
�

�

“jgt” — 2009/6/9 — 12:05 — page 31 — #1
�

�

�

�

�

�

Vol. 14, No. 1: 31–42

GPU-Based Neighbor-Search Algorithm
for Particle Simulations

Serkan Bayraktar, Uǧur Güdükbay, and Bülent Özgüç
Department of Computer Engineering, Bilkent University

Abstract. This paper presents a neighbor-search technique to be used in a

GPU-based particle simulation framework. Neighbor searching is usually the most

computationally expensive step in particle simulations. The usual approach is to

subdivide the simulation space to speed up neighbor search. Here, we present a

grid-based neighbor-search technique designed to work on programmable graphics

hardware.

1. Introduction

Particle systems are a widely used simulation technique in computer graph-
ics [Miller and Pearce 89, Reeves 83, Terzopoulos et al. 91, Tonnesen 91].
Many natural phenomena, such as fabric, fluid, fire, cloud, smoke, etc., have
been modeled and simulated by using particle systems. In most of these cases,
particles interact with each other only if they are closer than a predetermined
distance. Thus, determining the neighbor particles speeds up the whole sim-
ulation.

Locating particle neighbors dominates the run-time of a particle-based sim-
ulation system. Space subdivision methods have been developed to achieve
faster proximity detection. These methods usually employ a uniform grid
[Kipfer and Westermann 06, Teschner et al. 03] discretizing the simulation
space to improve the performance of contact detection. Bounding volumes
[Teschner et al. 04], and binary space partitioning (BSP) trees [Melax 00] are
other popular methods of improving contact detection performance.

© A K Peters, Ltd.

31 1086-7651/09 $0.50 per page

�

�

“jgt” — 2009/6/9 — 12:05 — page 32 — #2
�

�

�

�

�

�

32 journal of graphics, gpu, and game tools

In this work, we present a grid-based neighbor-search technique for pro-
grammable graphics hardware (GPU). We use this method to implement
smoothed particle hydrodynamics (SPH) [Gingold and Monaghan 77, Mon-
aghan 92] entirely on the GPU. Our neighbor-search technique is suitable to
be used in conjunction with any other particle-based simulation system.

2. Fluid Simulation

Our implementation uses the SPH paradigm to simulate fluid behavior. The
SPH method has been used in astrophysics and computational physics to
simulate natural phenomena, such as smoke, fluid, and debris. It is a particle-
based method and has been used in computer graphics to simulate lava flow,
free fluid flow, hair behavior, and bubble and froth generation [Cleary et al. 07,
Hadap and Magnenat-Thalmann 01, Müller et al. 03, Müller et al. 04].

In the SPH method, fluid is represented by a set of particles that carry
various fluid properties such as mass, velocity, and density. These properties
are distributed around the particle according to an interpolation function
(kernel function) whose finite support is h (kernel radius). For each point
x in simulation space, the value of a fluid property can be computed by
interpolating the contributions of fluid particles residing within a spherical
region with radius h and centered at x. For more detailed information on
simulating fluid using SPH, the reader may refer to [Müller et al. 03].

Typically, the non-penetration boundary condition in SPH applications is
enforced by inserting stationary boundary particles to construct a layer of
width h, which exerts repulsive forces on the fluid particles [Monaghan 92].

3. Neighbor Search

Space subdivision is one of the ways to speed up the SPH force computation.
Search for potential inter-particle contacts is done within the grid cells and
between immediate neighbors, thus improving the whole simulation speed.
We employ the same basic principle in this work to achieve a fast and reliable
neighbor search.

