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Abstract 
We propose a divide-and-conquer algorithm to tetrahedralize three-dimensional meshes in a boundary-preserving fashion. 
It consists of three stages: Input Partitioning, Surface Closure, and Merge. We first partition the input into several pieces 
to reduce the problem size. We apply 2D Triangulation to close the open boundaries to make new pieces watertight. Each 
piece is then sent to TetGen, a Delaunay-based tetrahedral mesh generator tool that forms the basis for our implementation. 
We finally merge each tetrahedral mesh to calculate the final solution. In addition, we apply post-processing to remove the 
vertices we introduced during the input partitioning stage to preserve the input triangles. The benefit of our approach is that 
it can reduce peak memory usage or increase the speed of the process. It can even tetrahedralize meshes that TetGen cannot 
do due to the peak memory requirement.
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1  Introduction

Tetrahedral meshes are widely used in many areas, includ-
ing bioengineering [1], biomechanics [2, 3], computational 
fluid dynamics [4], computer graphics, and animation, 
especially the simulation of deformable bodies, including 
fracture and incision simulations [5–7], mechanical simu-
lations such as turbomachinery flow [8], medical appli-
cations, such as medical device design [9, 10], medical 
image analysis [11], and soft tissue simulations [12]. Tet-
rahedral meshes are mainly used for the discretization of 
continuous materials and objects for finite element model 
(FEM) simulations [13] because they fit well for complex 
geometry [14].

Constrained tetrahedralization algorithms take a three-
dimensional (3D) surface or triangular mesh and vertices 
as input and tetrahedralize the inside of the input mesh. 
The surface triangles that form the boundary of the input 
mesh are the constraint faces that describe the boundary 
of the generated tetrahedralization [15]. The constrained-
ness property makes these algorithms valuable for various 
applications such as FEM simulations [14] and accelera-
tion structures for raytracing [16]. To speed up the ray-sur-
face intersection calculations in raytracing, an algorithm 
for rendering 3D scenes, the 3D scene can be tetrahedral-
ized constrainedly where input geometry components such 
as faces, line segments, and points are preserved. In the 
Finite Element Method (FEM), a 3D object can be tetrahe-
dralized constrainedly to apply physics experiments such 
as a stress test for a suspension bridge [14]. Such applica-
tions require the discretization of 3D surface meshes by 
tetrahedralization algorithms in a constrained (boundary-
preserving) fashion.

The 3D objects or surface meshes used in ray tracing 
and FEM can have millions of vertices; the constrained 
tetrahedralization algorithms must handle massive objects 
and scenes. However, current constrained tetrahedraliza-
tion algorithms seem to fall short of tetrahedralizing large 
scenes in a constrained fashion when the memory require-
ment exceeds the available memory. In addition, the pre-
sent methods might take a significant amount of time to 
execute.

We propose a divide-and-conquer boundary-preserving 
tetrahedral mesh generation algorithm to reduce execution 
time or decrease memory usage. The algorithm consists of 
Partitioning, Surface Closure, and Merge steps. We divide 
the object into k pieces at the Partitioning stage, where k 
is a parameter given by the user. As a result of that stage, 
we obtain k meshes with open boundaries, which we need 
to close at the Surface Closure stage. During this stage, 
we use the 2D Constrained Triangulation Algorithm as a 
sub-procedure to triangulate the open boundary, and then 

we refine the triangulation to increase the quality. Finally, 
we concatenate all tetrahedral mesh objects at the Merge 
step. At this stage, we also find missing neighbor relations 
between boundary tetrahedra at all pieces.

We implemented two modes for our algorithm, which are 
Parallel Processing and Memory Requirement Reduction. 
The first mode reduces execution time using multi-threading, 
and the second mode reduces memory requirement using a 
single thread by utilizing files to store partial results.

The outcome of the experiments implies that our algo-
rithm can either consume less memory than TetGen or exe-
cute faster than it, depending on the chosen mode. Our algo-
rithm might be applied as an alternative tetrahedral mesh 
generation tool when TetGen cannot process large objects 
due to their vast memory consumption or speed up the pro-
cess. Although we may generate some non-Delaunay tetra-
hedra, we could generate meshes of better or similar quality 
compared to TetGen. In this regard, our divide-and-conquer 
algorithm improves the capabilities of TetGen. Our origi-
nal input division procedures help us tetrahedralize mas-
sive objects that a sequential algorithm cannot do. However, 
our memory-efficient process may be slightly slower than 
TetGen. Figure 1 shows the proposed algorithmic frame-
work and example tetrahedralized meshes generated using 
our implementation. Our reference implementation is avail-
able on the GitHub repository https://​github.​com/​Rgtem​ze/​
Memor​yEffi​cient​TetMe​shGen.

The rest of the paper is organized as follows. Section 2 
discusses related work on triangulation and tetrahedrali-
zation algorithms. Section 3 describes our approach by 
explaining how we divide the input mesh, triangulate the 
open boundary of each part by a surface closure algorithm, 
and merge the sub-problems. Section 4 talks about the two 
modes of our algorithm in detail. Section 5 presents the 
experimental evaluation of the proposed approach in terms 
of execution time, memory usage, and mesh quality. Finally, 
Sect. 6 gives conclusions and future research directions.

2 � Related works

We describe the related studies on sequential CDT, parallel 
Delaunay triangulation algorithms, and input partitioning 
methods.

