
higher dimensional pose configuration of the images [24]. Although capsule networks per-
form superior on the MNIST dataset, they do not perform well on complex datasets such as
CIFAR-10. The reason is that the higher dimensionality of CIFAR-10 data requires more
complex encodings of the images, where capsules become insufficient.

Since retrieving images relevant to a given query image from a large dataset of images
is a difficult task, we aim to improve the image retrieval performance of convolutional neu-
ral networks by combining global descriptors and the concept of capsule networks using
the information of multiple views of images to empower capsule networks with various
global descriptors. To the best of our knowledge, this is the first proposed architecture
that replaces primary capsules of capsule networks with multiple global descriptors. The
CNN backbone of pre-trained SE-ResNet50 and specific mechanisms, including the Spatial
Group-wise Enhance (SGE) module and self-attention layer, are included to strengthen the
feature learning from the given input triplets. Instead of using a single network to learn
the classification of individual images, a triplet design is considered to capture the resem-
blances between similar images and differences between non-similar images for given mul-
tiple views of image triplets.

The rest of the paper is organized as follows. Section 2 presents the background relevant
to the proposed framework, including image retrieval, deep learning, convolutional neural
networks, and related work. Section 3 describes the proposed network architecture, includ-
ing the CNN backbone, Capsule, Descriptor, and Concat modules. Section 4 describes the
network training process by utilizing online triplet loss, hard negative mining, and cost-
sensitive regularized cross-entropy loss. Section 5 provides the implementation details,
including the time and memory efficiency, feature extraction process, evaluation metrics,
and the dataset. Section 6 discusses experimental results and provides a comparison to the-
state-of-art methods. Finally, Section 7 concludes and discusses future work.

20245Multimedia Tools and Applications (2024) 83:20243–20263

1 3

2 Related work

Many strategies are applied for image retrieval tasks in recent works, especially with the
emergence of deep convolutional neural networks. Dai et al. [8] propose a method called
batch feature erasing to optimize feature representation for image retrieval datasets that sig-
nificantly improve general image retrieval benchmarks. Kim et al. [22] present an attention-
based ensemble using multiple attention masks so that each learner can learn different parts
of the object with a divergence loss encouraging diversity among learners. Jun et al. [18]
introduce a new framework for image retrieval, called CGD, that utilizes multiple global
descriptors to get an ensemble effect. Our proposed framework differs from [18] with using
the Capsule module, how the Capsule module is concatenated with the Descriptor module,
the summation of Cost-Sensitive Regularized Cross-Entropy Loss and Classification Loss
for network training, and the Concat module architecture. Kayhan et al. [21] propose using
textural properties of objects for content-based image retrieval based on a weighted combi-
nation of color and texture features. Please refer to Kapoor et al. [20] for a recent survey on
content-based image retrieval techniques using deep learning.

Computer vision tasks, including image classification [26] and object detection [35],
benefit from global image descriptors based on deep convolutional neural networks.
Babenko et al. [3] suggest sum pooling of convolutions (SPoC) based on a sum-pooling
aggregation descriptor, which improves the state-of-art retrieval accuracy with the com-
bination of good design choices on standard retrieval datasets. In addition to the SPoC
descriptor, recent works construct competitive visual representations from the activations
of convolutional layers by utilizing maximum activation of convolutions (MAC), regional
maximum activation of convolutions (R-MAC) [47], spatial max-pooling [1], cross-dimen-
sional weighting (CroW) [19], AGeM [11].

Learning visual similarity is crucial for image retrieval, aiming to find similar images in
a large dataset. Current works use loss functions in deep metric learning, such as contras-
tive loss [4, 31] and triplet loss [8, 18]. Furthermore, more advanced losses are designed,
such as N-pair loss [42] and lifted structure loss [43]. Ge et al. [10] propose a novel hierar-
chical triplet loss (HTL) that encourages the model to learn more discriminative features,
leading to faster convergence and better performance. Sun et al. [44] introduce circle loss
on various deep feature learning tasks that achieve superior performance on image retrieval
datasets. Hard sample mining methods, such as distance weighted sampling [22, 48], semi-
hard, and hard negative mining [6, 39], are also crucial for image retrieval performance in
addition to loss functions.

An alternative neural network named capsule network is introduced by Hinton
et al. [38]. Hinton et al. [14] also introduce a new iterative routing procedure between cap-
sule layers using the Expectation-Maximization (EM) algorithm. It allows the output of
each lower-level capsule to be routed to a capsule in the layer above so that active cap-
sules receive a cluster of similar pose votes. They describe a new type of capsule sys-
tem in which each capsule has a logistic unit to represent the presence of an entity and a
4 × 4 pose matrix that could learn to represent the relationship between that entity and the
pose. Since the objects can be described as a set of geometric organized parts, Kosiorek
et al. [25] propose an unsupervised capsule autoencoder (SCAE). It explicitly uses geomet-
ric relationships between parts and, thus, is robust to viewpoint changes. Kinli et al. [24]
propose two different triplet-based designs of capsule network architecture with different
feature extraction methods for clothing retrieval tasks. Ozcan et al. [33] introduce Qua-
ternion Capsule Networks (QCNs). Quaternions can be considered a regularization of the

20246 Multimedia Tools and Applications (2024) 83:20243–20263

1 3

rotation representation for capsules, representing the pose information of capsules and their
transformations, and requires fewer parameters than matrices. Ribeiro et al. [36] describe a
new capsule routing algorithm based on Variational Bayes for learning a mixture of trans-
forming Gaussians. For 3D point cloud construction, canonicalization, and unsupervised
classification, Sun et al. [45] propose a self-supervised capsule architecture that learns an
object-centric representation.

Capsule networks are not as effective as CNNs by themselves for complex datasets.
Thus, as mentioned above, several approaches such as matrix capsules [14], Stacked
Capsule Encoders [25], Quaternion Capsules [33], and Bayesian Routing [36] are com-
bined with capsule network design. Considering this motivation and using multiple global
descriptors as in [18], the idea is to combine this concept with robust global image descrip-
tors to enhance image retrieval performance for complex datasets. Babenko et al. demon-
strate that fine-tuning a pre-trained CNN with domain-specific data can improve retrieval
performance on relevant datasets [2]. Therefore, our proposed framework benefits from a
pre-trained CNN. The aim is to learn spatial relationships between object and object parts
with capsule networks and capture richer visual information with multiple global descrip-
tors. It is trained in an end-to-end manner without the computational cost of the ensemble
technique.

