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Abstract
Finding matching images across large and unstructured datasets is vital in many computer 
vision applications. With the emergence of deep learning-based solutions, various visual 
tasks, such as image retrieval, have been successfully addressed. Learning visual similar-
ity is crucial for image matching and retrieval tasks. Capsule Networks enable learning 
richer information that describes the object without losing the essential spatial relation-
ship between the object and its parts. Besides, global descriptors are widely used for rep-
resenting images. We propose a framework that combines the power of global descriptors 
and Capsule Networks by benefiting from the information of multiple views of images to 
enhance the image retrieval performance. The Spatial Grouping Enhance strategy, which 
enhances sub-features parallelly, and self-attention layers, which explore global dependen-
cies within internal representations of images, are utilized to empower the image repre-
sentations. The approach captures resemblances between similar images and differences 
between non-similar images using triplet loss and cost-sensitive regularized cross-entropy 
loss. The results are superior to the state-of-the-art approaches for the Stanford Online 
Products Database with Recall@K of 85.0, 94.4, 97.8, and 99.3, where K is 1, 10, 100, and 
1000, respectively.

Keywords Deep learning · Neural networks · Capsule networks · Global descriptors · 
Image retrieval · Triplet loss · Cost-sensitive regularized cross-entropy loss

1 Introduction

Deep convolutional neural networks can be utilized for various tasks such as image classi-
fication, object detection, and image retrieval. An image retrieval system enables browsing 
and retrieving images relevant to the given query image from a large dataset of images. 
Searching and finding matching images across a large and unstructured image collection is 
a common problem in computer vision systems [31]. Image similarity and representation 
are significant for image retrieval. Thus, learning visual similarity is crucial, and visual 
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representation becomes critical to image matching and retrieval tasks due to adverse effects 
of angle, background clutter, or illumination. The best-performing approaches benefit 
from the local invariant features, such as scale-invariant feature transform (SIFT) [29], and 
strategies, such as bag-of-words (BoW) [41], and vector of locally aggregated descriptors 
(VLAD) [17].

In recent years, convolutional neural networks (CNNs) have become popular with the 
outperforming performance in computer vision tasks such as image retrieval  [51]. In the 
latest works for image retrieval, based on the activations within CNNs, global descrip-
tors generated by sum pooling of convolutions (SPoC)  [3], generalized mean pooling 
(GeM)  [34], attention-aware generalized mean pooling (AGeM)  [11], maximum activa-
tion of convolutions (MAC) [47], have been used for computer vision tasks, especially for 
visual recognition [7]. Furthermore, several recent works benefit from using the output of 
the last fully connected layers as global image descriptors in the case of limited descriptor 
dimensionality [29]. Even if global descriptors’ success varies by dataset, global descrip-
tors lead to various image representations by activating different images’ regions.

Hinton et  al.  [38] introduce an alternative neural network based on capsules and an 
algorithm for dynamic routing between capsules that learns to encode valuable informa-
tion about the objects without losing the intrinsic spatial relationship between the parts and 
wholes. Unlike max-pooling used in CNNs, capsule networks do not discard information 
about the precise position of the parts of objects within the image [38]. It is because pool-
ing operations confuse the information about the instantiation characteristics. The routing-
by-agreement in capsule networks utilizes modules and capsules rather than max-pooling, 
while capsules replace scalar outputs in CNNs with vector outputs. Thus, capsule networks 
recognize the images invariant to viewpoint since this architecture can inherently learn 
higher dimensional pose configuration of the images [24]. Although capsule networks per-
form superior on the MNIST dataset, they do not perform well on complex datasets such as 
CIFAR-10. The reason is that the higher dimensionality of CIFAR-10 data requires more 
complex encodings of the images, where capsules become insufficient.

Since retrieving images relevant to a given query image from a large dataset of images 
is a difficult task, we aim to improve the image retrieval performance of convolutional neu-
ral networks by combining global descriptors and the concept of capsule networks using 
the information of multiple views of images to empower capsule networks with various 
global descriptors. To the best of our knowledge, this is the first proposed architecture 
that replaces primary capsules of capsule networks with multiple global descriptors. The 
CNN backbone of pre-trained SE-ResNet50 and specific mechanisms, including the Spatial 
Group-wise Enhance (SGE) module and self-attention layer, are included to strengthen the 
feature learning from the given input triplets. Instead of using a single network to learn 
the classification of individual images, a triplet design is considered to capture the resem-
blances between similar images and differences between non-similar images for given mul-
tiple views of image triplets.