3.1. CPU-Based Neighbor Search

The first step of the algorithm is to compute a one-dimensional grid coordinate
of each particle. This is done by discretizing particle coordinates with respect
to a virtual grid of cell size h and obtaining integral positions (ix, iy, iz). These

�

�

“jgt” — 2009/6/9 — 12:05 — page 33 — #3
�

�

�

�

�

�

Bayraktar et al.: GPU-Based Neighbor-Search Algorithm for Particle Simulations 33

Figure 1. The sorted particleCoordinate array and coordinatePointer array.

integral coordinates are converted to 1D coordinates by Equation 1:

ix + iy × grid width + iz × grid width × grid height. (1)

After sorting the particles with respect to their grid coordinates using a
radix sort, we determine the number of particles each cell hosts. Figure 1
illustrates the corresponding data structure. The particleCoordinate array
stores the sorted particles and the coordinatePointer array has pointers to the
array particleCoordinate for fast access.

The potential neighbors of a particle are determined by following the point-
ers from coordinatePointer and by scanning the array particleCoordinate.
Constant offsets are employed to access each of the 26 neighboring cells of
the particle’s host cell. For example, the (i − 1)th cell is the left neighbor of
ith cell and the (i + grid width)th cell is the upper neighbor of the ith cell.
Figure 2 illustrates the algorithm where potential neighbors of particle 57 are
being searched (within a virtual grid 30 cells wide). The algorithm scans the
particles of cell 23 (the host cell of particle 57), cell 24 (the right neighbor cell),
and cell 53 (the upper-neighboring cell). To consider each potential neighbor
pair exactly once, we scan particles in descending order and terminate when
we reach a particle with a smaller ID.

Figure 2. Potential neighbors of particle 57 are being searched.

3.2. GPU-Based Neighbor Search

Particle-based simulations, including SPH, are perfect candidates to be im-
plemented on GPUs because of the GPUs ability to process multiple particles
in parallel [Pharr and Fernando 05]. The biggest challenge of implementing a
particle-based simulation on a GPU is to detect particle proximity efficiently.

�

�

“jgt” — 2009/6/9 — 12:05 — page 34 — #4
�

�

�

�

�

�

34 journal of graphics, gpu, and game tools

This is because of the fact that the fragment shaders that we use as the main
processing unit are not capable of scatter. That is, they cannot write a value to
a memory location for a computed address since fragment programs run using
precomputed texture addresses only, and these addresses cannot be changed
by the fragment program itself. This limitation makes several basic algorith-
mic operations (such as counting, sorting, finding maximum and minimum)
difficult.

One of the common methods to overcome this limitation is to use a uniform
grid to subdivide the simulation space. Kipfer et al. [Kipfer et al. 04] use a
uniform grid and sorting mechanism to detect inter-particle collisions on the
GPU. Purcell et al. [Purcell et al. 03] also use a sorting-based grid method.
They employ a stencil buffer for dealing with multiple photons residing in the
same cell. Harada et al. [Harada et al. 07] present a SPH-based fluid simulation
system. Their system uses bucket textures to represent a 3D grid structure
and make an efficient neighbor search. One limitation of their system is that
it can only handle up to four particles within a grid cell.

4. Implementing the Proposed Method on the GPU

Figure 3 illustrates the work flow of the GPU-based particle simulation that
employs the presented technique to compute the particle neighborhood in-
formation. Each white rectangle in the figure represents a rendering pass
by a fragment program and each gray rectangle represents an RGBA float
texture.

4.1. Grid-Map Generation

Algorithm 1 outlines the grid-map generation process. The first two steps
of the algorithm compute 1D grid coordinates of particles (Equation (1)),
store this information in the grid-coordinate texture (texGridCoor) along with
particle IDs, and sort the texture with respect to grid coordinates. The sorting
phase employs the bitonic sort [Purcell et al. 03], which makes log2 N passes
over the texture, where N is the number of particles.

The next step computes the grid-map texture (texGridMap), which corre-
sponds to the coordinatePointer array in Section 3.1. The fragment program
makes a binary search in the sorted grid-coordinate texture for each grid cell to
determine the first particle residing in the grid cell and stores this information
in the R channel of the grid-map texture.