3 Proposed framework

We propose a practical framework for the image retrieval task comprising a pre-trained
CNN backbone and three modules. Each image in the image triplet is fed to this frame-
work. Rather than building and training the CNN backbone from scratch, we prefer a pre-
trained model as a starting point because a complex dataset including multiple views of
images is used, and a pre-trained CNN is useful to accelerate the training process and dis-
tinguish objects due to the prior information related to the objects. The first module is a
revised capsule network, named the Capsule module, used to learn the location and ori-
entation of object parts relative to one another, enabling better recognition of object parts
from various points of view. The second one, the Descriptor module, obtains various image
representations by activating different images’ regions and capturing differential features.
The third module is the Concat module, which concatenates the outputs of the first and
the second modules to obtain richer information about the given input image. The Con-
cat module fine-tunes the CNN backbone with both modules to learn richer image repre-
sentation. Therefore, our aim of learning spatial relationships between object and object
parts with capsule networks and capturing richer visual information with multiple global
descriptors is possible in an end-to-end manner without the computational cost of the
ensemble technique.

3.1 CNN backbone

Although using a single convolutional layer is sufficient for simple datasets such as
MNIST [27], a complex dataset requires more convolution layers to learn better feature
embeddings. Thus, rather than using a single convolutional layer, the CNN backbone is
utilized for obtaining feature embeddings. Rather than building and training the CNN
backbone from scratch, we prefer a pre-trained model as a starting point because a com-
plex dataset, including multiple views of images, is used. A pre-trained CNN is useful to

20247Multimedia Tools and Applications (2024) 83:20243–20263

1 3

accelerate the training process and distinguish objects due to the prior information related
to the objects.

Due to memory restrictions, the proposed framework can benefit from pre-trained CNN
backbones, including two well-known CNN architectures, ResNet [13] and VGG [40].
However, since ResNet provides better results than VGG in our experiments and for the
similar dataset in [18], SE-ResNet-50 is selected after experiments on BN-Inception [16],
ShuffleNet-v2 [30], ResNet-50 [13] and SE-ResNet-50 [15], SE-ResNet-50 is preferred as
a CNN backbone. A strong baseline of ResNet, empowered with SE blocks, is called SE-
ResNet50, and it is used as a CNN backbone as in [18], as shown in Fig. 1. This pre-trained
model is trained on ImageNet data used in the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) [37]. Since this neural network has already learned to classify images
into 1000 object categories, a pre-trained network with learned weights about those object
categories is helpful for the training process of the proposed architecture.

The CNN backbone is composed of four stages. We remove the down-sampling opera-
tion between Stages 3 and 4 as in [8, 18] to obtain richer image representations. After this
elimination, we get a larger feature map of 14×14. First, batch normalization [16] is applied
to the output of the pre-trained CNN backbone. After that, SGE mechanism [28] empow-
ering the feature learning and suppressing the noise, and the self-attention layer relating
multi-level dependencies across the image regions [50] are performed, respectively.

3.2 Capsule module

In the proposed framework, the Capsule module is a revised capsule network and capsule
layers are the same as the original design [38], except for the primary capsules. Rather than
using primary capsules, a concatenation of reshaped global descriptors is fed to the class
capsule layer. The purpose of primary capsules is to capture the sub-features into capsules.
However, since there are 10,517 product classes in the training dataset (after the validation
dataset is removed from the training dataset), it is difficult to capture all features in each
product class. It requires many capsules that lead to high computational costs. Therefore,
instead of using a primary capsule layer, the branches of the Descriptor module are l2 nor-
malized, concatenated, and reshaped to be fed into the class capsule layer, as the Descriptor
module significantly includes various pooling functions that highlight image information.
The pooling function improves the model’s performance for image retrieval tasks [3, 34,
47].

There are twelve 16-dimensional capsules in class capsule layers. The number of classes
is 10,517 for the training dataset. Therefore, the number of superclass categories is cho-
sen for the number of channels as 12, which can be seen in Fig. 1. Activations and the
latent capsule vectors of the class capsule layer are calculated using dynamic routing with
three iterations. We remove the reconstruction method and designed loss for capsule net-
works [38] in the proposed framework. A self-attention layer follows the class capsule
layer. The output embedding is fed into the Concat module.

3.3 Descriptor module

Based on the experiments for twelve configurations of SPoC [3], GeM [34], and MaC [47]
in [18] for a similar dataset, the most effective configuration of global descriptors is the
combination of SPoC and GeM. Therefore, using the same motivation, the Descriptor
module consists of three branches, each with one global descriptor.

20248 Multimedia Tools and Applications (2024) 83:20243–20263

1 3

Fig. 1 The proposed model architecture. Norm, FC, BN, and K correspond to l2-normalization, fully con-
nected layer, batch normalization, and the number of classes, respectively. In the Descriptor module, SPoC
stands for Sum Pooling of Convolutions, GeM stands for Generalized Mean pooling, and GeMmp stands
for GeM with Multiple Parameters. The anchor, positive, and negative images belong to Stanford Online
Products [43]

20249Multimedia Tools and Applications (2024) 83:20243–20263

1 3

The output of the CNN backbone is sent to the branches of the Descriptor module. Each
branch applies its descriptor to the given output. Following that branch’s descriptor, each
branch performs a fully connected layer followed by l2 normalization. The Descriptor mod-
ule is the concatenation of output feature vectors of three branches. This combined descrip-
tor representing multiple branches is fed to the Concat module for training the proposed
architecture with selected loss functions.

