
The Journal of Supercomputing, 31, 249–263, 2005
C© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

PHR: A Parallel Hierarchical Radiosity System
with Dynamic Load Balancing

ALI KEMAL SINOP kemalp@ug.bilkent.edu.tr
TOLGA ABACI∗ tolga.abaci@epfl.ch
ÜMIT AKKUŞ† umita@microsoft.com
Department of Computer Engineering, Bilkent University, 06800 Bilkent, Ankara, Turkey

ATTILA GÜRSOY agursoy@ku.edu.tr
Department of Computer Engineering, Koç University, Rumeli Feneri Yolu, 34450 Sariyer, Istanbul, Turkey

UǦUR GÜDÜKBAY gudukbay@cs.bilkent.edu.tr
Department of Computer Engineering, Bilkent University, 06800 Bilkent, Ankara, Turkey

Abstract. In this paper, we present a parallel system called PHR for computing hierarchical radiosity solutions
of complex scenes. The system is targeted for multi-processor architectures with distributed memory. The system
evaluates and subdivides the interactions level by level in a breadth first fashion, and the interactions are redistributed
at the end of each level to keep load balanced. In order to allow interactions freely travel across processors, all the
patch data is replicated on all the processors. Hence, the system favors load balancing at the expense of increased
communication volume. However, the results show that the overhead of communication is negligible compared
with total execution time. We obtained a speed-up of 25 for 32 processors in our test scenes.

Keywords: hierarchical radiosity, distributed memory architectures, load balancing

1. Introduction

Synthesis of photo-quality images is a difficult and time-consuming computer graphics
problem. Essentially, the problem involves extensive simulation of the real-world light
events such as reflection of light among surfaces. The ultimate goal is to develop a real-time
interactive photo-realistic image generator. However, to get high-quality images utilizing
state-of-the-art solutions, we have to wait for minutes even for the simplest scenes consisting
of tens of polygons.

One class of solutions is the radiosity approach [13]. Radiosity, which is the ba-
sis of our work, can simulate area light sources with the underlying assumption that
only diffuse reflection takes place between surfaces. Those surfaces that can be han-
dled by radiosity algorithms are called Lambertian surfaces, which are ideal diffuse re-
flectors. The surfaces are subdivided into a mesh of elements, called patches, which
have reflectivity and lighting properties. Hierarchical radiosity is an improvement over

∗Present address: Virtual Reality Laboratory, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland.
†Present address: One Microsoft Way, Building 40, Office 5260, Redmond WA, 98052, USA.



250 SINOP ET AL.

traditional radiosity solutions to overcome the computational limitations inherent in these
solutions.

We propose a parallel implementation of the hierarchical radiosity for distributed memory
architectures. Recent work on this topic generally uses task stealing approaches to achieve
a nearly linear speed-up, but such approaches are not suitable for distributed memory
architectures where the initiation cost for message passing is high. Our work relies on
evaluating interactions one level at a time in each iteration. When the processing of one
level is finished, the load of each processor is computed and interactions are redistributed
in order to keep load balanced. To allow efficient distribution of interactions, the scene
geometry and patch information is duplicated in all of the processors without significant
impact on the overall performance.

The rest of the paper is organized as follows. We discuss the related work on global
illumination, hierarchical radiosity, and parallel implementation of the radiosity approach
in Section 2. The parallel algorithm that we propose for hierarchical radiosity utilizing
collective communication is described in Section 3. The details of representing the patches
for communication between processors, evaluating the interactions, and load balancing
process are described in this section. The results of the performance experiments to measure
the speed-ups and the images produced using the implementation are presented in Section 4.
Conclusions are given in Section 5.