2.1 � Sequential CDT

Si put forth a constrained Delaunay tetrahedralization (CDT) 
algorithm, called TetGen, which generates high-quality tet-
rahedra [17]. Because TetGen does not apply problem par-
titioning, it may not scale well to large objects due to large 
memory requirements. Our algorithm is a divide-and-con-
quer extension of TetGen. In TetGen, CDT is defined as a 

https://github.com/Rgtemze/MemoryEfficientTetMeshGen
https://github.com/Rgtemze/MemoryEfficientTetMeshGen


869Engineering with Computers (2024) 40:867–883	

1 3

tetrahedralization T, where every face in T that is not part of 
input mesh is locally Delaunay. A face is locally Delaunay 
if it is part of a single tetrahedron or part of two tetrahedra t1 
and t2 , but its circumsphere does not contain any other point 
from t1 and t2 . In addition, every triangle in the input must 
be a part of a tetrahedron in the output tetrahedralization. In 
our implementation, as a consequence of using a divide-and-
conquer algorithm, the new triangles introduced around the 
cut region during the Surface Closure stage may not satisfy 
the locally Delaunay property. We apply refinement during 
the surface closure stage to improve the tetrahedral mesh 
quality around the cut regions. For this reason, we classify 
our algorithm as boundary-preserving tetrahedralization 
rather than CDT.

Hu et al. [18] developed a robust CDT mesh generator 
called TetWild. TetWild can tetrahedralize a wide range 
of objects. It does not make input assumptions and can 
even process non-manifold objects with self-intersections. 
Because our algorithm uses TetGen at the base, the input 
models we can handle are watertight non-self-intersecting 
meshes. TetWild is an implementation of an approximate 
constrained algorithm; it might not preserve the input per-
fectly. Still, it controls the input preservation level with a 
parameter. Moreover, Bridson and Doran developed Quartet 
to convert watertight meshes into a tetrahedral mesh that 
approximates the input mesh [19]. Both TetWild and Quar-
tet are different from TetGen because TetGen can exactly 
constrain the input triangles instead of approximating them. 
DelPSC and MMG3D are also tetrahedral mesh generators 
[20, 21]. We selected TetGen as the basis of our implemen-
tation because it is robust and can preserve input features 
exactly as they are.

Chew proposes a two-dimensional sequential, high-
quality constrained tetrahedralization algorithm [22]. The 
algorithm ensures that the internal angles of the triangles are 

between 30 and 120 degrees and edges are between h and 2 h 
where h is a user-defined value. These properties are guar-
anteed to make sure triangulation contains near-equilateral 
triangles. The algorithm constantly computes triangulation 
and finds a Delaunay circle, a circumcircle of a Delaunay 
triangle, whose radius is greater than h. It then inserts the 
circle’s center as the new point and recomputes the trian-
gulation. TetGen also uses a similar approach by adding a 
circumcenter of the poor-quality tetrahedra to increase the 
mesh quality [17].

2.2 � Parallel Delaunay triangulation

There are notable studies on parallel two-dimensional con-
strained Delaunay Triangulation (CDT) or parallel three-
dimensional (3D) Delaunay triangulation (DT). However, 
we did not encounter parallel three-dimensional CDT or 
boundary-preserving tetrahedralization algorithms.

Chernikov and Chrisochoides’s parallel 2D CDT algo-
rithm uses a domain decomposition method called Medial 
Axis Domain Decomposition (MADD) [23]. After the 
decomposition, each subdomain is triangulated in paral-
lel independently. The number of sub-domains created is 
much higher than the number of processors, and they use 
the Load Balancing library to assign sub-domains to pro-
cessors in the most flexible way possible. In addition, they 
solve a graph partition problem to distribute sub-domains to 
processors so that each processor has a nearly equal amount 
of work. They use the message-passing model as their par-
allelization scheme instead of a shared-memory structure, 
and their implementation is based on Message-Passing-
Interface (MPI) library. The domain decomposition algo-
rithm presented here may work well in the 2D case, but in 
3D, the existence of faces would make the problem more 

Fig. 1   The proposed boundary-
preserving tetrahedralization 
framework and example tetrahe-
dral meshes generated using our 
implementation
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complicated. Hence, we used mesh cutting to decompose 
the domain [24].

Coll and Guerrieri propose a 2D CDT algorithm that is 
parallelized using GPUs. Their algorithm consists of the 
Location, Insertion, Marking, and Flipping stages. The 
Location stage identifies triangles containing an uninserted 
point; the Insertion stage inserts points; the Marking stage 
marks the segments as valid or to be flipped (i.e., to eradicate 
non-Delaunayness or intersection); the Flipping stage flips 
the edges marked so. The algorithm is iterative and contin-
ues to run these four stages as long as edges and points are 
missing in the triangulation. These four stages are run one 
after another; they applied parallelization within each stage. 
In their implementation, the threads coordinate to avoid race 
conditions. For instance, when a thread is about to do a point 
insertion or edge-flip to a triangle, it informs the neighbor 
threads of that operation and who will be their new neigh-
bor. It would be possible to extend this algorithm to a 3D 
algorithm. We adopted a more straightforward approach by 
creating independent parts and processing them individu-
ally. That way, we ensure no race condition, synchronization 
issue, or thread communication, helping to reduce paralleli-
zation overhead [25].