Generalized-Mean (GeM) Descriptor: GeM pooling layer consistently outperforms the
conventional max and average pooling [34]. It provides the generalization of max and
average pooling with a pooling parameter. Due to its nature of generalization, it per-
forms better than conventional pooling methods. It reduces the dimensionality and per-
forms normalization to obtain an image descriptor. The output of a convolutional neural
network is a 3D tensor X with the shape of C × H ×W , where C corresponds to the
number of feature channels, H refers to the height of the feature map, and W refers to the
width of the feature map for a given input image. Xc represents the set of H ×W activa-
tions for feature maps c ∈ {1,… ,C} . The network output contains C such activation sets
or 2D feature maps. In the pooling process, the GeM pooling layer takes X as an input
and generates an output vector P(GeM)(X) . The output vector, GeM descriptor, is com-
puted by the generalized mean of each channel in a given tensor X as follows [18, 34]:

 where oc represents the pooling parameter. It can be a shared parameter used by all
feature maps, or oc can differ for each feature map Xc . In case of a change of pooling
parameter per channel/dimension, it is called GeM with Multiple Parameters (GeMmp).
The pooling parameter, oc , can be fixed or trained. According to [5], oc > 1 results in an
increase in the contrast of the pooled feature map and highlights the salient features of
the feature map. The output feature vector is a C-length long vector representation of an
image and contains a single value for each feature map, the generalized-mean activation.
Sum Pooling of Convolutions (SPoC) Descriptor: It is a variation of the GeM pooling
layer with a slight change in the exponent value, the pooling parameter [3]. It is prone to
consider complete information due to its averaging nature. It also leads to better results
than conventional pooling methods mostly due to the subsequent descriptor whitening.
In this case, setting the pooling parameter, oc , to 1 defines the SPoC descriptor, the gen-
eralization of average pooling, as follows [3, 18]:

3.4 Concat module

The Concat module combines the output feature vector of concatenated descriptors from
the Descriptor module with the output feature vector of the Capsule module. The Concat

(1)

P(GeM)(X) = [P
(GeM)

1
(X1)…P(GeM)

c
(Xc)…P

(GeM)

C
(XC)]

T ,

P(GeM)
c

(Xc) =

(
1

|Xc|
∑

x�Xc

xoc

) 1

oc

,

(2)
P(SPoC)(X) = [P

(SPoC)

1
(X1)…P(SPoC)

c
(Xc)…P

(SPoC)

C
(XC)]

T ,

P(SPoC)
c

(Xc) =
1

|Xc|
∑

x�Xc

x.

20250 Multimedia Tools and Applications (2024) 83:20243–20263

1 3

module is composed of two branches. The output of each branch is fed into two different
loss functions, as shown in Fig. 1. In the first branch, the concatenation of Descriptor and
Capsule modules is followed by a series of batch normalization and fully connected layers
for regularization and dimensionality reduction purposes. In the second branch, the same
concatenation is fed into triplet loss simultaneously to learn similarities and differences
between given image triplets after performing the l2-normalization layer.

The motivation behind using the Concat module is to utilize the valuable information
from multiple descriptor branches of the Descriptor module and the information about the
objects with intrinsic spatial relationships between them and their parts from the Capsule
module. Since the class capsules in the Capsule module modify the Descriptor module for
classification, the concatenation of the Descriptor module and Capsule module enriches the
image representations for both classification and image retrieval purposes.

Combining two modules using a single CNN backbone enables an ensemble effect and
makes the proposed architecture trainable in an end-to-end manner. The concatenation of
feature vectors from different modules results in different properties from each module’s
output, leading to better image representation.

4 Network training

During the training process, the summation of triplet loss and classification loss is utilized.
Using these loss functions helps improve the model’s performance by distinguishing prod-
uct classes, using a classification loss, and learning similarities and differences between
product classes using triplet loss.

4.1 Online triplet loss and hard negative mining

The proposed framework uses triplet loss during training, as an addition to classification
loss. A triplet embedding contains three images: an anchor, a positive, and a negative
image. The anchor image and positive image belong to the same class, while the anchor
image and negative image belong to different classes. The triplet loss is defined over these
triplets as

where xa , xp , and xn stand for the feature embedding for anchor, positive, and negative
images, respectively. Lp corresponds to the Euclidean distance between xa and xp while Ln
corresponds to the Euclidean distance between xa and xn . The margin m is a hyperparam-
eter for the triplet loss.

We minimize the triplet loss defined in (3) so that similar labeled images can be closer
to each other by a margin than dissimilar ones. The triplet loss pushes Lp(xa, xp) to 0 and
Ln(xa, xn) to be greater than Lp(xa, xp) + m . Thus, the distance between an anchor image
and a positive image of the same class is minimized. In contrast, the distance between an
anchor and a negative image of different classes is maximized, as shown in Fig. 2.

To train the proposed network, we need negative examples of violating this tri-
plet condition where negative instances are closer to the anchor than the positive.
Hard-negative mining is used for triplet loss for this purpose. The hard triplets con-
tain negative images that are closer to the anchor image than the positive image, i.e.,
Lp(xa, xp) < Ln(xa, xn) . Hard negatives are used, while all positives are considered

(3)L = max{Lp(xa, xp) − Ln(xa, xn) + m, 0},

20251Multimedia Tools and Applications (2024) 83:20243–20263

1 3

during the training. Online triplet mining is chosen to obtain hard-negative triplets.
Online triplet mining aims to obtain triplets for each batch of inputs. Online triplet
mining is much more efficient than offline triplet loss, which produces triplets at the
beginning of each epoch. Online triplet mining requires computing all feature embed-
dings on the training set and selecting hard or semi-hard triplets.

4.2 Cost‑sensitive regularized cross‑entropy loss

For multi-class classification, it is possible to keep track of different kinds of errors
during the neural network training process. Galdran et al. [9] introduce a cost-sensitive
regularized loss. The penalization of errors avoids overfitting the neural network by
keeping it more generalized. A cost matrix is used to keep track of the penalization of
these errors by encoding them into it.

Based on the experiments, using cost-sensitive loss results in the model being stuck
in local minima, so a cost-sensitive term must be combined with a base loss as a regu-
larizer. As a base loss for classification purposes, the cross-entropy loss is used. A
cost matrix is introduced to modify the cross-entropy loss for cost-sensitive regulari-
zation. If yi is equal to ŷi , there is null cost. However, the cost increases along with
the distance ‖y − ŷ‖ . The cost-sensitive regularized cross-entropy loss is defined as
follows [9]:

where � refers to the hyper-parameter for the cost-sensitive penalty. The mechanism of
label-dependent penalty is provided by encoding these costs to each row of the cost matrix
and computing the L2-based scalar product of ŷ with the row of cost matrix M correspond-
ing to y, which is shown as ⟨M(2)(y, ⋅), ŷ⟩ in (4) [9]. The additional term in the cross-entropy
loss leads to more significant penalties on the predicted label when they are farther away
from a particular image’s ground truth label.