The rest of the paper is organized as follows. Section 2 presents the background relevant 
to the proposed framework, including image retrieval, deep learning, convolutional neural 
networks, and related work. Section 3 describes the proposed network architecture, includ-
ing the CNN backbone, Capsule, Descriptor, and Concat modules. Section 4 describes the 
network training process by utilizing online triplet loss, hard negative mining, and cost-
sensitive regularized cross-entropy loss. Section  5 provides the implementation details, 
including the time and memory efficiency, feature extraction process, evaluation metrics, 
and the dataset. Section 6 discusses experimental results and provides a comparison to the-
state-of-art methods. Finally, Section 7 concludes and discusses future work.
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2  Related work

Many strategies are applied for image retrieval tasks in recent works, especially with the 
emergence of deep convolutional neural networks. Dai et al. [8] propose a method called 
batch feature erasing to optimize feature representation for image retrieval datasets that sig-
nificantly improve general image retrieval benchmarks. Kim et al. [22] present an attention-
based ensemble using multiple attention masks so that each learner can learn different parts 
of the object with a divergence loss encouraging diversity among learners. Jun et al. [18] 
introduce a new framework for image retrieval, called CGD, that utilizes multiple global 
descriptors to get an ensemble effect. Our proposed framework differs from [18] with using 
the Capsule module, how the Capsule module is concatenated with the Descriptor module, 
the summation of Cost-Sensitive Regularized Cross-Entropy Loss and Classification Loss 
for network training, and the Concat module architecture. Kayhan et al. [21] propose using 
textural properties of objects for content-based image retrieval based on a weighted combi-
nation of color and texture features. Please refer to Kapoor et al. [20] for a recent survey on 
content-based image retrieval techniques using deep learning.

Computer vision tasks, including image classification  [26] and object detection  [35], 
benefit from global image descriptors based on deep convolutional neural networks. 
Babenko et al.  [3] suggest sum pooling of convolutions (SPoC) based on a sum-pooling 
aggregation descriptor, which improves the state-of-art retrieval accuracy with the com-
bination of good design choices on standard retrieval datasets. In addition to the SPoC 
descriptor, recent works construct competitive visual representations from the activations 
of convolutional layers by utilizing maximum activation of convolutions (MAC), regional 
maximum activation of convolutions (R-MAC) [47], spatial max-pooling [1], cross-dimen-
sional weighting (CroW) [19], AGeM [11].

Learning visual similarity is crucial for image retrieval, aiming to find similar images in 
a large dataset. Current works use loss functions in deep metric learning, such as contras-
tive loss [4, 31] and triplet loss [8, 18]. Furthermore, more advanced losses are designed, 
such as N-pair loss [42] and lifted structure loss [43]. Ge et al. [10] propose a novel hierar-
chical triplet loss (HTL) that encourages the model to learn more discriminative features, 
leading to faster convergence and better performance. Sun et al. [44] introduce circle loss 
on various deep feature learning tasks that achieve superior performance on image retrieval 
datasets. Hard sample mining methods, such as distance weighted sampling [22, 48], semi-
hard, and hard negative mining [6, 39], are also crucial for image retrieval performance in 
addition to loss functions.

An alternative neural network named capsule network is introduced by Hinton 
et al. [38]. Hinton et al. [14] also introduce a new iterative routing procedure between cap-
sule layers using the Expectation-Maximization (EM) algorithm. It allows the output of 
each lower-level capsule to be routed to a capsule in the layer above so that active cap-
sules receive a cluster of similar pose votes. They describe a new type of capsule sys-
tem in which each capsule has a logistic unit to represent the presence of an entity and a 
4 × 4 pose matrix that could learn to represent the relationship between that entity and the 
pose. Since the objects can be described as a set of geometric organized parts, Kosiorek 
et al. [25] propose an unsupervised capsule autoencoder (SCAE). It explicitly uses geomet-
ric relationships between parts and, thus, is robust to viewpoint changes. Kinli et al. [24] 
propose two different triplet-based designs of capsule network architecture with different 
feature extraction methods for clothing retrieval tasks. Ozcan et  al.  [33] introduce Qua-
ternion Capsule Networks (QCNs). Quaternions can be considered a regularization of the 
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rotation representation for capsules, representing the pose information of capsules and their 
transformations, and requires fewer parameters than matrices. Ribeiro et al. [36] describe a 
new capsule routing algorithm based on Variational Bayes for learning a mixture of trans-
forming Gaussians. For 3D point cloud construction, canonicalization, and unsupervised 
classification, Sun et al. [45] propose a self-supervised capsule architecture that learns an 
object-centric representation.

Capsule networks are not as effective as CNNs by themselves for complex datasets. 
Thus, as mentioned above, several approaches such as matrix capsules  [14], Stacked 
Capsule Encoders  [25], Quaternion Capsules  [33], and Bayesian Routing  [36] are com-
bined with capsule network design. Considering this motivation and using multiple global 
descriptors as in [18], the idea is to combine this concept with robust global image descrip-
tors to enhance image retrieval performance for complex datasets. Babenko et al. demon-
strate that fine-tuning a pre-trained CNN with domain-specific data can improve retrieval 
performance on relevant datasets [2]. Therefore, our proposed framework benefits from a 
pre-trained CNN. The aim is to learn spatial relationships between object and object parts 
with capsule networks and capture richer visual information with multiple global descrip-
tors. It is trained in an end-to-end manner without the computational cost of the ensemble 
technique.