Blandford et al. [26] propose a parallel tetrahedralization 
algorithm that can be extended to an out-of-core algorithm. 
However, it is not a constrained tetrahedralization algorithm. 
They suggest that developing an out-of-core algorithm 
would allow large meshes to be tetrahedralized. Their par-
allel algorithm is based on the sequential incremental inser-
tion algorithm. They use multi-threading and lock mecha-
nisms to insert multiple vertices into the tetrahedral mesh 
simultaneously. Our algorithm differs from theirs because 
we use the divide-and-conquer paradigm to tetrahedralize. 
Their algorithm does not divide the input as in our case but 
works on a single mesh with multiple threads. Chernikov 
and Chrisochoides also generated quality tetrahedral meshes 
using the circumradius-to-shortest-edge ratio as the quality 
measure [27]. Their algorithm leverages multi-core proces-
sors through parallelization. Specifically, they focused on 
parallelizing the Delaunay refinement step to speed up the 
overall process.

Cignoni et al. [28] put forward a divide-and-conquer 
Delaunay triangulation algorithm, DeWall, that can trian-
gulate point cloud data of any dimension. Although it is 
not implemented as a parallel algorithm, it is amenable to a 
parallel implementation. However, it is not a constrained tet-
rahedralization algorithm as it only operates on point cloud 
data. Like TetGen, our focus is on boundary-preserving tri-
angulation, preserving input faces during tetrahedralization.

Our divide-and-conquer algorithm differs from DeWall in 
the non-recursive part. DeWall applies a merge step before 
the recursive step. This early-merge step uses a dividing 
plane and selects the vertices at either side of this plane to 

create an initial tetrahedralization. It chooses these vertices 
so that the generated tetrahedra have the smallest circum-
sphere radius to satisfy the Delaunay criterion. At this early 
merge step, the generated tetrahedra intersect the dividing 
plane. Then, it applies the same procedure recursively for the 
parts on either side of the dividing plane. We do not allocate 
buffer regions; we divide the mesh into parts and process 
them. Specifically, DeWall tetrahedralizes three pieces at 
each recursive step: the DeWall region around the divid-
ing plane, left and right parts. We apply tetrahedralization 
to each part and do not spare a volume in the middle. The 
disadvantage of not reserving a middle region is that we 
cannot guarantee the Delaunay property for the tetrahedra 
around the cutting plane. Our rationale for not adopting 
that approach is not to slow down the process. Further, they 
could do this wall generation as part of a non-constrained tri-
angulation algorithm. However, applying the same to a CDT 
algorithm might cause difficulties because a CDT algorithm 
must preserve the surface faces.

Chen et al. [29] proposed a parallel non-constrained near 
Delaunay triangulation algorithm. They divided the input 
into m blocks containing a nearly equal number of vertices. 
They triangulate each block using a divide-and-conquer 
algorithm. They call the area between these blocks as inter-
face. These interfaces are built incrementally, applying a 
similar algorithm as used in DeWall to create the middle 
region. The middle-region creation is similar to DeWall 
and different from our algorithm because we do not spare 
a central part but divide the input mesh into several pieces 
directly. As discussed by Cignoni et al. [28], such input divi-
sion cannot be readily applied to CDT algorithms because 
they need to preserve input faces.

Marot et al. [30] came up with a parallel 3D Delaunay 
Triangulation algorithm. Their Moore curve-based input 
partitioning allows different threads to work on different sets 
of vertices. They allocated a buffer zone between partitions 
to fix potential conflicts raised by multiple threads. In this 
approach, the boundary recovery stage where they preserve 
the input faces is not parallel. Only the non-constrained part 
of their process is parallel. The Delaunay Tetrahedralization 
part can be multi-processed, but they recover the boundary 
using the sequential pipeline of TetGen. However, in our 
approach, the boundary recovery is parallel, allowing us to 
reduce memory usage.

Hu et al. [31] later developed a faster version of TetWild, 
called fTetWild. It is as robust as the TetWild but at the same 
time significantly faster. They used parallelization structures 
to accelerate their algorithm. Similar to TetWild, input faces 
are not exactly preserved in the resulting tetrahedral mesh 
but are just approximated.

Kohout et  al. [32] explored the parallelization of 
Delaunay triangulation algorithms on shared memory 
architectures. They investigated the effect of different 
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parallelization techniques on performance. However, 
they only focus on non-constrained Delaunay triangula-
tion algorithms.

2.3 � Input partitioning

We shall discuss algorithms that use input partitioning 
techniques to reduce the problem size. Joshi and Ourselind 
developed a constrained tetrahedralization algorithm that 
uses 3D convex decomposition and BSP trees [33]. They 
decompose the whole object into convex sub-polyhedra, 
tetrahedralize each piece and merge the meshes at the end. 
They accelerate the merge process using BSP trees. During 
the construction of the BSP tree, their algorithm introduces 
new vertices on the boundary. They experimented with non-
convex polyhedra that are not very large. The boundary of 
the largest model they experimented with contains 26 ver-
tices, and the number of produced tetrahedra for this model 
is 70. We did not consider such an approach because we 
cannot control the number of convex sub-polyhedra gen-
erated and might subdivide the problem redundantly. One 
problem with redundantly subdividing is that the overhead 
of merging at each step might significantly slow down the 
process. To this end, we divide the object into a user-defined 
number of pieces.