(4)L(CS)(ŷ, y) = L(CE)(ŷ, y) + 𝜆⟨M(2)(y, ⋅), ŷ⟩,M(2)

ij
= ‖i − j‖2

2
,

Fig. 2 The schema demonstrating how the triplet loss works for input anchor, positive and negative images.
The anchor, positive and negative images belong to Stanford Online Products [43]

20252 Multimedia Tools and Applications (2024) 83:20243–20263

1 3

5 Implementation details

We train our proposed network using batches. Each batch contains eight random prod-
uct classes and four image instances from each product class to have balanced batches.
If there is a product class with fewer samples, all existing samples are taken. Thus, we
train our proposed network with a maximum batch size of 32. We use a pre-trained CNN
backbone to accelerate the training process and initialize the weights of the other parts
of the neural network using Kaiming initialization [12] for the training process. The
output of the pre-trained CNN backbone results in a 14× 14 sized feature map because
the downsampling is discarded between Stages 3 and 4 to preserve more information
in the last feature map. The pooling parameter for both GeM and GeMmp is 3. The
pooling parameter was empirically determined because [5] indicates that the pooling
parameter higher than 1 increases the contrast of the pooled feature map and empha-
sizes salient features of the feature map. Since the pooling parameter per channel is the
same for GeM, the multiple parameter value is 1 for GeM and channel number (2048)
for GeMmp. Each of the global descriptors corresponds to 2048-D compact image rep-
resentations. We compute Recall@K for the validation dataset for early stopping and
utilize the batch hard-negative triplet loss [8] with a margin of 0.3. We utilize early
stopping in our experiments. The reason is that the proposed framework includes many
layers, which might lead to overfitting. The aim is to extract more features to obtain
richer information with these layers and avoid overfitting the training data, so early
stopping is used. We use Adam optimizer [23], and the learning rate is adapted using a
multi-step decay scheduler. Table 1 shows the settings used in the training process. We
perform our experiments on a machine with 64 GB RAM and NVIDIA Tesla P100-PCIe
GPU with 16 GB memory.

Since the number of samples for each class is limited in the current dataset, and
image augmentation improves the training dataset in terms of diversity and quantity,
we employ image transformation techniques as a preprocessing step. Due to memory
restrictions, we resize all the images to 300 × 447 because most images are rectangular;
the width is approximately 1.5 times of height. Then, we randomly rotate, randomly
horizontally flip, randomly crop, and normalize each image for the training dataset so
that the training process does not memorize. For testing, each image is center-cropped.
After cropping for testing and training, the input image resolution becomes 284 × 423.

Table 1 Settings used in
the training of the proposed
architecture

The values of the parameters are empirically determined

Parameter Value

Number of epochs 75
Number of epochs for early stopping 7
Learning rate for Adam optimizer 1e-4
Weight decay for Adam optimizer 5e-4
Number of capsules for the Capsule module 12
Number of routes for the Capsule module 24 × 4 × 4
Number of input channels for the Capsule module 16
Number of output channels for the Capsule module 16
Number of groups for the SGE module 64

20253Multimedia Tools and Applications (2024) 83:20243–20263

1 3

5.1 Feature extraction

In the evaluation stage of the proposed framework, we utilize only a specific part of the
architecture for feature extraction. Since the computational load of the Capsule module is
high and the objective is to obtain descriptive and distinctive features of the images, we
preferred to use the Descriptor module for feature extraction and the Capsule module for
network training.

The feature extraction uses a SE-ResNet50 backbone, and the down-sampling between
Stages 3 and 4 is discarded, followed by batch normalization, the SGE module, and a self-
attention layer. Unlike the training process, only the Descriptor module is used for the fea-
ture extraction process, which generates the feature vector, as shown in Fig. 3. The aim is
to obtain descriptive image representations for the whole dataset and given query image.

5.2 Evaluation metric

During the experiments, for evaluating the proposed framework, the Recall@K metric is
chosen as the evaluation metric since it is commonly preferred for the image retrieval pro-
cess. It makes it possible to compare the proposed framework’s performance with exist-
ing state-of-the-art methods for image retrieval. For testing purposes, we obtain the feature
embeddings from the Descriptor module as shown in Fig. 3. Using only the Descriptor
module, the routing-by-agreement algorithm in the Capsule module leads to high computa-
tional cost, and the Descriptor module is the back-end of all modules.

We compute the feature embedding for each test image in the test set to calculate
Recall@K. Then, we compute top-K similar images from the test set for each test image.

Fig. 3 The feature extraction process. Norm, FC, BN, and K correspond to l
2
-normalization, fully con-

nected layer, batch normalization, and the number of classes, respectively. The anchor, positive and nega-
tive images belong to Stanford Online Products [43]

20254 Multimedia Tools and Applications (2024) 83:20243–20263

1 3

For each test image, the total number of predictions is incremented by one. Suppose the
query image label is the same as the label of at least one image out of K retrieved images.
In that case, it is a correct prediction, and the number of accurate predictions is also incre-
mented by one. In other words, Recall@K is the number of accurate predictions among
top-K divided by the total number of predictions. To compare the proposed framework
with state-of-the-art techniques, we compute Recall@K, where K is 1, 10, 100, and 1000.
Some successful image retrieval examples are shown in Figs. 4 and 5.