2. Related work

2.1. Radiosity

The radiosity approach is based on thermodynamics and heat transfer. Instead of heat,
light energy is actually traveling between surfaces (or patches). The approach proposes to
exchange energies between surfaces with respect to some configuration parameters, such
as visibility and form factors. In fact, this corresponds to solving the global illumination
equation [17], which, in the special case where only diffuse, opaque surfaces are involved,
takes the form of an integral equation of the form below:

b(x) = e(x) + ρd (x)
∫

�

dx ′ cos θi cos θ j

πr2
v(x, x ′) b(x ′) (1)

where ρd (x) gives the diffuse reflectance, e(x) gives the radiant emitted flux density, b(x)
gives the radiosity, v(x, x ′) is the visibility function, and � represents the whole set of
surfaces in the scene. The visibility function has the value of 1, if x and x ′ are visible to
each other, and 0, if they are occluded. The angle θi (or θ j ) relates the normal vector of
element i (or j) to the vector joining the two elements.

Calculation of this integral is done either by Monte-Carlo methods or by discretizing
the scene into n finite elements [15]. Efficient solution methods for this system include
Gauss-Seidel, Jacobi, and specialized methods such as progressive radiosity [7]. Besides,
higher degree elements and Galerkin methods have been used to improve accuracy of the
solutions [16].



PHR: A PARALLEL HIERARCHICAL RADIOSITY SYSTEM 251

2.2. Hierarchical radiosity

Hierarchical radiosity [14] is proposed to overcome the deficiencies of the progressive
radiosity approach. It reduces computational requirements by careful error analysis. The idea
behind hierarchical radiosity is the same as the N-body problem solution [3]. These problems
share many similarities, mostly due to the similar nature of the interactions between particles
in the N-body problem and the interactions between patches in the radiosity method. During
the solution of the N-body problem, interactions between separated object groups (clusters)
are computed as a single interaction. Hierarchical radiosity uses the same idea and does
not compute the interactions that do not affect the accuracy of the whole image. However,
it is important to note that while the N-body algorithms construct the upper portion of the
hierarchy tree by forming groups of particles, the hierarchical radiosity algorithm constructs
the lower portion of the tree by subdividing the patches.

Hierarchical radiosity algorithm stated in [14] recursively subdivides the initial patches,
forming a quadtree, with respect to the form factor estimations. After the form factors are
calculated this way and stored in a hierarchical structure, standard techniques of solving
the radiosity system can be employed. In the variant of hierarchical radiosity to be em-
ployed by our system, the BF-refinement technique is used, which takes into account the
form factor estimations and the brightness values of the patches when performing sub-
divisions. This is essentially a combination of the form factor estimation and solution
processes.

In contrast to other radiosity approaches, hierarchical radiosity subdivides only some of
the patches at the finest resolution. Therefore, the overall computational complexity of the
algorithm is reduced from O(n2) to O(n + k2), where k is the number of input surfaces,
and n is the total number of resultant elements in an environment [8].

Hierarchical radiosity algorithm consists of three main steps, initial linking, interaction
evaluation and push-pull.

– Initial Linking: Before beginning the hierarchical radiosity solution, interactions between
all initial patches in the scene are computed. This step involves computing the form factor
between every patch pair. For this purpose, disk approximation method can be used [22]:

Fi j = vi j
cos θi cos θ j A j

πr2
i j + Ai

(2)

In this equation, vi j is the visibility function, θi and θ j are the angles between the element
normals and the connections of their centers, ri j is the distance between the elements,
and Ai and A j are the areas. The overall effect of area j on area i is built by multiplying
Fi j by the outgoing energy from area j . The accuracy of this method can be increased
by firing multiple rays.

– Interaction Evaluation: In this step, interactions for all of the patches are evaluated.
This involves computing the energy transfer from patch i to j and vice versa. If the
exchanged energy happens to be above some threshold, the patch with the larger area
can be subdivided in order to increase the accuracy of the solution. Subdivision of a



252 SINOP ET AL.

patch does not effect other interactions; they remain between the same patches. Hence,
interactions may be present in all levels of a patch’s hierarchy.

– Push-Pull: Since interactions exist at different levels of a patch’s hierarchy and different
amounts of energy are accumulated at the nodes, it is necessary to bring the whole
tree structure into a consistent state at the end of each iteration. This is achieved by
first propagating the energy of upper nodes to the leaf nodes and then leading the total
weighted energy of leaf nodes to the upper ones.