3  Proposed framework

We propose a practical framework for the image retrieval task comprising a pre-trained 
CNN backbone and three modules. Each image in the image triplet is fed to this frame-
work. Rather than building and training the CNN backbone from scratch, we prefer a pre-
trained model as a starting point because a complex dataset including multiple views of 
images is used, and a pre-trained CNN is useful to accelerate the training process and dis-
tinguish objects due to the prior information related to the objects. The first module is a 
revised capsule network, named the Capsule module, used to learn the location and ori-
entation of object parts relative to one another, enabling better recognition of object parts 
from various points of view. The second one, the Descriptor module, obtains various image 
representations by activating different images’ regions and capturing differential features. 
The third module is the Concat module, which concatenates the outputs of the first and 
the second modules to obtain richer information about the given input image. The Con-
cat module fine-tunes the CNN backbone with both modules to learn richer image repre-
sentation. Therefore, our aim of learning spatial relationships between object and object 
parts with capsule networks and capturing richer visual information with multiple global 
descriptors is possible in an end-to-end manner without the computational cost of the 
ensemble technique.

3.1  CNN backbone

Although using a single convolutional layer is sufficient for simple datasets such as 
MNIST  [27], a complex dataset requires more convolution layers to learn better feature 
embeddings. Thus, rather than using a single convolutional layer, the CNN backbone is 
utilized for obtaining feature embeddings. Rather than building and training the CNN 
backbone from scratch, we prefer a pre-trained model as a starting point because a com-
plex dataset, including multiple views of images, is used. A pre-trained CNN is useful to 
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accelerate the training process and distinguish objects due to the prior information related 
to the objects.

Due to memory restrictions, the proposed framework can benefit from pre-trained CNN 
backbones, including two well-known CNN architectures, ResNet  [13] and VGG  [40]. 
However, since ResNet provides better results than VGG in our experiments and for the 
similar dataset in [18], SE-ResNet-50 is selected after experiments on BN-Inception [16], 
ShuffleNet-v2 [30], ResNet-50 [13] and SE-ResNet-50 [15], SE-ResNet-50 is preferred as 
a CNN backbone. A strong baseline of ResNet, empowered with SE blocks, is called SE-
ResNet50, and it is used as a CNN backbone as in [18], as shown in Fig. 1. This pre-trained 
model is trained on ImageNet data used in the ImageNet Large-Scale Visual Recognition 
Challenge (ILSVRC) [37]. Since this neural network has already learned to classify images 
into 1000 object categories, a pre-trained network with learned weights about those object 
categories is helpful for the training process of the proposed architecture.

The CNN backbone is composed of four stages. We remove the down-sampling opera-
tion between Stages 3 and 4 as in [8, 18] to obtain richer image representations. After this 
elimination, we get a larger feature map of 14×14. First, batch normalization [16] is applied 
to the output of the pre-trained CNN backbone. After that, SGE mechanism [28] empow-
ering the feature learning and suppressing the noise, and the self-attention layer relating 
multi-level dependencies across the image regions [50] are performed, respectively.

3.2  Capsule module

In the proposed framework, the Capsule module is a revised capsule network and capsule 
layers are the same as the original design [38], except for the primary capsules. Rather than 
using primary capsules, a concatenation of reshaped global descriptors is fed to the class 
capsule layer. The purpose of primary capsules is to capture the sub-features into capsules. 
However, since there are 10,517 product classes in the training dataset (after the validation 
dataset is removed from the training dataset), it is difficult to capture all features in each 
product class. It requires many capsules that lead to high computational costs. Therefore, 
instead of using a primary capsule layer, the branches of the Descriptor module are  l2 nor-
malized, concatenated, and reshaped to be fed into the class capsule layer, as the Descriptor 
module significantly includes various pooling functions that highlight image information. 
The pooling function improves the model’s performance for image retrieval tasks [3, 34, 
47].

There are twelve 16-dimensional capsules in class capsule layers. The number of classes 
is 10,517 for the training dataset. Therefore, the number of superclass categories is cho-
sen for the number of channels as 12, which can be seen in Fig.  1. Activations and the 
latent capsule vectors of the class capsule layer are calculated using dynamic routing with 
three iterations. We remove the reconstruction method and designed loss for capsule net-
works  [38] in the proposed framework. A self-attention layer follows the class capsule 
layer. The output embedding is fed into the Concat module.

3.3  Descriptor module

Based on the experiments for twelve configurations of SPoC [3], GeM [34], and MaC [47] 
in  [18] for a similar dataset, the most effective configuration of global descriptors is the 
combination of SPoC and GeM. Therefore, using the same motivation, the Descriptor 
module consists of three branches, each with one global descriptor.
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Fig. 1  The proposed model architecture. Norm, FC, BN, and K correspond to  l2-normalization, fully con-
nected layer, batch normalization, and the number of classes, respectively. In the Descriptor module, SPoC 
stands for Sum Pooling of Convolutions, GeM stands for Generalized Mean pooling, and GeMmp stands 
for GeM with Multiple Parameters. The anchor, positive, and negative images belong to Stanford Online 
Products [43]
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The output of the CNN backbone is sent to the branches of the Descriptor module. Each 
branch applies its descriptor to the given output. Following that branch’s descriptor, each 
branch performs a fully connected layer followed by  l2 normalization. The Descriptor mod-
ule is the concatenation of output feature vectors of three branches. This combined descrip-
tor representing multiple branches is fed to the Concat module for training the proposed 
architecture with selected loss functions.