5.3 Dataset

The proposed framework is evaluated on the image retrieval dataset of Stanford Online Prod-
ucts [43]. We use the same training and test split with [1, 35] for a fair comparison. Consider-
ing the advantage of a large number and variety of classes in this dataset, it is one of the larg-
est publicly available datasets [43]. Therefore, we choose Stanford Online Products to evaluate
the proposed framework for image retrieval. The dataset comprises 12 superclasses: bicycle,
cabinet, chair, coffee maker, fan, kettle, lamp, mug, sofa, stapler, table, and toaster. Each
superclass is divided into product classes. There are 120,053 images in total and 22,634 prod-
uct classes of product photos from online e-commerce websites. The 11,318 product classes

Fig. 4 Successful image retrieval examples using Stanford Online Products [43]

Fig. 5 Another successful image retrieval example

20255Multimedia Tools and Applications (2024) 83:20243–20263

1 3

with 59,551 images are utilized for training, while the remaining 11,316 product classes with
60,502 images are used for evaluation. For validation purposes, since no sample data is pro-
vided for an unbiased assessment, 7% of the training data is held back for tuning the proposed
architecture’s hyperparameters. During the image retrieval process, the purpose is to have the
same product class for both given query images and retrieved images rather than having the
same superclass.

5.4 Computational cost and memory efficiency

Rather than using an ensemble method, training and evaluation of our proposed framework
in an end-to-end manner are beneficial regarding time and memory. The reason is that in an
ensemble method, the number of learners for ensembling should equal the number of GPUs
for individual training and evaluation. Due to the end-to-end manner of the proposed network
and the usage of a shared CNN backbone, our method requires one GPU, which is also advan-
tageous due to limited memory usage.

Regarding the computational cost and memory efficiency of the modules of our proposed
model, the CNN Backbone contains a pre-trained SE-ResNet50 since a complex dataset
requires more convolution layers to learn better feature embeddings. However, it results in a
high computational cost and memory usage. Due to its structure, the Capsule Module has a
high computational cost and memory requirement. Using capsules aims to capture the sub-
features into capsules and benefit from essential details describing images without losing the
crucial spatial relationship between objects and their parts. However, since there are 10,517
product classes in the training dataset (after the validation dataset is removed from the train-
ing dataset), it is difficult to capture all features in each product class. Even with the selected
number of capsules, it leads to high computational costs. The Descriptor Module has a reason-
able computational cost and memory usage compared to the other modules, due to the three
branches applying a descriptor to the given output, followed by a fully connected layer and an
l2 normalization. The model training takes about ten hours for the Stanford Online Products
Dataset, while the inference takes approximately four hours.

In terms of architectural types mentioned in the Experiments section, Architecture B leads
to a higher computational cost and memory usage than Architecture A due to the extra mod-
ule named Concat Module, which concatenates Descriptor and Capsule Modules. However,
it has the advantage of providing richer information than Architecture A. Due to the usage of
primary capsules in Architecture C, the computational cost and memory usage is the high-
est among all architectures. We aim to classify with respect to product classes, a significant
number, i.e., 10,517. The primary capsules try to capture all the features in each product class.
However, it is difficult to detect these features for that many classes with a limited number of
capsules due to the high computational cost. Thus, Architecture D, which concatenates Cap-
sule and Descriptor Modules with a Concat Module, similar to Architecture B and removes
the primary capsules used in Architecture C, is acceptable compared to the other mentioned
architectures in terms of computational cost, memory usage, and Recall@K.

20256 Multimedia Tools and Applications (2024) 83:20243–20263

1 3

6 Experimental results

6.1 Effect of combination of global descriptors

The proposed framework contains a Descriptor module that combines global descriptors
to have descriptive image representations for input images. We conduct experiments with
different configurations for the Descriptor module to assess the performance of the dataset.
Based on the motivation in [18], since the best results are obtained with SPoC, GeM, and
GeMmp descriptors, their combinations are experimented with in the proposed framework.
The individual descriptors of SPoC, GeM, and GeMmp with 1024 embedding dimensions
are combined in different configurations. Table 2 shows the performance of various combi-
nations of selected global descriptors on Stanford Online Products. It demonstrates that the
combination of SPoC, GeM, and GeMmp outperforms dual configurations with a signifi-
cant performance boost. Since each global descriptor highlights different features, combin-
ing global descriptors enables a better representative embedding.

6.2 Effect of combination of modules

The proposed framework comprises two modules before concatenating them in the Concat
module: the Capsule and Descriptor modules.

Although capsule networks perform superior on the MNIST dataset, they do not per-
form well on complex datasets such as CIFAR- 10. The reason is that the higher dimen-
sionality of CIFAR-10 data needs more complex encodings of the images, where capsules
become insufficient. Therefore, the Capsule module is evaluated together with the Descrip-
tor module and experimented with using different combinations.

We do experiments on these modules by combining them in two different ways. In
architecture type A (cf. Fig. 6), we train the Capsule module with classification loss and
the Descriptor module with triplet loss. In the standard capsule networks, the output of
class capsules is used to classify the given images. In architecture type B (cf. Fig. 7), we
concatenate the Capsule module’s output with the output of the Descriptor module using
the Concat module. Then, we train the Concat module output with classification and tri-
plet losses, similar to the proposed architecture in Fig. 1. Architecture type B works better
than architecture type A because architecture type B maintains each module’s properties
for classification and triplet losses, leading to richer information (cf. Table 3).

This experiment indicates the importance of the concatenation of modules. Since it
is important to preserve the properties of each module, the Concat module enables us to

Table 2 Recall@K for four different global descriptor combination configurations on Stanford Online Prod-
ucts for evaluating the effect of combining different global descriptors

Each global descriptor is an output feature vector of each branch in the Descriptor module before concat-
enating it with the Capsule module in the Concat module

Configuration Recall@1 Recall@10 Recall@100 Recall@1000

SPoC, GeMmp 84.2 93.9 97.5 99.2
GeM, GeMmp 84.5 94.0 97.6 99.3
SPoC, GeM 84.8 94.3 97.8 99.3
SPoC, GeM, GeMmp 85.0 94.4 97.8 99.3

20257Multimedia Tools and Applications (2024) 83:20243–20263

1 3

maintain them through the concatenation process. Rather than training each module to
train different losses, the concatenation of the modules is utilized to maintain the diversity
obtained from the two modules. Therefore, the result of this experimentation shows the
effectiveness of using the Concat module.