At each iteration, the interactions of each patch are evaluated, refining the patches and
interactions as necessary. When all patches are done, the patch hierarchies are brought to
a consistent state by push-pull step. If the total energy change in the whole scene is above
some threshold, the iterations should continue, otherwise it is not necessary to carry on the
computation, hence we can output the energies of leaf level nodes in the scene.

2.3. Parallelization of radiosity

A parallel radiosity simulation system is proposed in [12], which uses perceptually-based
calculations to control simulation process. In this work, a novel algorithm for computing
radiosity solutions on distributed shared memory (DSM) architectures is described, which
uses a queue based scheduling system to process the sub-iterations—transfer of energy from
a single source to a subset of the scene’s receiver patches—eliminating the need for processor
synchronization between iterations of the algorithm. Another parallel radiosity algorithm
based on patch data circulation is proposed for distributed memory architectures [2]. Their
work uses a global circulation scheme for parallel light distribution computations, reducing
the total volume of concurrent communication. Renambot et al. also obtained good speed-
ups on DSM architectures with their parallel radiosity implementations [19].

Parallelization of hierarchical radiosity, on the other hand, is more challenging. The dy-
namic nature of the hierarchical radiosity algorithm makes it very hard to equally distribute
the computations on numerous processors. Several approaches for parallel implementations
of hierarchical radiosity were proposed. The work of Sillion et al. [20] demonstrated an
extension to the hierarchical radiosity algorithms on DSM architectures, in which a main
process holds a queue of individual interactions, and when a processor finishes its job, it
retrieves new interactions from this list, also enqueuing any new interactions resulting from
subdivisions. A nearly perfect speed-up is obtained for some scenes (a speed-up of 39.4
on 40 processors), and good speed-ups are obtained in general (a speed-up of 25.7 on 30
processors). However, the slower shared memory is heavily used in this system, and the
general computation process is slowed-down.

Good speed-ups are achievable in parallel implementations of hierarchical radiosity for
shared memory architectures since hierarchical radiosity computations contain many fine
grain sub tasks. However, there is not much work achieving high performance on dis-
tributed memory machines. The main reason behind this is that previous works such
as [9] concentrate on distributing the scene geometry on different processors so as to
be able to render very complex scenes, whereas our work aims to reduce the rendering
time.



PHR: A PARALLEL HIERARCHICAL RADIOSITY SYSTEM 253

Another work on parallel hierarchical radiosity for distributed memory architectures is
proposed in [1], which aims to reduce the rendering time instead of distributing the geometry.
In this work, every processor keeps track of processed patches by other processors and as
soon as it finishes processing a patch, it gets another unprocessed one. However, their work
relies on heavy message passing in between iterations and they try to achieve load balancing
at patch level. In our work, we try to achieve load balancing at interaction level, distributing
every interaction individually.

Funkhouser describes an algorithm in which multiple hierarchical radiosity solvers work
in parallel [10]. The set of polygons is distributed over the workstations, where partial
radiosity solutions are computed for each part. Then, a master process collects and merges
the solutions, iterating the process until convergence. For complex scenes, which can not
be duplicated on every processor, this approach is well suited. They obtained a speed-up of
5.5 with eight SGI workstations for the Soda Hall model. Bohn et al. [4] proposed a parallel
hierarchical radiosity algorithm on a Connection Machine 5, with a speed-up of 8.4 on 64
processors. Another work on cluster of PCs is reported in Sireli [21]. In their work, each
patch is assigned to a processor, and a representative of the patch (proxy patch) exists in
other processors if needed. Caballer et al. proposed a parallel version of the hierarchical
radiosity algorithm, which utilizes the advantages of both shared and distributed memory
architectures. Their motivation is similar to ours in the sense that they also focused on
reducing the processing time, rather than rendering very large scenes [6].

Another similar work was proposed in [18], in which the scene is partitioned by a variant
of K-means algorithm to allow the computation of large indoor environments on distributed
machines.