Smolik and Skala suggest a 3D triangulation algorithm 
that divides the input into a 3D Grid [34]. They extended 
their algorithm to be out-of-core so that the memory usage 
is reduced and large scenes can be tetrahedralized. How-
ever, their algorithm is not constrained. They accept a vertex 
cloud as input and embed each vertex to a cell in the 3D grid. 
After that, they triangulate each cell and merge them at the 
end cleverly to complete the algorithm. We could not apply 
that approach as we cannot divide the input surface mesh 
into a regular 3D grid. Triangles might be present in mul-
tiple grid cells, which makes it difficult tetrahedralize each 
cell. Therefore, we separate the object into several pieces 
instead of a grid structure.

Erkoc et al. [35] developed a divide-and-conquer con-
strained (boundary-preserving) tetrahedralization algorithm. 
They recursively divide the object into two at each step and 
call the TetGen as the base case. Unlike our algorithm, they 
do not introduce any parallelization structure. In addition, 
they do not propose any plane selection algorithm and intro-
duce costly repairing and merging steps.

3 � The proposed algorithm

The proposed algorithm is composed of three stages: Input 
Partitioning, Surface Closure, and Merge (cf. Algorithm 1).

3.1 � Input partitioning

The proposed algorithm begins by dividing the input mesh 
into several pieces (see Algorithm 2). We aim to divide 
the input surface mesh into as many evenly-sized pieces 
as possible. To this end, we need to find parallel planes 

that partition the mesh into equal-sized parts. We find such 
planes with the help of Principal Component Analysis 
(PCA). We apply PCA to the vertices of our input mesh 
to calculate the first principal component ( PC1 ). The PC1 
allows us to partition the input mesh into a maximum num-
ber of pieces. The PC1 vector is the normal vector of these 
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parallel planes. We then find a different point in each of 
these planes to define their equations. To achieve that, we 
project the vertices of our mesh onto the PC1 . So, we end 
up with a one-dimensional projections array, and we sort 
it. At this stage, we need an input parameter, the number of 
parts, k. With that value in hand, we create a set of indices

where V is the vertex set of the input and (k − 1) corresponds 
to the number of planes we need to create k pieces. For 
instance, when k = 2 , I will be I = {|V|∕2} , which means 

I = {(i∕k) × |V| | i ∈ {0, 1,… , k − 1}},

we get the index of the median, and by letting the plane 
pass through the median, we can ensure that the division 
is balanced. We know how to find the projected elements 
and back-project them to world coordinates with the indi-
ces. The resulting points, along with the PC1 , will be used 
to construct the planes. Each part will contain an approxi-
mately equal number of vertices and hence an equal number 
of faces. Algorithm 3 shows the pseudo-code of the plane 
selection algorithm.

We need to insert new points into the mesh where the 
planes and mesh intersecting with these planes are known. 
Point insertion is essential because we want all points to be 
planar, simplifying the Surface Closure stage. The inter-
section and point insertion algorithm begins with iterating 
over all of the edges in the mesh. For each edge, we run 
a plane-segment intersection test. The intersection result 
can be a segment, a point, or nothing. We split the edge if 

the intersection is a point and the plane is not too close to 
the edge’s endpoints. We control the closeness to an edge 
using a threshold parameter. We do not insert the point 
if the newly inserted point is close to either of the edges. 
For the intersection tests, we rely on exact predicates of 
the CGAL library. CGAL is reliable in detecting intersec-
tions. We have not come across an issue caused by inter-
section tests. Floating point errors occur when we insert 
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new points. Our method may fail if there are so many cut 
planes that intersect each other. When there are so many 
parallel planes, some may intersect due to floating point 
errors, although this never happened in our experiments. 
If we select an axis with very low variance, the extent of 
that axis is limited, so we cannot fit too many planes in 
there. However, if we find a very high-variance axis, we 
can have more room to store planes, thereby dividing the 
mesh into more pieces. Our aim in applying PCA is to find 
a high-variance axis.

Splitting the edge will introduce a new point between the 
two endpoints of the edge. We set the new point’s location 
as the location of the intersection point. If the intersection 
is a line segment, we do not split it because the line segment 
is on the plane, eliminating the necessity for point inser-
tion. We also skip an edge if the plane almost intersects one 
of its endpoints. Omitting this step would introduce nearly 

Fig. 2   The illustration of intersection and point insertion. The top 
image shows the input mesh before running the algorithm. The bot-
tom image shows the result after point insertion. Newly inserted 
points are shown in red

Fig. 3   The illustration of the 
refinement stage on the Arma-
dillo model. The top-left image 
shows the mesh without refine-
ment (only boundary-preserving 
tetrahedralization is applied). 
We use refinement to the others 
with the density factor 0.1, 
0.2, and 0.4 for the top-right, 
bottom-left, and bottom-right 
images, respectively

Fig. 4   The illustration of the parts after undergoing the surface clo-
sure stage. The hole is filled using triangulation. The resulting trian-
gulation is inserted into both left and right meshes
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Fig. 5   The illustration of 
handling inputs with various 
topological structures during 
input partitioning. First row: the 
simplest case with a genus zero 
object. Second row: a genus 
one object. When we cut it in 
halves, we obtain two nested 
boundary cycles. We apply 
triangulation using the edges 
of both boundaries but only 
keep the triangles between them 
eventually. Third row: similar 
to the previous case, but we put 
another object inside the hole. 
After cut, we have three bound-
ary cycles inter-bedded. Again, 
the triangulation is applied to 
all edges, but only necessary 
ones are kept. Fourth row: the 
combination of previous cases

duplicate points and tiny triangles that might be considered 
a self-intersection without sufficient floating-point preci-
sion. Figure 2 illustrates before and after the insertion of 
new points. After the intersection points are inserted into 
the mesh, we distribute the faces of the mesh into parts, 
ending up with k mesh objects. We remove those vertices 
during the post-processing stage to ensure all input faces are 
present in the output.