6.3 Effect of replacing primary capsules with global descriptors

The building blocks of the proposed network are the Capsule and Descriptor modules. In
the original capsule networks, the primary capsule output is fed into the class capsules to
label the images. We aim to classify according to many product classes, i.e., 10,517. The
primary capsules try to capture all the features in each product class without losing the
spatial relationship between object and object parts. It is difficult to detect these features
for that many classes with a limited number of capsules due to the high computational
cost. Therefore, in architecture type D, instead of using a primary capsule layer with a lim-
ited number of capsules, the multiple branches of the Descriptor module are concatenated
and reshaped to be fed into the class capsule layer to obtain a better image representation
similar to the proposed architecture in Fig. 1. Figure 9 depicts the architecture type D.
In architecture type C, as shown in Fig. 8, the CNN backbone output is given to primary

Fig. 6 Architecture type A, which does not concatenate Capsule and Descriptor modules. The Capsule
module output is fed into classification loss, and the Descriptor module output is fed into triplet loss. The
anchor, positive and negative images belong to Stanford Online Products [43]

Fig. 7 Architecture type B, which concatenates the Capsule and Descriptor modules with the Concat mod-
ule, and the output of the Concat module is fed into both classification and triplet loss. The anchor, positive
and negative images belong to Stanford Online Products [43]

Table 3 Recall@K for two architecture types A and B on Stanford Online Products for evaluating the effect
of the combination of modules

Figs. 6 and 7 depict Architecture types A and B, respectively

Model Recall@1 Recall@10 Recall@100 Recall@1000

Architecture type A 81.9 92.3 96.8 99.0
Architecture type B 85.0 94.4 97.8 99.3

20258 Multimedia Tools and Applications (2024) 83:20243–20263

1 3

capsules with a limited number of capsules, so the Descriptor module is not involved in the
Capsule module. We concatenate two modules at the Concat module. Architecture type D
works better than architecture type C (cf. Table 4). It is because architecture type D obtains
richer information by combining various descriptors. However, architecture type C cannot
preserve the spatial relationships between that many objects and their parts while capturing
necessary information about product images with a limited number of capsules.

6.4 Comparison with state‑of‑the‑art methods

We compare the proposed framework’s performance with state-of-the-art techniques on
Stanford Online Products. Table 5 compares the Recall@K metric with previous methods

Fig. 8 Architecture type C, the CNN backbone output is given to the primary capsules, followed by class
capsules. Thus, the Capsule module does not include the Descriptor module. The Concat module is not
shown since it is similar in both architectures C and D. The anchor, positive and negative images belong to
Stanford Online Products [43]

20259Multimedia Tools and Applications (2024) 83:20243–20263

1 3

Fig. 9 The schema of architecture type D. Instead of using primary capsules, multiple branches of the
Descriptor module are concatenated and fed into the class capsules. Thus, the output of the CNN backbone
is not directly used as an input to the Capsule module. Again, the Concat module is not shown since it is
similar in both architectures C and D. The anchor, positive and negative images belong to Stanford Online
Products [43]

Table 4 Recall@K for two architecture types C and D on Stanford Online Products for evaluating the effect
of replacing descriptors with primary capsules

Figs. 8 and 9 depict Architecture types C and D, respectively

Model Recall@1 Recall@10 Recall@100 Recall@1000

Architecture type C 82.1 92.7 97.0 99.0
Architecture type D 85.0 94.4 97.8 99.3

20260 Multimedia Tools and Applications (2024) 83:20243–20263

1 3

such as LiftedStruct [43], N-Pairs [42], HDC [49], Margin [48], A-BIER [32], HTL [10],
ABE-8 [22], BDB [8], and CGD [18] for Stanford Online Products.

Table 5 shows that our proposed framework (cf. Fig. 1) generates promising results for
Stanford Online Products. As CNN backbone, HTL [10] uses BN-Inception [32] while
Margin [48], BDB [8], and CGD [18] use ResNet50 [13]. A-BIER [32], ABE-8 [22],
HDC [49], N-Pairs [42], and LiftedStruct [43] use GoogleNet [46]. BDB [8] utilizes an
input size of 256 for testing, while the other frameworks use an input size of 224.

7 Conclusion

We proposed a framework to enhance the performance of image retrieval tasks. We build
three modules on a CNN backbone, i.e., pre-trained SE-ResNet50: Descriptor, Capsule,
and Concat modules. The Descriptor module contains three branches, each utilizing a dif-
ferent global descriptor. Since each global descriptor highlights the images’ specific prop-
erties, it is possible to obtain richer information from each image. The Capsule module
contains revised capsule networks that replace primary capsules with the concatenation
of global descriptors from the descriptor. It provides essential details describing images
without losing the crucial spatial relationship between objects and their parts. Thus, each
image’s valuable information that relates the object to its parts is preserved. Combining
these modules using the Concat module during the training process enables an ensemble
effect in an end-to-end manner. The summation of triplet and cost-sensitive regularized
cross-entropy losses makes the proposed framework perform better since the loss consid-
ers both the similarities and differences between anchor, positive and negative images, and
classification. The feature embeddings are empowered using the grouping strategy, the
SGE module, to enhance sub-features parallelly and self-attention layers to explore global
dependencies within internal representations of images. The Recall@K results for Stanford
Online Products demonstrate superior performance compared to the state-of-the-art models
with Recall@K of 85.0, 94.4, 97.8, and 99.3, where K is 1, 10, 100, and 1000, respectively.

Considering the limitations caused by the proposed model’s demanding computational
costs, the proposed framework’s performance can be enhanced by considering the follow-
ing improvements. First, various combinations of global descriptors can be experimented

Table 5 Performance comparison using Recall@K with previous state-of-the-art approaches on Stanford
Online Products [43]

Model Recall@1 Recall@10 Recall@100 Recall@1000

LiftedStruct [43] 62.1 79.8 91.3 97.4
N-Pairs [42] 67.7 83.8 93.0 97.8
HDC [49] 69.5 84.4 92.8 97.7
Margin [48] 72.7 86.2 93.8 98.0
A-BIER [32] 74.2 86.9 94.0 97.8
HTL [10] 74.8 88.3 94.8 98.4
ABE-8 [22] 76.3 88.4 94.8 98.2
BDB [8] 83.0 93.3 97.3 99.2
CGD [18] 84.2 93.9 97.4 99.2
Proposed Framework 85.0 94.4 97.8 99.3

20261Multimedia Tools and Applications (2024) 83:20243–20263

1 3

with for better results. Even though a single global descriptor may be inefficient for image
retrieval, combining global descriptors would result in efficient image representations.
We prefer a specific combination of global descriptors (SPoC, GeM, and GeMmp) in the
Descriptor Module. Various combinations of global descriptors can be experimented with
for better results. Second, since the capsules are insufficient to describe complex encodings
of the images with limited capsules, several architectural changes can be considered on
primary and class capsules to describe the image representations and classes better. Thus,
it might be possible to use capsule networks directly for complex and large datasets with
many classes. Finally, the proposed architecture can experiment with more complex data-
sets to check how expressive the model is on image retrieval tasks. Based on the experi-
ments, the features of the proposed architecture can be arranged.