Generalized-Mean (GeM) Descriptor: GeM pooling layer consistently outperforms the 
conventional max and average pooling [34]. It provides the generalization of max and 
average pooling with a pooling parameter. Due to its nature of generalization, it per-
forms better than conventional pooling methods. It reduces the dimensionality and per-
forms normalization to obtain an image descriptor. The output of a convolutional neural 
network is a 3D tensor X with the shape of C × H ×W , where C corresponds to the 
number of feature channels, H refers to the height of the feature map, and W refers to the 
width of the feature map for a given input image. Xc represents the set of H ×W activa-
tions for feature maps c ∈ {1,… ,C} . The network output contains C such activation sets 
or 2D feature maps. In the pooling process, the GeM pooling layer takes X as an input 
and generates an output vector P(GeM)(X) . The output vector, GeM descriptor, is com-
puted by the generalized mean of each channel in a given tensor X as follows [18, 34]: 

 where oc represents the pooling parameter. It can be a shared parameter used by all 
feature maps, or oc can differ for each feature map Xc . In case of a change of pooling 
parameter per channel/dimension, it is called GeM with Multiple Parameters (GeMmp). 
The pooling parameter, oc , can be fixed or trained. According to [5], oc > 1 results in an 
increase in the contrast of the pooled feature map and highlights the salient features of 
the feature map. The output feature vector is a C-length long vector representation of an 
image and contains a single value for each feature map, the generalized-mean activation.
Sum Pooling of Convolutions (SPoC) Descriptor: It is a variation of the GeM pooling 
layer with a slight change in the exponent value, the pooling parameter [3]. It is prone to 
consider complete information due to its averaging nature. It also leads to better results 
than conventional pooling methods mostly due to the subsequent descriptor whitening. 
In this case, setting the pooling parameter, oc , to 1 defines the SPoC descriptor, the gen-
eralization of average pooling, as follows [3, 18]: 

3.4  Concat module

The Concat module combines the output feature vector of concatenated descriptors from 
the Descriptor module with the output feature vector of the Capsule module. The Concat 
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module is composed of two branches. The output of each branch is fed into two different 
loss functions, as shown in Fig. 1. In the first branch, the concatenation of Descriptor and 
Capsule modules is followed by a series of batch normalization and fully connected layers 
for regularization and dimensionality reduction purposes. In the second branch, the same 
concatenation is fed into triplet loss simultaneously to learn similarities and differences 
between given image triplets after performing the l2-normalization layer.

The motivation behind using the Concat module is to utilize the valuable information 
from multiple descriptor branches of the Descriptor module and the information about the 
objects with intrinsic spatial relationships between them and their parts from the Capsule 
module. Since the class capsules in the Capsule module modify the Descriptor module for 
classification, the concatenation of the Descriptor module and Capsule module enriches the 
image representations for both classification and image retrieval purposes.

Combining two modules using a single CNN backbone enables an ensemble effect and 
makes the proposed architecture trainable in an end-to-end manner. The concatenation of 
feature vectors from different modules results in different properties from each module’s 
output, leading to better image representation.

4  Network training

During the training process, the summation of triplet loss and classification loss is utilized. 
Using these loss functions helps improve the model’s performance by distinguishing prod-
uct classes, using a classification loss, and learning similarities and differences between 
product classes using triplet loss.

4.1  Online triplet loss and hard negative mining

The proposed framework uses triplet loss during training, as an addition to classification 
loss. A triplet embedding contains three images: an anchor, a positive, and a negative 
image. The anchor image and positive image belong to the same class, while the anchor 
image and negative image belong to different classes. The triplet loss is defined over these 
triplets as

where xa , xp , and xn stand for the feature embedding for anchor, positive, and negative 
images, respectively. Lp corresponds to the Euclidean distance between xa and xp while Ln 
corresponds to the Euclidean distance between xa and xn . The margin m is a hyperparam-
eter for the triplet loss.

We minimize the triplet loss defined in (3) so that similar labeled images can be closer 
to each other by a margin than dissimilar ones. The triplet loss pushes Lp(xa, xp) to 0 and 
Ln(xa, xn) to be greater than Lp(xa, xp) + m . Thus, the distance between an anchor image 
and a positive image of the same class is minimized. In contrast, the distance between an 
anchor and a negative image of different classes is maximized, as shown in Fig. 2.

To train the proposed network, we need negative examples of violating this tri-
plet condition where negative instances are closer to the anchor than the positive. 
Hard-negative mining is used for triplet loss for this purpose. The hard triplets con-
tain negative images that are closer to the anchor image than the positive image, i.e., 
Lp(xa, xp) < Ln(xa, xn) . Hard negatives are used, while all positives are considered 

(3)L = max{Lp(xa, xp) − Ln(xa, xn) + m, 0},
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during the training. Online triplet mining is chosen to obtain hard-negative triplets. 
Online triplet mining aims to obtain triplets for each batch of inputs. Online triplet 
mining is much more efficient than offline triplet loss, which produces triplets at the 
beginning of each epoch. Online triplet mining requires computing all feature embed-
dings on the training set and selecting hard or semi-hard triplets.