3.2 � Surface closure

We apply a hole-filling operation on open boundaries. 
Although the state-of-the-art offers various methods to close 
a surface that nicely follows the curvature of the surface, 
they do not satisfy our needs [36, 37]. We aim to close the 
hole so it is guaranteed to be planar, and filling that bound-
ary reduces to the 2D CDT problem.
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Each part produced in the previous stage has open bound-
aries. We need to fill the holes because TetGen can only 
work on closed meshes. We use 2D Constrained Delaunay 
Triangulation to close the boundaries after finding them. 
The straightforward method of finding each boundary and 
triangulating the space inside might fail when the object has 
a genus of more than zero or a concavity in the input.

To handle all kinds of inputs, we do the following. First, 
we detect all boundaries and store them in an array. Each 
boundary will be a simple polygon, not intersecting one 
another. Then, we sort the array of boundary polygons in 
decreasing order of the polygonal area. We also create an 
array to keep track of potential parent polygons. We iterate 
over the sorted array and check if this polygon is the child of 
any polygon in the parent polygons array. If this is the case, 
we mark this polygon as the child of the parent polygon. 
Otherwise, we insert that polygon into the parent polygons 
array. We run a 2D CDT for each parent polygon where the 
constraint segments are the edges of all child polygons and 
the polygon itself. This process can fill the holes that should 

not be filled. To fix that, we run a breadth-first search on 
the triangulation to eliminate unnecessary triangles using 
the breadth-first search (BFS) implementation in CGAL 
[38]. This BFS implementation is similar to Shewchuck’s 
“triangle-eating virus” algorithm [39]. Algorithm 4 gives 
the pseudo-code of the surface closure algorithm.

After we obtain the triangulation that closes the open 
boundaries, we apply further refinement to increase the 
quality of the triangles. The refinement stage subdivides 
the triangles using a density control factor parameter [38]. 
Increasing the value of this parameter leads to more uni-
form triangles, as illustrated in Fig. 3. However, this pro-
cess also generates many new points and triangles, com-
plicating the object to be tetrahedralized. We then insert 
this triangulation to meshes on both sides of the dividing 
plane, reversing the triangle vertex orders before adding 
them to the second mesh to achieve a consistent geometry. 
This way, we obtain two closed, watertight, and intersec-
tion-free meshes, just as TetGen requires (see Fig. 4).
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Figure 5 illustrates four cases with different topologies 
for the surface closure process. In each row, the leftmost 
image is the input mesh; the middle one is the bottom 
piece of the mesh when cut in half; the last one is after 
triangulating the boundaries. 

Case 1:	� This is the simplest case with a genus zero object.

Case 2:	� This is a genus one object. When we cut it in 
halves, we obtain two nested boundary cycles. We 
triangulate using the edges of both boundaries but 
only keep the triangles between them eventually.

Case 3:	� It is similar to Case 2, but we put another object 
inside the hole. After cutting, we have three 
boundary cycles inter-bedded. Again, we trian-
gulate using all edges, but only necessary ones 
are kept.

Case 4:	� This is the combination of previous cases.

We illustrate the surface closure process for the boundary 
polygons shown in Fig. 6. In this figure, the white regions in 
the image correspond to holes, while the purple areas cor-
respond to our input domain. As a result of the parent finding 
algorithm, we can conclude that there are two-parent poly-
gons here, shown in the black border. We then triangulate 
using all edges of the parent polygon and all the polygons 
inside it. There are three polygons inside the left parent poly-
gon, whereas the parent polygon on the right is alone. We 
aim to form triangles in only purple regions. However, trian-
gulation will also form triangles in the white areas. We run 
a BFS algorithm to eliminate them. Figure 7 illustrates the 
input partitioning and surface closure processes for Bunny 
and Armadillo objects.

3.3 � Merge

We merge several tetrahedral meshes (tetmesh) in the merg-
ing stage and create one final tetmesh. One difficulty with 
the merge step is finding correspondence between tetrahe-
dra around the cut region. Because each part is tetrahedral-
ized independently, the neighboring tetrahedra at different 
parts will not be aware of one another. To find these missing 
neighbor relations, we store the neighborhood information 
during the Surface Closure stage, as we create triangles to 
close the boundary and use it in the merge stage. Figure 8 
shows tetrahedral meshes generated from the merge stage. 
Since we know that TetGen will preserve the triangles, the 
triangles around the cut region will eventually perfectly fit 
after the tetrahedral mesh is created.