In a recent work [11], a parallel algorithm that uses spatial partitioning of patches to
processors to improve locality and asynchronous calculation to hide latencies is presented.
They report almost linear speed-up upto 64 processors on CrayT3E. When the data needed
on another processor, their algorithm initiates a request message to another processor to get
the data. Achieving similar performances on a cluster of PC’s with commodity networking
would be difficult because of high startup costs of messages. We present a parallel algorithm
more suited to cluster computing and our results show that good speed-ups are achievable.

3. A parallel algorithm for hierarchical radiosity utilizing collective communication

The major work done in hierarchical radiosity is calculating the interactions between pair
of patches that are visible to each other. Therefore, interactions are the major units of com-
putation to be distributed to processors. To calculate one interaction, a processor needs
the current radiosity values and geometric information of the two patches involved in the
interaction. A mapping of interactions to processors such that reduced communication and
balanced work among processors, hence, is significant for performance. One way to map
interactions to processors can be done by assigning patches to processors and associating
interactions with the patches. The parallel algorithm presented here distributes patches to
processors and each processor is responsible for handling interactions of its own patches
(owner computes rule). If both patches of an interaction is on the same processor, the interac-
tion can be calculated without any communication. Otherwise, the remote patch information



254 SINOP ET AL.

need to be communicated. Since the interaction pattern is quite irregular, whatever the map-
ping is, there will always be many across-processor interactions. If we let each interaction
object to gather the data it needs, then there will be many messages communicated and
possibly multiple messages for the same patch involved in more than one interaction. In
order to reduce number of messages and simplify the design of interaction calculations, we
represent a remote patch with a special type of patch, called proxy patch [21]. We utilize col-
lective communication operations of MPI [5] to gather and scatter patches. The use of proxy
patches and collective communication operations decreases the communication overhead.
More importantly, the use of proxy patches allows the push-pull phase to be parallelized,
since every processor performs the push-pull operation for only its local patches.

3.1. Representation of the patches

Unlike other earlier parallel algorithms such as [10], the scene data is not partitioned, instead
every processor contains the information of the whole scene with all patches. The amount
of memory used for keeping the patches is negligible compared with the amount required
for holding the interactions. During the evaluations of interactions, a patch might be divided
into smaller patches. This patch could be a local patch or a proxy patch. The newly created
patches need to be given a handle that is consistent across processors (another processor
might divide its proxy corresponding to the same patch). To globally identify the patches,
each patch is given a global patch ID. Global patch IDs consist of two parts: root patch ID,
and hierarchical information. The root patch IDs are assigned in a straight-forward manner,
during the distribution of the initial geometry. However, the hierarchical information part
is not so simple, since it requires an encoding scheme that describes the position of a patch
in the hierarchy quad-tree. We have adopted a scheme where the hierarchical information
part of an ID (hierarchy ID) consists of a sequence of two-bit groups. Each two-bit group
is interpreted as a child number, from zero to three. The left-most bit with the value of one
indicates the start of the hierarchy ID (An illustration of a 32-bit hierarchy ID is given in
Figure 1). When read from left to right, a hierarchy ID for a patch effectively describes the

Figure 1. An illustration for a sample hierarchy ID. The nodes in the above tree denote patches.



PHR: A PARALLEL HIERARCHICAL RADIOSITY SYSTEM 255

path that must be followed starting from the root patch to find that patch. With this scheme,
some of the ID space remains unusable. However, the scheme is easier to implement than
most other schemes, and its simplicity results in higher performance.

3.2. The algorithm

The outline of the algorithm, which is carried out by all of the processors, is given below:

1. Broadcasting of initial geometry. The root processor reads the initial geometry from the
input file, and broadcasts the data to all of the processors in the parallel system.

2. Trivial patch-to-processor assignment and initial linking. The initial linking operation
consists of the computation of form factors for every possible interaction between the
patches forming the initial geometry. Each processor is assigned an equal number of
patches, and computes the form factors for the interactions of its own patches. It is
possible that this phase be skipped if the user wishes to use form factors saved from a
previous execution on the same scene.