The final step counts the total number of particles belonging to each grid
cell and stores this information in the G channel. Then, a fragment program
takes these values in the grid-map texture as input, checks all 26 neighbors

�

�

“jgt” — 2009/6/9 — 12:05 — page 35 — #5
�

�

�

�

�

�

Bayraktar et al.: GPU-Based Neighbor-Search Algorithm for Particle Simulations 35

Figure 3. The framework for the GPU-based SPH implementation.

of each grid cell, and determines the total number of particles belonging to
each grid cell and its immediate neighbors. This information is stored in the
B channel of the grid-map texture. Finally, there is one more pass on the
grid-map texture to accumulate the values in the B channel and store this
sum in the alpha channel.

�

�

“jgt” — 2009/6/9 — 12:05 — page 36 — #6
�

�

�

�

�

�

36 journal of graphics, gpu, and game tools

Algorithm 1. (The algorithm for grid-map generation.)

for each grid cell i do
Step 1:

compute 1D grid coordinates of particles and store in texGridCoor ;
Step 2:

sort texGridCoor with respect to 1D grid coordinates ;
Step 3:

find first occurrence of i using binary search on texGridCoor (output to channel R);
Step 4:

scan texGridMap to determine the number of particles belonging to i (output to
channel G);

Step 5:
scan texGridMap to determine number of particles belonging to i and its immediate
neighbors (output to channel B);

Step 6:
for j ← 0 to i do

sum the channel G values of j (output to channel A);
end

end

Figure 4 depicts a sample grid-map texture. In this figure,

• the values in the R channel point to the first occurrence of the grid cell
within the grid-coordinate texture texGridCoor ;

• the values in the G channel are the total number of the particles hosted
within the grid cell;

• the B values are the total number of particles hosted in the grid cell
itself and its immediate neighbors;

• the alpha-channel values point to the first occurrence of the grid cell with
the fluid-grid texture (texFluidGrid), which is generated afterwards.

Figure 4. Grid-map texture and fluid-grid texture.

�

�

“jgt” — 2009/6/9 — 12:05 — page 37 — #7
�

�

�

�

�

�

Bayraktar et al.: GPU-Based Neighbor-Search Algorithm for Particle Simulations 37

Algorithm 2. (The algorithm for fluid-grid texture generation.)

for each texture coordinate i of texFluidGrid do
binary search the A channel of texGridCoor for i;
determine host cell c of i;
linear search i within particle list of c;
determine particle ID to be written into the current texture position i;

end

4.2. Generating Fluid-Grid Texture and Neighbor Lookup

Algorithm 2 outlines the fluid-grid texture generation. Fluid-grid texture
(texFluidGrid) is similar to grid-coordinate texture (texGridCoor) in the sense
that it contains particle IDs sorted with respect to their 1D grid coordinates.
The difference between texGridCoor and texFluidGrid is that the latter has
an entry for the particle host cell and, additionally, an entry for each of the
immediate neighbor cells of the host cell. Each particle appears up to 27 times
in texFluidGrid ; once for the host cell and 26 times (which could be less if the
host cell lies on the grid boundary) for each neighboring cell.

To construct texFluidGrid, the fragment program has to decide which parti-
cle ID is to be stored in the current texture coordinate. Basically, the fragment
program determines the grid cell hosting the particle by searching the parti-
cles using the alpha channel of the grid-map texture texGridMap. Then, by
following the pointers of the grid cell to the grid-coordinate texture texGrid-
Coor, the fragment program finds the appropriate particle ID. For example,
assume that the current texture coordinate is 215,425 and the current tex-
GridMap is as shown in Figure 4. Binary searching for this coordinate in
the alpha channel of the texGridMap reveals that the particle resides in the
neighborhood of the grid cell 15,495. Then, to determine the particle ID to
store in the current location, we go through the list of hosted particles in the
neighborhood of grid cell 15,495.