We adjust TetGen parameters so that it preserves the 
triangles. We disallow it to insert any new points into the 

Fig. 7   The input partitioning and surface closure stages are illustrated 
on Bunny (top row) and Armadillo objects (bottom row). The first 
column is the input mesh; the second column is the mesh after point 

insertion; the third column is the object’s bottom half; the last column 
is the bottom half after the surface closure algorithm

Fig. 6   The 2D view of example boundary polygons generated after 
surface partitioning
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boundary. Otherwise, corresponding pieces would not 
match during merging. Rarely, TetGen refuses to remove the 
Steiner points it inserted into the boundary leading to a new 

point on the domain. We detect such cases and terminate the 
process immediately, resulting in an unsuccessful operation. 
This situation does not cause a significant problem because it 

Fig. 8   Example tetrahedral 
meshes generated with our 
implementation. Tetrahedral 
mesh with edges and faces 
(left). The cut mesh shows tetra-
hedra inside the model (right)

Fig. 9   Example tetrahedral meshes illustrating the result of the post-
processing step. Post-processing is enabled in the middle image but 
not in the left image. The right image is the result of TetGen. All extra 

vertices on the boundary are removed, and the constrained faces are 
faithful to the input mesh. Our result with post-processing enabled is 
identical to the TetGen’s output, which is the right image
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occurs rarely, and it will be improved in upcoming releases 
of TetGen. Si and Goerigk [40] describe how the Chazelle 
polyhedra, a family of non-convex polyhedra, can be tetra-
hedralized in a boundary-preserving fashion without modi-
fying its exterior boundary, i.e., by only inserting Steiner 
points in the interior of it.

During the merge step, we apply post-processing to 
remove the vertices introduced while partitioning the input. 
We keep track of such vertices and remove them from the 
tetrahedral mesh, which would create a cavity in the tetrahe-
dral mesh. Then, we tetrahedralize the cavity using TetGen. 

We ensure that the input mesh’s original faces stay intact 
thanks to this operation. Figure 9 shows tetrahedral meshes 
with and without the postprocessing stage and the TetGen 
output. The postprocessing stage makes our output tetrahe-
dral mesh identical to the TetGen output by removing extra 
vertices unless the tetrahedralization fails because of the 
failure of the merge step, as discussed in Sect. 3.3.

4 � Modes of the algorithm

Our algorithm has two modes: parallel processing and 
memory requirement reduction. The parallel processing 
mode uses parallelization to speed up the process. The 
memory requirement reduction mode uses single-threaded 
programming and intermediate files to reduce memory 
usage.

4.1 � Parallel processing

Because our framework allows input mesh to be divided 
into several pieces, we can apply multi-threaded processing 
at different places in our implementation. Each piece, after 
division, can be tetrahedralized entirely, independent from 
the other. If we process them simultaneously, no racing 
condition will occur. Hence, we parallelize the for-loop at 
the 8th line of Algorithm 1. The mesh object is an instance 

Table 1   Vertex and face counts of the objects used in the experiments

Nefertiti2 is the high-resolution version of the Nefertiti model

# Vertices # Faces

Spot 2930 5856
Bob 5344 10,688
Blub 7106 14,208
Bunny 72,027 144,046
Pitt Brdg 75,081 150,170
Armadillo 172,971 345,938
Nefertiti 1,009,118 2,018,232
Neptune 2,003,932 4,007,872
Nefertiti2 6,054,698 12,109,392

Table 2   Experiments on 
tetrahedral mesh quality with 
the average slim energy quality 
metric

The first column is the average slim energy for the standalone TetGen execution. Other columns show the 
average slim energy values for the corresponding density control parameter. The smallest value at each row 
is in bold

Model TetGen Density control parameter

0.1 0.2 0.4 0.8 1.6

Spot 6.26 7.26 6.72 6.15 6.23 6.33
Bob 5.99 7.74 6.82 6.41 6.16 6.27
Blub 7.84 8.79 8.25 7.89 7.74 7.46
Pitt Brdg 7.27 7.72 7.36 7.26 7.317 7.14
Armadillo 6.65 6.82 6.76 6.71 6.681 6.61

Table 3   Experiments on 
tetrahedral mesh quality with 
the maximum slim energy 
quality metric

The table shows the maximum slim energy for each shape across different control parameter values. The 
first column is the results for the standalone TetGen execution. Other columns show the values for the cor-
responding density control parameter. The smallest value at each row is in bold

Model TetGen Density control parameter

0.1 0.2 0.4 0.8 1.6

Spot 75.90 992.79 75.90 75.90 78.1 180
Bob 60.96 265.39 210.25 62.38 110.56 273.50
Blub 148.24 614.40 101.61 81.42 101.86 205.45
Pitt Brdg 91.43 231.55 118.19 147.33 79.53 123.12
Armadillo 224721.83 224721.83 224721.83 224721.83 224721.83 224721.83
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of the Surface Mesh class belonging to the CGAL library, 
which states that the object is vulnerable to race conditions 
[38]. This vulnerability of mesh objects prevented us from 
parallelizing some methods due to the high costs incurred 
by critical sections. Moreover, we decided not to apply a 
multi-threading scheme to the Merge stage because it is 
already fast and includes file I/O, which needs to be syn-
chronized, diminishing the benefits of parallelism. Besides, 
we observe in Fig. 10 that the Merge step is not the bot-
tleneck because its computational cost is a small percent-
age of the computational cost of the whole process. To 
parallelize code segments, we have used OpenMP 2.0 [41].