Data Availability Data will be provided to each reader on demand. Readers can request via email.

Declarations

Conflicts of interest There is no conflict of interest.

References

 1. Azizpour H, Razavian AS, Sullivan J, Maki A, Carlsson S (2015) From generic to specific deep rep-
resentations for visual recognition. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops. CVPRW ’15, pp. 36–45

 2. Babenko A, Slesarev A, Chigorin A, Lempitsky V (2014) Neural codes for image retrieval. In: Fleet D,
Pajdla T, Schiele B, Tuytelaars T (eds) Computer Vision - ECCV 2014. Springer, Cham, pp 584–599

 3. Babenko A, Lempitsky V (2015) Aggregating local deep features for image retrieval. In: Proceedings
of the IEEE International Conference on Computer Vision. ICCV ’15, pp. 1269–1277

 4. Bell S, Bala K (2015) Learning visual similarity for product design with convolutional neural net-
works. ACM Trans Graph 34(4):10. Article no. 98,

 5. Berman M, Jégou H, Vedaldi A, Kokkinos I, Douze M (2019) Multi- Grain: a unified image embed-
ding for classes and instances. CoRR abs/1902.05509

 6. Bucher M, Herbin S, Jurie F (2016) Hard negative mining for metric learning based zero-shot classifi-
cation. CoRR abs/1608.07441. 1608.07441

 7. Chatfield K, Simonyan K, Vedaldi A, Zisserman A (2014) Return of the devil in the details: Delving
deep into convolutional nets. In: Proceedings of the British Machine Vision Conference. BMVC ’14.
BMVA Press, Durham, UK

 8. Dai Z, Chen M, Gu X, Zhu S, Tan P (2019) Batch dropblock network for person re-identification and
beyond. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. ICCV ’19.
Seoul, South Korea, pp. 3690–3700

 9. Galdran A, Dolz J, Chakor H, Lombaert H, Ayed IB (2020) Cost-sensitive regularization for diabetic
retinopathy grading from eye fundus images. In: A. L. Martel et al. (ed.) Proceedings of the 23rd Inter-
national Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI ’20,
Part IV. Lecture Notes in Computer Science, vol. 12265. Springer, Lima, Peru, pp. 665–674

 10. Ge W, Huang W, Dong D, Scott MR (2018) Deep metric learning with hierarchical triplet loss. In: Fer-
rari V, Hebert M, Sminchisescu C, Weiss Y (eds) Computer Vision – ECCV 2018. Springer, Cham, pp
272–288

 11. Gu Y, Li C, Xie J (2018) Attention-aware generalized mean pooling for image retrieval. CoRR
abs/1811.00202

 12. He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: Surpassing human-level performance
on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision.
ICCV ’15, pp. 1026–1034

 13. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. CVPR ’16, pp. 770–778

20262 Multimedia Tools and Applications (2024) 83:20243–20263

1 3

 14. Hinton GE, Sabour S, Frosst N (2018) Matrix capsules with EM routing. In: Proceedings of the
International Conference on Learning Representations. ICLR ’18

 15. Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. CVPR ’18, pp. 7132–7141

 16. Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Con-
ference on Machine Learning. Proceedings of Machine Learning Research, vol. 37. PMLR, Lille,
France, pp. 448–456

 17. Jégou H, Douze M, Schmid C, Pérez P (2010) Aggregating local descriptors into a compact image
representation. In: Proceedings of the 23rd IEEE Conference on Computer Vision and Pattern Rec-
ognition. CVPR ’10. IEEE Computer Society, San Francisco, USA, pp. 3304–3311

 18. Jun H, Ko B, Kim Y, Kim I, Kim J (2020) Combination of multiple global descriptors for image
retrieval. arXiv: 1903. 10663

 19. Kalantidis Y, Mellina C, Osindero S (2016) Cross-dimensional weighting for aggregated deep con-
volutional features. In: Hua G, Jégou H (eds) Computer Vision – ECCV 2016 Workshops. Springer,
Cham, pp 685–701

 20. Kapoor R, Sharma D, Gulati T (2021) State of the art content based image retrieval techniques
using deep learning: a survey 80(29561–29583)

 21. Kayhan N, Fekri-Ershad S (2021) Content based image retrieval based on weighted fusion of tex-
ture and color features derived from modified local binary patterns and local neighborhood differ-
ence patterns. Multimed Tools Appl 80(21–23):32763–32790

 22. Kim W, Goyal B, Chawla K, Lee J, Kwon K (2018) Attention-based ensemble for deep metric
learning. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y (eds) Computer Vision – ECCV 2018.
Springer, Cham, pp 760–777

 23. Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. In: Bengio, Y., LeCun, Y.
(eds.) Proceedings of the 3rd International Conference on Learning Representations. ICLR ’15, San
Diego, CA, USA

 24. Kinli F, Ozcan B, Kirac F (2019) Fashion image retrieval with capsule networks. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision Workshops. ICCVW ’19

 25. Kosiorek A, Sabour S, Teh YW, Hinton GE (2019) Stacked capsule autoencoders. In: Wallach
H, Larochelle H, Beygelzimer A, d’ Alché- Buc F, Fox E, Garnett R (eds.) Advances in Neu-
ral Information Processing Systems, vol. 33. Curran Associates, Inc., Red Hook, NY, USA, pp.
15512–15522

 26. Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neu-
ral networks. Commun ACM 60(6):84–90

 27. LeCun Y, Cortes C, Burges C (2010) MNIST Handwritten Digit Database. ATT Labs [Online] 2 .
Available at http:// yann. lecun. com/ exdb/ mnist