4.2  Cost‑sensitive regularized cross‑entropy loss

For multi-class classification, it is possible to keep track of different kinds of errors 
during the neural network training process. Galdran et al. [9] introduce a cost-sensitive 
regularized loss. The penalization of errors avoids overfitting the neural network by 
keeping it more generalized. A cost matrix is used to keep track of the penalization of 
these errors by encoding them into it.

Based on the experiments, using cost-sensitive loss results in the model being stuck 
in local minima, so a cost-sensitive term must be combined with a base loss as a regu-
larizer. As a base loss for classification purposes, the cross-entropy loss is used. A 
cost matrix is introduced to modify the cross-entropy loss for cost-sensitive regulari-
zation. If yi is equal to ŷi , there is null cost. However, the cost increases along with 
the distance ‖y − ŷ‖ . The cost-sensitive regularized cross-entropy loss is defined as 
follows [9]:

where � refers to the hyper-parameter for the cost-sensitive penalty. The mechanism of 
label-dependent penalty is provided by encoding these costs to each row of the cost matrix 
and computing the  L2-based scalar product of ŷ with the row of cost matrix M correspond-
ing to y, which is shown as ⟨M(2)(y, ⋅), ŷ⟩ in (4) [9]. The additional term in the cross-entropy 
loss leads to more significant penalties on the predicted label when they are farther away 
from a particular image’s ground truth label.

(4)L(CS)(ŷ, y) = L(CE)(ŷ, y) + 𝜆⟨M(2)(y, ⋅), ŷ⟩,M(2)

ij
= ‖i − j‖2

2
,

Fig. 2  The schema demonstrating how the triplet loss works for input anchor, positive and negative images. 
The anchor, positive and negative images belong to Stanford Online Products [43]
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5  Implementation details

We train our proposed network using batches. Each batch contains eight random prod-
uct classes and four image instances from each product class to have balanced batches. 
If there is a product class with fewer samples, all existing samples are taken. Thus, we 
train our proposed network with a maximum batch size of 32. We use a pre-trained CNN 
backbone to accelerate the training process and initialize the weights of the other parts 
of the neural network using Kaiming initialization  [12] for the training process. The 
output of the pre-trained CNN backbone results in a 14× 14 sized feature map because 
the downsampling is discarded between Stages 3 and 4 to preserve more information 
in the last feature map. The pooling parameter for both GeM and GeMmp is 3. The 
pooling parameter was empirically determined because  [5] indicates that the pooling 
parameter higher than 1 increases the contrast of the pooled feature map and empha-
sizes salient features of the feature map. Since the pooling parameter per channel is the 
same for GeM, the multiple parameter value is 1 for GeM and channel number (2048) 
for GeMmp. Each of the global descriptors corresponds to 2048-D compact image rep-
resentations. We compute Recall@K for the validation dataset for early stopping and 
utilize the batch hard-negative triplet loss  [8] with a margin of 0.3. We utilize early 
stopping in our experiments. The reason is that the proposed framework includes many 
layers, which might lead to overfitting. The aim is to extract more features to obtain 
richer information with these layers and avoid overfitting the training data, so early 
stopping is used. We use Adam optimizer [23], and the learning rate is adapted using a 
multi-step decay scheduler. Table 1 shows the settings used in the training process. We 
perform our experiments on a machine with 64 GB RAM and NVIDIA Tesla P100-PCIe 
GPU with 16 GB memory.

Since the number of samples for each class is limited in the current dataset, and 
image augmentation improves the training dataset in terms of diversity and quantity, 
we employ image transformation techniques as a preprocessing step. Due to memory 
restrictions, we resize all the images to 300 × 447 because most images are rectangular; 
the width is approximately 1.5 times of height. Then, we randomly rotate, randomly 
horizontally flip, randomly crop, and normalize each image for the training dataset so 
that the training process does not memorize. For testing, each image is center-cropped. 
After cropping for testing and training, the input image resolution becomes 284 × 423.

Table 1  Settings used in 
the training of the proposed 
architecture

The values of the parameters are empirically determined

Parameter Value

Number of epochs 75
Number of epochs for early stopping 7
Learning rate for Adam optimizer 1e-4
Weight decay for Adam optimizer 5e-4
Number of capsules for the Capsule module 12
Number of routes for the Capsule module 24 × 4 × 4
Number of input channels for the Capsule module 16
Number of output channels for the Capsule module 16
Number of groups for the SGE module 64
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5.1  Feature extraction

In the evaluation stage of the proposed framework, we utilize only a specific part of the 
architecture for feature extraction. Since the computational load of the Capsule module is 
high and the objective is to obtain descriptive and distinctive features of the images, we 
preferred to use the Descriptor module for feature extraction and the Capsule module for 
network training.