4.2 � Memory requirement reduction

The benefit of reducing memory usage is two-fold. First, 
it allows the tetrahedralization of objects that would be 
impossible due to a memory shortage. Secondly, it will 
enable multiple objects that require high memory to be 
tetrahedralize simultaneously. For example, if we have a 
computer with 64 GB of RAM and two objects requiring 64 
and 60 GB of memory, a sequential algorithm could only 
process either in that machine. However, our implemen-
tation can process both simultaneously by dividing each 
mesh at least once.

We have taken several precautions to minimize memory 
footprint when it comes to implementation. More specifi-
cally, we aimed to reduce the peak memory usage of our 
implementation. If the computer does not have enough 
memory to accommodate the peak memory needed for 
execution, it will terminate without processing the input. 
For such cases, we disable multi-threading and opt for 
single-threaded execution. Simultaneously processing 
multiple pieces requires memory to hold the data for all 
parts. Eventually, the memory footprint will be no less than 
TetGen. Instead of keeping the meshes in memory, we store 
the file handles. When a part is needed, we read it from the 
file, and when we update it, we write the changes to the 
corresponding file.

5 � Experiments

We conducted experiments on mesh quality, parallel pro-
cessing performance, and memory requirements. The sta-
tistics about the meshes used in the experiments are given 
in Table 1.

Table 4   Experiments on the effects of post-processing (i.e., vertex 
removal) step on tetrahedral mesh quality

The quality metric is average slim energy; the lower it is, the better. 
The density control parameter is selected as 0.1

Model TetGen Without With
Postprocessing Postprocessing

Spot 6.26 9.59 7.26
Bob 5.99 9.91 7.74
Blub 7.84 10.84 8.79
Pitt Brdg 7.27 8.21 7.72
Armadillo 6.65 7.09 6.82
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Fig. 10   Execution time dissection for Bunny, Armadillo, and Nefertiti 
objects (from top-to-bottom). Single-threaded execution corresponds 
to sequential TetGen 
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5.1 � Mesh quality

We performed experiments on the quality of the resulting 
tetrahedral meshes. We used slim energy as the quality 
measure, as in TetWild [18]. The smaller the energy is, the 
higher the quality is. The final quality value for a tetrahedral 
mesh is the average slim energy across all tetrahedra.

Table 2 depicts the effect of the density control param-
eter on mesh quality using the average slim energy quality 
metric. When we merge the partial tetrahedral meshes, the 
triangles we newly created for Surface Closure stage will 
be the faces of internal tetrahedra. We expect to observe an 
increase in quality with increasing density control parameter 
values. Thanks to the large density parameter, we could get 
higher-quality meshes than TetGen in some cases. Table 3 
shows the effect of the density control parameter on mesh 

quality using the maximum slim energy quality metric, 
which corresponds to the worst quality of the produced tet-
rahedra. In some cases, our algorithm produces tetrahedra 
with maximum slim energy and better quality than TetGen. 
Hence, the non-Delaunay triangles we introduce do not cre-
ate many problems.

We also investigated the effect of the post-processing/ver-
tex removal step on the tetrahedral mesh quality. As shown 
in Table 4, removing extra vertices and tetrahedralizing the 
cavity increases the tetrahedral mesh quality. The quality 
difference between our meshes and TetGen’s become simi-
lar with post-processing enabled. Hence, although our algo-
rithm may create some non-Delaunay triangles, the quality 
difference appears slim compared to the gain achieved by 
reducing the memory footprint and computation time.

Table 5   The effect of density 
control parameter on the 
execution time

The execution time is in milliseconds. The best values are shown in bold. We divided the object into two 
and used two threads for these experiments

TetGen Density control parameter

0.1 0.2 0.4 0.8 1.6

Spot 120 139 115 108 123 174
Bob 283 475 214 225 212 354
Blub 413 307 289 318 338 467
Pitt Brdg 4502 3642 3557 3309 3533 3822
Armadillo 14793 9203 9542 9484 11131 22492

Table 6   Memory usage (in 
MB) and processing times (in 
seconds) for various models 
with post-processing enabled

When the part count is one, TetGen is directly used. Our implementation failed for some input-part count 
pairs due to the floating-point errors; these are shown with “-”. The inputs that TetGen could not process 
are marked with an “x”. Nefertiti2 is the high-resolution version of the Nefertiti model

Model Part counts

1 2 4 8 16

Mem Time Mem Time Mem Time Mem Time Mem Time

Armadillo 923 12 542 22 336 34 268 60 360 109
Nefertiti 5200 85 3700 166 2500 248 2200 475 3000 726
Neptune 11800 250 6700 344 4400 500 – – – –
Nefertiti2 x x 23500 1552 – – – – – –

Table 7   The effect of density 
control parameter on memory 
usage

The memory usage is in Megabytes

TetGen Density control parameter

0.1 0.2 0.4 0.8 1.6

Spot 21 16 16 14 16 20
Bob 33 25 23 24 25 30
Blub 43 30 28 28 36 39
Pitt Brdg 388 227 228 256 237 262
Armadillo 930 547 582 565 623 944
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5.2 � Parallel processing

We conducted experiments to see how our parallelization 
scheme performs. The PC used for the experiments has two 
eight-core processors, equivalent to 16-core processing 
power.