3. Re-assignment of patches to processors. In this phase, the root processor gathers the
form factors computed in the previous phase. The root processor evenly divides initial
patches according to their area sum. Then, the processors are informed of which patches
they are assigned, and receive the appropriate set of form factors.

4. Computations and refinements for an iteration. This phase is where hierarchical radiosity
computation takes place. Each processor goes through its patches for evaluation of
interactions. Evaluation of an interaction consists of the computation of the flux between
two patches, and decision of whether to subdivide one of the patches or not. If refinement
is to occur, then new interactions are created, and the form factors for those interactions
are computed. This step takes the longest time to finish, and strong load imbalances
occur at this step. To solve this problem, a new approach is proposed, which will be
discussed in the next section.

5. Sending back those proxies that were updated to their home processors. Those proxies
whose radiosity values were changed at the current iteration are sent back to their homes.
The local patches for the proxies are created with the new value at their home processor
if they were previously non-existent, or their values are updated if they were already
there. This step features a total exchange between all processors.

6. Push-and-pull phase. At each node the push-and-pull phase is executed in order to bring
the intensity values for local patches into a consistent state.

7. Update of the proxy objects. This step is the inverse of Step 5. To bring the system into
a completely consistent state before the start of the new iteration, proxy patches should
be updated with the intensity values that were computed in the push-and-pull phase.
Similar to Step 5, the proxy patches for the local patches are created at their processors
if necessary.

8. Determine if there is a next iteration. In this phase, all processors communicate to
determine if there will be another iteration. If it is decided that the system has already
converged, there will be no more iterations, and the algorithm stops.



256 SINOP ET AL.

3.3. Evaluating interactions

This is the most time consuming part of the hierarchical radiosity. In this step, each in-
teraction is evaluated by computing the energy transfer between the patch pairs. Due to
BF-refinement criteria, if the total exchanged energy exceeds a certain threshold, the patch
with the bigger area is subdivided. In each subdivision, four new interactions are created,
calculating the form-factors as necessary (Figure 2).

Since 16 rays are fired for each new interaction, subdividing the interactions dominate the
evaluation step. For load balancing, we distribute the interactions among processors. Since
each processor has the knowledge of all the patches, interactions can freely be exchanged
between processors.

In standard hierarchical radiosity algorithms, interactions are evaluated in a depth first
search (DFS) fashion; first the interactions of a patch are evaluated, and then the chil-
dren’s interactions are evaluated. However, this kind of approach has an inherent nature
for load imbalance. An interaction, which is going to be subdivided to the maximum al-
lowed level, will be assigned to one processor and a serious imbalance in the work-load will
arise.

To overcome this problem, the interactions are evaluated in a breadth first search
(BFS) fashion; first, only 0th level interactions are evaluated, and then 1st level interac-
tions are evaluated, and so on. The algorithm for evaluating the interactions is given in
Algorithm 1.

Figure 2. An illustration of the rays in the form factor calculation. Four of the sixteen rays fired from patch i to
patch j for the calculation of Fi j are shown. For each subarea on patch i , four rays are to be fired.



PHR: A PARALLEL HIERARCHICAL RADIOSITY SYSTEM 257

Algorithm 1. Evaluating the interactions in all Interactions list, initialized with the
interactions from initial linking.

curInteractions ← empty list
for all interaction in all Interactions do

Evaluate interaction
if interaction should be subdivided then

Remove interaction from all Interactions
Add interaction to prolificInteractions

end if
end for
while prolificInteractions not empty do

newInteractions ← empty list
LoadBalance(prolificInteractions) {prolificInteractions contains the interactions
that will be subdivided}
for all interaction in prolificInteractions do

Subdivide interaction and its associated patches
for all newInteraction in children of interaction do

Evaluate newInteraction
if newInteraction should be subdivided then

Add newInteraction to newInteractions
else

Add newInteraction to allInteractions
end if

end for
end for
prolificInteractions ← newInteractions

end while

In Algorithm 1, LoadBalance function distributes the interactions across processors to
ensure equal workload.