The feature extraction uses a SE-ResNet50 backbone, and the down-sampling between 
Stages 3 and 4 is discarded, followed by batch normalization, the SGE module, and a self-
attention layer. Unlike the training process, only the Descriptor module is used for the fea-
ture extraction process, which generates the feature vector, as shown in Fig. 3. The aim is 
to obtain descriptive image representations for the whole dataset and given query image.

5.2  Evaluation metric

During the experiments, for evaluating the proposed framework, the Recall@K metric is 
chosen as the evaluation metric since it is commonly preferred for the image retrieval pro-
cess. It makes it possible to compare the proposed framework’s performance with exist-
ing state-of-the-art methods for image retrieval. For testing purposes, we obtain the feature 
embeddings from the Descriptor module as shown in Fig.  3. Using only the Descriptor 
module, the routing-by-agreement algorithm in the Capsule module leads to high computa-
tional cost, and the Descriptor module is the back-end of all modules.

We compute the feature embedding for each test image in the test set to calculate 
Recall@K. Then, we compute top-K similar images from the test set for each test image. 

Fig. 3  The feature extraction process. Norm, FC, BN, and K correspond to l
2
-normalization, fully con-

nected layer, batch normalization, and the number of classes, respectively. The anchor, positive and nega-
tive images belong to Stanford Online Products [43]



20254 Multimedia Tools and Applications (2024) 83:20243–20263

1 3

For each test image, the total number of predictions is incremented by one. Suppose the 
query image label is the same as the label of at least one image out of K retrieved images. 
In that case, it is a correct prediction, and the number of accurate predictions is also incre-
mented by one. In other words, Recall@K is the number of accurate predictions among 
top-K divided by the total number of predictions. To compare the proposed framework 
with state-of-the-art techniques, we compute Recall@K, where K is 1, 10, 100, and 1000. 
Some successful image retrieval examples are shown in Figs. 4 and 5.

5.3  Dataset

The proposed framework is evaluated on the image retrieval dataset of Stanford Online Prod-
ucts [43]. We use the same training and test split with [1, 35] for a fair comparison. Consider-
ing the advantage of a large number and variety of classes in this dataset, it is one of the larg-
est publicly available datasets [43]. Therefore, we choose Stanford Online Products to evaluate 
the proposed framework for image retrieval. The dataset comprises 12 superclasses: bicycle, 
cabinet, chair, coffee maker, fan, kettle, lamp, mug, sofa, stapler, table, and toaster. Each 
superclass is divided into product classes. There are 120,053 images in total and 22,634 prod-
uct classes of product photos from online e-commerce websites. The 11,318 product classes 

Fig. 4  Successful image retrieval examples using Stanford Online Products [43]

Fig. 5  Another successful image retrieval example
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with 59,551 images are utilized for training, while the remaining 11,316 product classes with 
60,502 images are used for evaluation. For validation purposes, since no sample data is pro-
vided for an unbiased assessment, 7% of the training data is held back for tuning the proposed 
architecture’s hyperparameters. During the image retrieval process, the purpose is to have the 
same product class for both given query images and retrieved images rather than having the 
same superclass.

5.4  Computational cost and memory efficiency

Rather than using an ensemble method, training and evaluation of our proposed framework 
in an end-to-end manner are beneficial regarding time and memory. The reason is that in an 
ensemble method, the number of learners for ensembling should equal the number of GPUs 
for individual training and evaluation. Due to the end-to-end manner of the proposed network 
and the usage of a shared CNN backbone, our method requires one GPU, which is also advan-
tageous due to limited memory usage.

Regarding the computational cost and memory efficiency of the modules of our proposed 
model, the CNN Backbone contains a pre-trained SE-ResNet50 since a complex dataset 
requires more convolution layers to learn better feature embeddings. However, it results in a 
high computational cost and memory usage. Due to its structure, the Capsule Module has a 
high computational cost and memory requirement. Using capsules aims to capture the sub-
features into capsules and benefit from essential details describing images without losing the 
crucial spatial relationship between objects and their parts. However, since there are 10,517 
product classes in the training dataset (after the validation dataset is removed from the train-
ing dataset), it is difficult to capture all features in each product class. Even with the selected 
number of capsules, it leads to high computational costs. The Descriptor Module has a reason-
able computational cost and memory usage compared to the other modules, due to the three 
branches applying a descriptor to the given output, followed by a fully connected layer and an 
l2 normalization. The model training takes about ten hours for the Stanford Online Products 
Dataset, while the inference takes approximately four hours.