We first selected a few objects and tetrahedralized them 
using up to 16 threads. We calculated how much computa-
tion time the program spends on the Partitioning, TetGen, 
and Merge steps. In our experiments, we ignored reading 
and writing times. The execution time of the TetGen stage is 
calculated as the time the longest thread has taken to tetrahe-
dralizing the piece it is responsible for. Figure 10 plots the 
execution time dissection for various models. The division 
and merge steps do not take a significant amount of time, 
but the TetGen stage dominates execution. Importantly, we 
observed a steady speed-up improvement up to around eight 
cores. When we increase the thread count above eight, the 
speed-up starts decreasing.

The graphs show that TetGen execution times increase 
as the number of threads increases. The reason may be the 
imbalanced data partition. If the processing of the whole 
mesh by TetGen on a single thread takes T time, the threads 
processing each piece should ideally complete the execution 
in T/X time, where X is the number of threads. However, this 
ideal case does not always occur. Some threads run faster, 
and some are slower due to imbalanced input partitioning. 
We ensure that each part has an equal number of vertices 
and faces, but the execution time of each thread might be 
different due to topological differences. In other words, even 
though the parts have a similar number of vertices, TetGen 
may need to spend different computational times processing 
each part depending on the shape of the part. For instance, 
the amount of Steiner points may vary depending on the 
topology/shape of the input, which affects the time TetGen 
spends to add/remove them. In addition, we are inserting 
new faces during the Surface Closure stage, and each part 
might get a different number of vertices and faces appended 
to it depending on the boundary polygons. All these factors 
lead to data imbalance. As we increase the number of pieces, 
this issue becomes crucial, slowing down the process.

The choice of the density control parameter used in the 
refinement stage affects the execution time of our algo-
rithm. Incrementing that value increases the number of tri-
angles used to fill the holes and the quality of the triangles 
(cf. Subsection 5.1). Higher-quality triangles require TetGen 
to spend less time optimizing the mesh. Table 5 shows that 
the value of 0.4 seems reasonable for this parameter con-
sidering the trade-off between the computational cost and 
mesh quality.

Some cases failed because of the precision issues that 
occurred while inserting new points into the mesh. We used 
an inexact construction kernel of the CGAL [38]; this is why 

such failures might occur. In addition, TetGen rarely inserts 
Steiner points on the input triangles, preventing the merge 
process from running correctly. The merge fails if the trian-
gles at both sides do not match due to new Steiner points. 
We count this as a failure case too. These problems mainly 
emerge because we use an inexact construction kernel of 
CGAL during mesh division. Switching to exact construc-
tion would lead to a more robust approach, which increases 
the computation cost. Such edge subdivision operations have 
been used in applications like self-intersection fixing, but it 
costs a lot of time. So, that design choice creates a trade-off 
between robustness and speed. If such failure cases occur, 
the user can update the density control or threshold param-
eter that defines the closeness of two points.

5.3 � Memory requirements

We tested our algorithm with several objects and observed 
the peak memory usage and execution times by enabling 
the memory reduction mode of our algorithm. We limited 
the available memory to 36 GB (16 GB Physical RAM + 
20 GB Virtual Memory). Table 6 shows the results for vari-
ous input-part count pairs. We excluded reading and writing 
times from the execution time.

As we increase the number of pieces, we see a significant 
decrease in peak memory usage despite increasing execu-
tion time. Moreover, TetGen could not process the Nefertiti2 
model due to high memory usage, whereas our method could 
tetrahedralize it. The execution time of the memory-efficient 
version of our algorithm appears to be reasonable compared 
to TetGen.

We also investigated the relationship between memory 
usage and the density control parameter. Table 7 shows that 
increasing the density parameter increases memory usage. 
Although it is often less than the standalone TetGen execu-
tion, the memory usage can even exceed that in some cases 
if the density control parameter is too high. We expect this 
result because the density parameter controls the number 
of triangles, and its increase leads to more triangles. Cre-
ating more triangles means tetrahedralizing objects with 
more vertex and triangles counts, which increases memory 
usage.

6 � Conclusion

We propose a divide-and-conquer algorithm that can be used 
to reduce memory usage or speed up the constrained tetra-
hedral meshing process. Although our algorithm may intro-
duce some non-Delaunay triangles, it can increase the qual-
ity of the tetrahedral mesh. Despite non-Delaunay triangles, 
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the increase in quality makes our method useful. We can 
even successfully tetrahedralize meshes that TetGen cannot 
do due to lack of memory. Although our input partitioning 
stage introduces new vertices, we remove them during the 
merge step to conserve the input triangles.

We could extend our work in various ways. Firstly, we 
used PCA and parallel planes during input partitioning to 
reduce the overhead. To set a trade-off between speed and 
more balanced decomposition, we could experiment with 
other approaches, such as convex decomposition and recur-
sive PCA. As convex decomposition is relatively slow, and 
partitioning with non-parallel planes -as with recursive 
PCA- requires a complicated merge step (i.e., BSP trees to 
keep track of neighboring pieces efficiently), the overall pro-
cess may be slower, but decomposition could be more bal-
anced. Secondly, we applied our framework to only TetGen. 
However, it can be used with other meshing tools such as 
TetWild. Since TetWild may also suffer from out-of-memory 
errors, it would benefit from such an approach.
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