 28. Li X, Hu X, Yang J (2019) Spatial group-wise enhance: Improving semantic feature learning in
convolutional networks. CoRR abs/1905.09646. arXiv: 1905. 09646

 29. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vision
60(2):91–110

 30. Ma N, Zhang X, Zheng H-T, Sun J (2018) Shufflenet v2: Practical guidelines for efficient cnn
architecture design. In: Proceedings of the European Conference on Computer Vision (ECCV), pp.
116–131

 31. Melekhov I, Kannala J, Rahtu E (2016) Siamese network features for image matching. In: Proceed-
ings of the 23rd International Conference on Pattern Recognition. ICPR ’16, pp. 378–383

 32. Opitz M, Waltner G, Possegger H, Bischof H (2017) BIER - Boosting Independent Embeddings
Robustly. In: Proceedings of the IEEE International Conference on Computer Vision. ICCV ’17,
pp. 5199–5208

 33. Özcan B, Kinli F, Kiraç F (2020) Quaternion capsule networks. CoRR abs/2007.04389. 2007.04389
 34. Radenovic F, Tolias G, Chum O (2019) Fine-tuning CNN image retrieval with no human annota-

tion. IEEE Trans Pattern Anal Mach Intell 41(7):1655–1668
 35. Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: Unified, real-time object

detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
CVPR ’16, pp. 779–788

 36. Ribeiro F, Leontidis G, Kollias S (2020) Capsule routing via variational bayes. Proceedings of the
AAAI Conference on Artificial Intelligence 34:3749–3756

 37. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A,
Bernstein M, Berg AC, Fei-Fei L (2015) ImageNet Large Scale Visual Recognition Challenge. Int J
Comput Vision 115(3):211–252

http://arxiv.org/abs/1903.10663
http://yann.lecun.com/exdb/%20mnist
http://arxiv.org/abs/1905.09646

20263Multimedia Tools and Applications (2024) 83:20243–20263

1 3

 38. Sabour S, Frosst N, Hinton GE (2017) Dynamic routing between capsules. In: Guyon I, Luxburg UV,
Bengio S, Wallach H, Fergus R, Vishwanathan S, Garnett R (eds.) Advances in Neural Information
Processing Systems. NIPS ’17, vol. 30. Curran Associates, Inc., Red Hook, NY, USA, pp. 3856–3866

 39. Schroff F, Kalenichenko D, Philbin J (2015) FaceNet: a unified embedding for face recognition and
clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
CVPR ’15, pp. 815–823

 40. Simonyan K, Zisserman A (2015) Very deep convolutional networks for largescale image recognition.
In: Bengio Y, LeCun Y (eds.) Proceedings of the 3rd International Conference on Learning Represen-
tations. ICLR ’15, San Diego, CA, USA

 41. Sivic J, Zisserman A (2003) Video Google: A text retrieval approach to object matching in videos. In:
Proceedings of the Ninth IEEE International Conference on Computer Vision. ICCV ’03, vol. 2. IEEE
Computer Society, Nice, France, p. 1470

 42. Sohn K (2016) Improved deep metric learning with multi-class n-pair loss objective. In: Lee D, Sugiy-
ama M, Luxburg U, Guyon I, Garnett R (eds) Advances in Neural Information Processing Systems, vol
29. Curran Associates Inc. Red Hook, NY, USA, pp 1857–1865

 43. Song HO, Xiang Y, Jegelka S, Savarese S (2016) Deep metric learning via lifted structured feature
embedding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
CVPR ’16, pp. 4004–4012

 44. Sun Y, Cheng C, Zhang Y, Zhang C, Zheng L, Wang Z, Wei Y (2020) Circle loss: A unified perspec-
tive of pair similarity optimization. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. CVPR ’20, pp. 6397–6406

 45. Sun W, Tagliasacchi A, Deng B, Sabour S, Yazdani S, Hinton GE, Yi KM (2021) Canonical capsules:
Unsupervised capsules in canonical pose. In: Advances in Neural Information Processing Systems.
NeurIPS ’21, vol.34

 46. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A
(2015) Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. CVPR ’15, pp. 1–9

 47. Tolias G, Sicre R, Jégou H (2016) Particular object retrieval with integral max-pooling of CNN activa-
tions. In: Proceedings of the International Conference on Learning Representations. ICL ’16, San Juan,
Puerto Rico, pp. 1–12

 48. Wu C, Manmatha R, Smola AJ, Krähenbühl P (2017) Sampling matters in deep embedding learning.
In: Proceedings of the IEEE International Conference on Computer Vision. ICCV ’17, pp. 2859–2867

 49. Yuan Y, Yang K, Zhang C (2017) Hard-aware deeply cascaded embedding. In: Proceedings of the
IEEE International Conference on Computer Vision. ICCV ’17, pp. 814–823

 50. Zhang H, Goodfellow IJ, Metaxas DN, Odena A (2019) Self-Attention Generative Adversarial Net-
works. In: Chaudhuri K, Salakhutdinov R (eds.) Proceedings of the 36th International Conference on
Machine Learning. ICML ’19, vol. 97. PMLR, Long Beach, CA, USA, pp. 7354–7363

 51. Zheng L, Yang Y, Tian Q (2016) SIFT Meets CNN: A decade survey of instance retrieval. IEEE Trans
Pattern Anal Mach Intell 40(5):1224–1244

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

	Learning visual similarity for image retrieval with global descriptors and capsule networks
	Abstract
	1 Introduction
	2 Related work
	3 Proposed framework
	3.1 CNN backbone
	3.2 Capsule module
	3.3 Descriptor module
	3.4 Concat module

	4 Network training
	4.1 Online triplet loss and hard negative mining
	4.2 Cost-sensitive regularized cross-entropy loss

	5 Implementation details
	5.1 Feature extraction
	5.2 Evaluation metric
	5.3 Dataset
	5.4 Computational cost and memory efficiency

	6 Experimental results
	6.1 Effect of combination of global descriptors
	6.2 Effect of combination of modules
	6.3 Effect of replacing primary capsules with global descriptors
	6.4 Comparison with state-of-the-art methods

	7 Conclusion
	References