In terms of architectural types mentioned in the Experiments section, Architecture B leads 
to a higher computational cost and memory usage than Architecture A due to the extra mod-
ule named Concat Module, which concatenates Descriptor and Capsule Modules. However, 
it has the advantage of providing richer information than Architecture A. Due to the usage of 
primary capsules in Architecture C, the computational cost and memory usage is the high-
est among all architectures. We aim to classify with respect to product classes, a significant 
number, i.e., 10,517. The primary capsules try to capture all the features in each product class. 
However, it is difficult to detect these features for that many classes with a limited number of 
capsules due to the high computational cost. Thus, Architecture D, which concatenates Cap-
sule and Descriptor Modules with a Concat Module, similar to Architecture B and removes 
the primary capsules used in Architecture C, is acceptable compared to the other mentioned 
architectures in terms of computational cost, memory usage, and Recall@K.
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6  Experimental results

6.1  Effect of combination of global descriptors

The proposed framework contains a Descriptor module that combines global descriptors 
to have descriptive image representations for input images. We conduct experiments with 
different configurations for the Descriptor module to assess the performance of the dataset. 
Based on the motivation in [18], since the best results are obtained with SPoC, GeM, and 
GeMmp descriptors, their combinations are experimented with in the proposed framework. 
The individual descriptors of SPoC, GeM, and GeMmp with 1024 embedding dimensions 
are combined in different configurations. Table 2 shows the performance of various combi-
nations of selected global descriptors on Stanford Online Products. It demonstrates that the 
combination of SPoC, GeM, and GeMmp outperforms dual configurations with a signifi-
cant performance boost. Since each global descriptor highlights different features, combin-
ing global descriptors enables a better representative embedding.

6.2  Effect of combination of modules

The proposed framework comprises two modules before concatenating them in the Concat 
module: the Capsule and Descriptor modules.

Although capsule networks perform superior on the MNIST dataset, they do not per-
form well on complex datasets such as CIFAR- 10. The reason is that the higher dimen-
sionality of CIFAR-10 data needs more complex encodings of the images, where capsules 
become insufficient. Therefore, the Capsule module is evaluated together with the Descrip-
tor module and experimented with using different combinations.

We do experiments on these modules by combining them in two different ways. In 
architecture type A (cf. Fig. 6), we train the Capsule module with classification loss and 
the Descriptor module with triplet loss. In the standard capsule networks, the output of 
class capsules is used to classify the given images. In architecture type B (cf. Fig. 7), we 
concatenate the Capsule module’s output with the output of the Descriptor module using 
the Concat module. Then, we train the Concat module output with classification and tri-
plet losses, similar to the proposed architecture in Fig. 1. Architecture type B works better 
than architecture type A because architecture type B maintains each module’s properties 
for classification and triplet losses, leading to richer information (cf. Table 3).

This experiment indicates the importance of the concatenation of modules. Since it 
is important to preserve the properties of each module, the Concat module enables us to 

Table 2  Recall@K for four different global descriptor combination configurations on Stanford Online Prod-
ucts for evaluating the effect of combining different global descriptors

Each global descriptor is an output feature vector of each branch in the Descriptor module before concat-
enating it with the Capsule module in the Concat module

Configuration Recall@1 Recall@10 Recall@100 Recall@1000

SPoC, GeMmp 84.2 93.9 97.5 99.2
GeM, GeMmp 84.5 94.0 97.6 99.3
SPoC, GeM 84.8 94.3 97.8 99.3
SPoC, GeM, GeMmp 85.0 94.4 97.8 99.3
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maintain them through the concatenation process. Rather than training each module to 
train different losses, the concatenation of the modules is utilized to maintain the diversity 
obtained from the two modules. Therefore, the result of this experimentation shows the 
effectiveness of using the Concat module.

6.3  Effect of replacing primary capsules with global descriptors

The building blocks of the proposed network are the Capsule and Descriptor modules. In 
the original capsule networks, the primary capsule output is fed into the class capsules to 
label the images. We aim to classify according to many product classes, i.e., 10,517. The 
primary capsules try to capture all the features in each product class without losing the 
spatial relationship between object and object parts. It is difficult to detect these features 
for that many classes with a limited number of capsules due to the high computational 
cost. Therefore, in architecture type D, instead of using a primary capsule layer with a lim-
ited number of capsules, the multiple branches of the Descriptor module are concatenated 
and reshaped to be fed into the class capsule layer to obtain a better image representation 
similar to the proposed architecture in Fig.  1. Figure  9 depicts the architecture type D. 
In architecture type C, as shown in Fig. 8, the CNN backbone output is given to primary 

Fig. 6  Architecture type A, which does not concatenate Capsule and Descriptor modules. The Capsule 
module output is fed into classification loss, and the Descriptor module output is fed into triplet loss. The 
anchor, positive and negative images belong to Stanford Online Products [43]

Fig. 7  Architecture type B, which concatenates the Capsule and Descriptor modules with the Concat mod-
ule, and the output of the Concat module is fed into both classification and triplet loss. The anchor, positive 
and negative images belong to Stanford Online Products [43]

Table 3  Recall@K for two architecture types A and B on Stanford Online Products for evaluating the effect 
of the combination of modules

Figs. 6 and 7 depict Architecture types A and B, respectively

Model Recall@1 Recall@10 Recall@100 Recall@1000

Architecture type A 81.9 92.3 96.8 99.0
Architecture type B 85.0 94.4 97.8 99.3
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capsules with a limited number of capsules, so the Descriptor module is not involved in the 
Capsule module. We concatenate two modules at the Concat module. Architecture type D 
works better than architecture type C (cf. Table 4). It is because architecture type D obtains 
richer information by combining various descriptors. However, architecture type C cannot 
preserve the spatial relationships between that many objects and their parts while capturing 
necessary information about product images with a limited number of capsules.