3.3.1. Cost estimation. Although all interactions in the newInteractions are going to sub-
divide for only one level at a time, still not all interactions require the same processing
power. However, predicting the cost of an interaction is very difficult. The time required
for computing the form factor depends only on the geometry of scene—how many triangle
and octree intersection tests are made, which is impossible prior to actually computing the
form factor.

To predict the cost of subdividing an interaction, we can use the number of octree-node and
triangle intersection tests performed for calculating that interaction’s form factor, weighted
with its parent interaction’s cost by a certain factor, αc.

3.3.2. Load balancing. In this section, we try to distribute the prolific interactions among
the available processors such that the total amount of cost associated with each processor
is equal to a certain constant. This is done by each processor in the following way:



258 SINOP ET AL.

1. Compute the work load. Each processor goes over its prolific interactions list, summing
the cost of each interaction to determine its own work-load.

2. Gather other processors’ work loads. A total exchange of associated work-loads between
processors is done each processor so as to make every processor aware of others’ work
loads.

3. Determine how much load will be sent to other processors. A processor first computes
the average load and declares each processor as a sender (should send some interactions
to balance loads) or receiver. Then, the load each sender will send to each receiver is
computed. Sender processors, sorted in descending order of their loads, send their loads
to the first receiver with the smallest load.

4. Distribute the interactions. After having computed the load to send to each processor,
sender processors distribute their interactions in a round-robin fashion to the receiver
processors.

Although only an approximation for the load distribution is employed in Steps 3 and 4,
generally the load tends to be distributed evenly, due to the high amount of interactions with
varying costs.

4. Results

The Parallel Hierarchical Radiosity (PHR) system is implemented on a PC-cluster using
C++ Programming Language and Message Passing Interface (MPI) for communication
between processors.

4.1. Test scenes

For performance testing, three models from Soda Hall1 are used. All models are augmented
with ceiling lights. These models are;

– Room #320 (6350 triangles)
– Room #380 (31933 triangles)
– Room #420 (18510 triangles)

4.2. Measurements

The tests were carried on a Beowulf-cluster with 32 nodes. Each node is installed with
1 GBytes of RAM and an Intel P4 2.4 GHz CPU. Each node has a Fast Ethernet with a
bandwidth of 100 Mbps. The nodes are linked together by a Fast Ethernet switch, which
is a 48 port fast ethernet nonblocking switch with a 2.66 Gbps backplane and with gigabit
uplinks to the master node.

4.3. Timings and speed-ups

Table 1 shows the total running time for each test scene. In Figure 3, the speed-ups obtained
for each scene are shown according to the formulae kn = T1/Tn . For the Room #380 test



PHR: A PARALLEL HIERARCHICAL RADIOSITY SYSTEM 259

Table 1. Timings for the test scenes (excluding initial linking stage).

Total time (secs)

Processors Room 320 Room 380 Room 420

1 11506.4 7283.17 26871.6
4 2917.52 1382.74 6898.85
8 1548.05 737.04 3533

16 830.83 406.62 1894.23
24 583 302.43 1296.64
32 460 259.45 1012.3

Figure 3. Speed-up measurements for the test scenes.

scene, we observe a super-linear speed-up behavior. Since the number of interactions are
quite high, the virtual memory is heavily used in 1-processor case and this results in a
huge slow down. When the number of processors increase, the interactions are divided
among processors and therefore the memory of each processor becomes sufficient to hold
all interactions assigned to them. This relieves processors the need to use virtual memory,
causing a super-linear speed up to be measured.

In Table 2, detailed timings for the test scenes are given. It can be seen from Table 2 that
the total time spent for migration is negligible (<2 secs for all scenes). Besides, duplicating
the whole scene on every processor and making a total exchange in the gather and scatter
phases do not take significant amount of time. However, the main issue is still the load
balancing, and the idle times constitute a big portion of the time spent. The rendered images
generated by our implementation for the test scenes Room320, Room380, and Room420
are given in Figures 4–6, respectively.