6.4  Comparison with state‑of‑the‑art methods

We compare the proposed framework’s performance with state-of-the-art techniques on 
Stanford Online Products. Table 5 compares the Recall@K metric with previous methods 

Fig. 8  Architecture type C, the CNN backbone output is given to the primary capsules, followed by class 
capsules. Thus, the Capsule module does not include the Descriptor module. The Concat module is not 
shown since it is similar in both architectures C and D. The anchor, positive and negative images belong to 
Stanford Online Products [43]
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Fig. 9  The schema of architecture type D. Instead of using primary capsules, multiple branches of the 
Descriptor module are concatenated and fed into the class capsules. Thus, the output of the CNN backbone 
is not directly used as an input to the Capsule module. Again, the Concat module is not shown since it is 
similar in both architectures C and D. The anchor, positive and negative images belong to Stanford Online 
Products [43]

Table 4  Recall@K for two architecture types C and D on Stanford Online Products for evaluating the effect 
of replacing descriptors with primary capsules

Figs. 8 and 9 depict Architecture types C and D, respectively

Model Recall@1 Recall@10 Recall@100 Recall@1000

Architecture type C 82.1 92.7 97.0 99.0
Architecture type D 85.0 94.4 97.8 99.3
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such as LiftedStruct [43], N-Pairs [42], HDC [49], Margin [48], A-BIER [32], HTL [10], 
ABE-8 [22], BDB [8], and CGD [18] for Stanford Online Products.

Table 5 shows that our proposed framework (cf. Fig. 1) generates promising results for 
Stanford Online Products. As CNN backbone, HTL  [10] uses BN-Inception  [32] while 
Margin  [48], BDB  [8], and CGD  [18] use ResNet50 [13]. A-BIER  [32], ABE-8  [22], 
HDC  [49], N-Pairs  [42], and LiftedStruct  [43] use GoogleNet  [46]. BDB  [8] utilizes an 
input size of 256 for testing, while the other frameworks use an input size of 224.

7  Conclusion

We proposed a framework to enhance the performance of image retrieval tasks. We build 
three modules on a CNN backbone, i.e., pre-trained SE-ResNet50: Descriptor, Capsule, 
and Concat modules. The Descriptor module contains three branches, each utilizing a dif-
ferent global descriptor. Since each global descriptor highlights the images’ specific prop-
erties, it is possible to obtain richer information from each image. The Capsule module 
contains revised capsule networks that replace primary capsules with the concatenation 
of global descriptors from the descriptor. It provides essential details describing images 
without losing the crucial spatial relationship between objects and their parts. Thus, each 
image’s valuable information that relates the object to its parts is preserved. Combining 
these modules using the Concat module during the training process enables an ensemble 
effect in an end-to-end manner. The summation of triplet and cost-sensitive regularized 
cross-entropy losses makes the proposed framework perform better since the loss consid-
ers both the similarities and differences between anchor, positive and negative images, and 
classification. The feature embeddings are empowered using the grouping strategy, the 
SGE module, to enhance sub-features parallelly and self-attention layers to explore global 
dependencies within internal representations of images. The Recall@K results for Stanford 
Online Products demonstrate superior performance compared to the state-of-the-art models 
with Recall@K of 85.0, 94.4, 97.8, and 99.3, where K is 1, 10, 100, and 1000, respectively.

Considering the limitations caused by the proposed model’s demanding computational 
costs, the proposed framework’s performance can be enhanced by considering the follow-
ing improvements. First, various combinations of global descriptors can be experimented 

Table 5  Performance comparison using Recall@K with previous state-of-the-art approaches on Stanford 
Online Products [43]

Model Recall@1 Recall@10 Recall@100 Recall@1000

LiftedStruct [43] 62.1 79.8 91.3 97.4
N-Pairs [42] 67.7 83.8 93.0 97.8
HDC [49] 69.5 84.4 92.8 97.7
Margin [48] 72.7 86.2 93.8 98.0
A-BIER [32] 74.2 86.9 94.0 97.8
HTL [10] 74.8 88.3 94.8 98.4
ABE-8 [22] 76.3 88.4 94.8 98.2
BDB [8] 83.0 93.3 97.3 99.2
CGD [18] 84.2 93.9 97.4 99.2
Proposed Framework 85.0 94.4 97.8 99.3
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with for better results. Even though a single global descriptor may be inefficient for image 
retrieval, combining global descriptors would result in efficient image representations. 
We prefer a specific combination of global descriptors (SPoC, GeM, and GeMmp) in the 
Descriptor Module. Various combinations of global descriptors can be experimented with 
for better results. Second, since the capsules are insufficient to describe complex encodings 
of the images with limited capsules, several architectural changes can be considered on 
primary and class capsules to describe the image representations and classes better. Thus, 
it might be possible to use capsule networks directly for complex and large datasets with 
many classes. Finally, the proposed architecture can experiment with more complex data-
sets to check how expressive the model is on image retrieval tasks. Based on the experi-
ments, the features of the proposed architecture can be arranged.

Data Availability Data will be provided to each reader on demand. Readers can request via email.
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