260 SINOP ET AL.

Table 2. Detailed timings for the test scenes.

Detailed timings (in secs)

Scene Processors Refinement Idle Migration Gather Push pull Scatter

Room 320 1 11442.4 0 0.85 0.01 0.96 0
4 2803.08 93.78 1.29 7.32 0.21 8.30
8 1422.96 92.33 0.7 12.40 0.12 16.35

16 710.12 86.36 0.66 14.14 0.06 16.86
24 475.57 64.22 0.63 17.32 0.04 21.83
32 350.83 54.23 0.61 20.44 0.03 30.68

Room 380 1 6061.09 0 6.43 0.24 0.76 0
4 1266.34 79.51 1.09 6.8 0.16 7.5
8 635.16 68.79 1.36 8.83 0.08 11.3

16 319.55 51.68 0.8 11.97 0.04 16.45
24 213.64 51.27 0.95 13.79 0.03 18.74
32 160.54 50.23 0.81 17.78 0.02 27.06

Room 420 1 26377.1 0 1.12 0.1 1.99 0
4 6551.15 275.22 1.94 7.1 0.22 8.46
8 3283.25 199.18 1.19 9.38 0.11 12.08

16 1646.79 200.07 0.83 12.87 0.05 19.52
24 1103.52 145.3 0.64 15.31 0.04 22.54
32 822.9 137.71 0.67 17.69 0.03 26.38

Figure 4. Rendering of the test scene Room320.



PHR: A PARALLEL HIERARCHICAL RADIOSITY SYSTEM 261

Figure 5. Rendering of the test scene Room380.

Figure 6. Rendering of the test scene Room420.



262 SINOP ET AL.

5. Conclusion

Since hierarchical radiosity works on a huge and dynamic tree structure, parallelizing it on
distributed computers is a challenging problem. In order to obtain good speed-ups, dynamic
load balancing techniques must be employed, but these techniques tend to require a lot of
communication.

The most time consuming phase of hierarchical radiosity solution is the refinement phase,
in which new interactions are formed. Due to the dynamic nature of algorithm, it is impossi-
ble to accurately predict how much time will be spent on subdividing a particular interaction
without actually subdividing it. Hence, it is better to subdivide the interactions one level
at a time in a BFS manner to equally distribute the loads. At the end of each level, the
interactions, which are going to be subdivided, may be identified and distributed (migrated)
over processors to keep load balanced.

Since the time needed to subdivide an interaction depends only on the time needed to
compute the form factor, which in turn depends on the number of intersection tests, we can
estimate the subdivision cost of a particular interaction by counting the intersection tests
performed for calculating its own form factor.

Distributing interactions freely among processors require each processor to have the
entire information of the scene geometry and the patches created so far. Our results show
that doing this is not costly compared to the time spent for refinement. With 32 processors,
a speed-up of 25 is achievable, making hierarchical radiosity practical for large scenes.

Duplicating the scene geometry on all processors may make this algorithm infeasible
for complex scenes. As a future work, the algorithm can be extended to work on complex
scenes by dividing the scene geometry into clusters according to some visibility factors,
and then assigning every cluster to more than one processor so as to allow free interaction
exchange.

Note

1. Available at http://www.cs.berkeley.edu/∼kofler.

References

1. M. Amor, E. Padron, J. Tourino, and R. Doallo. Scheduling of a hierarchical radiosity algorithm on a
distributed-memory multiprocessor. In Proc. of 4th International Meeting on Vector and Parallel Processing
(VecPar’00), pp. 581–591, 2000.

2. C. Aykanat, T. Çapın, and B. Özgüç. A parallel progressive radiosity algorithm based on patch data circulation.
Computers & Graphics, 20(2): 307–324, 1996.

3. J. Barnes and P. Hut. A hierarchical O(N log N ) force-calculation algorithm. Nature, 324(4): 446–449, 1986.
4. C.-A. Bohn and R. Garmann. A parallel approach to hierarchical radiosity. In: V. Skala, ed., Proc. of the

Winter School of Computer Graphics and CAD Systems’95. Plzen, Czech Republic, pp. 26–35, 1995.
5. G. Burns, R. Daoud, and J. Vaigl. LAM: An open cluster environment for MPI. In Proc. of Supercomputing

Symposium, pp. 379–386, 1994.
6. M. Caballer, D. Guerrero, V. Hernandez, and J. Roman. A parallel rendering algorithm based on hierarchical

radiosity. In Lecture Notes in Computer Science, vol. 2565, pp. 523–536, 2003.



PHR: A PARALLEL HIERARCHICAL RADIOSITY SYSTEM 263

7. M. Cohen, S. Chen, J. Wallace, and D. Greenberg. A progressive refinement approach to fast radiosity image
generation. In ACM Computer Graphics (Proc. of SIGGRAPH’88), vol. 22, pp. 75–84, 1988.

8. M. Cohen and J. Wallace. Radiosity and Realistic Image Synthesis. Academic Press Professional, Boston,
MA, 1993.

9. C. Feng and S. Yang. A parallel hierarchical radiosity algorithm for complex scenes. In: J. Painter, G. Stoll,
and Kwan-Liu Ma, eds., IEEE Parallel Rendering Symposium, pp. 71–78, 1997, ISBN 1-58113-010-4.

10. T. Funkhouser. Coarse-grained parallelism for hierarchical radiosity using group iterative methods. In ACM
Computer Graphics (Proc. of SIGGRAPH’96), pp. 343–352, 1996.

11. R. Garmann. On the partitionability of hierarchical radiosity. In Proc. of the 1999 IEEE Symp. on Parallel
Visualization and Graphics, pp. 69–78, 1999.

12. S. Gibson and R. Hubbold. A perceptually-driven parallel algorithm for efficient radiosity simulation. IEEE
Trans. on Visualisation and Computer Graphics, 6(3):220–235, 2000.

13. C. Goral, K. Torrance, D. Greenberg, and B. Battaile. Modelling the interaction of light between diffuse
surfaces. In ACM Computer Graphics (Proc. of SIGGRAPH’84), vol. 18, pp. 213–222, 1984.

14. P. Hanrahan, D. Salzman, and L. Aupperle. A rapid hierarchical radiosity algorithm. ACM Computer Graphics
(Proc. of SIGGRAPH’91), 25(4):197–206, 1991.

15. P. Heckbert. Finite element methods for radiosity. In ACM SIGGRAPH’92 Course Notes No. 18—Global
Illumination, Chapt. 1, pp. 1–11, 1992.

16. P. Heckbert and J. Winget. Finite element methods for global illumination. Technical Report CSD-91-643,
University of California, Berkeley, 1991.

17. J. Kajiya. The rendering equation. In ACM Computer Graphics (Proc. of SIGGRAPH’86), pp. 143–150, 1986.
18. D. Meneveaux and K. Bouatouch. Synchronisation and load balancing for parallel hierarchical radiosity of

complex scenes on a heterogeneous computer network. Computer Graphics Forum, 18(4):201–212, 1999.
19. L. Renambot, B. Arnaldi, T. Priol, and X. Pueyo. Towards efficient parallel radiosity for DSM-based parallel

computers using virtual interfaces. In IEEE Parallel Rendering Symposium, pp. 79–86, 1997.
20. F. Sillion and J.-M. Hasenfratz. Efficient parallel refinement for hierarchical radiosity on a DSM computer.

In Proc. of the Third Eurographics Workshop on Parallel Graphics & Visualisation. Universitat de Girona,
Spain, 2000.

21. R. Sireli and A. Gürsoy. Parallel hierarchical radiosity. In H.R. Arabnia, ed., Proc. of International Conference
on Parallel and Distributed Processing Techniques and Applications, PDPTA’99, vol. III, pp. 1634–1640,
1999.

22. J. Wallace, K. Elmquist, and E. Haines. A ray tracing algorithm for progressive radiosity. In J. Lane, ed., ACM
Computer Graphics (Proc. of SIGGRAPH’89), vol. 23, pp. 315–324, 1989.