After generating the textures texGridMap and texFluidGrid, finding pos-
sible neighbors of a particle is a simple task. We use the particle’s 1D grid
ID to look up the pointer to texFluidGrid. For example, if the 1D grid cell
coordinate of particle i is 15,494, then i has 258 potential neighbors starting
with 1,807 (see Figure 4).

4.3. Rigid Body–Fluid Particle Neighbor Search

The dashed arrows in Figure 3 show that the rigid-body particles (and solid
boundaries) go through the same process to generate particle-grid information.
In our case, since the rigid objects do not move during the simulation, the
object textures are generated once at the outset. If we choose to move the
boundaries or to add moving objects represented by a set of points, then we
have to generate particle-grid information for each particle at every time step.

�

�

“jgt” — 2009/6/9 — 12:05 — page 38 — #8
�

�

�

�

�

�

38 journal of graphics, gpu, and game tools

 0

 1

 2

 3

 4

 5

 6

 7

20 K 40 K 60 K 80 K 100 K 120 K 140 K 160 K 180 K 200 K

F
ra

m
es

 p
er

 S
ec

on
d

Number of Particles

NVIDIA 9600 GT
NVIDIA 8600 GT
NVIDIA 7600 GS

CPU

Figure 5. The frame rates of the breaking-dam simulation for different number of
particles.

5. Examples

Figure 5 depicts the frame rates of the breaking-dam simulation (Figure 6)
on three different NVIDIATM graphics boards and CPU. The test platform
is a PC equipped with an AthlonTM 64 X2 Dual Core processor and 3 GB
RAM. The specifications of the tested GPUs are given in Table 1. One of the
key observations is that the memory bandwidth is not a crucial factor for the
performance since the texture data is uploaded to the GPU memory once,
and there are virtually no memory transfers between the system memory and
the GPU memory during the simulation. On the other hand, the graphics
clock speed and the number of microprocessors have a major impact on the
performance because of the parallel nature of the algorithm. Because the CPU
version uses Radix Sort that has linear asymptotic complexity, one would
expect that the CPU version behaves better for very large datasets. For all
of the practical datasets we use for experimentation (up to 200K), the GPU
version performs better.

Figure 6. Still frames from the breaking-dam simulation (150K fluid particles).

�

�

“jgt” — 2009/6/9 — 12:05 — page 39 — #9
�

�

�

�

�

�

Bayraktar et al.: GPU-Based Neighbor-Search Algorithm for Particle Simulations 39

GPU

7900 GS 8600 GT 9600 GT

Processor cores 20 32 64

Graphics clock (MHz) 450 540 650

Processor clock (MHz) 1320 1190 1625

Memory clock (MHz) 700 700 900

Memory configuration (GDDR3) 256 MB 1024 MB 1024 MB

Memory interface width 256-bit 128-bit 256-bit

Memory bandwidth (GB/sec) 42.2 22.4 57.6

Table 1. The specifications of the GPUs used in the dam-breaking scene.

Texture Texture Type Memory
(channels) used

Particle coordinate RGB 24 MB

Particle velocity RGB 24 MB

Particle acceleration RGB 24 MB

Particle density R 8 MB

Particle-grid coordinate (texGridCoor) RG 16 MB

Grid-map texture (texGridMap) RGBA 32 MB

Fluid-grid texture (texFluidGrid) RG 432 MB

Table 2. The memory requirements of a SPH simulation based on the proposed
neighbor-search algorithm. The texture dimension is 2048 × 1024.

The memory requirements of the dam-breaking simulation are shown in
Table 2. The size of textures allocated to store particle information is 2048 ×
1024 (storage space for more than two million particles). The total memory
requirement of the simulation is 560 MB.

Figure 7 shows still frames from a simulation where fluid particles flow down
onto a fountain model. The fluid body consists of 64K particles at the end of
the simulation, and the fountain object consists of about 64K particles. The
frame rate we obtain for the simulation is approximately 2 fps on an NVIDIA

Figure 7. Still frames from the fountain simulation.

�

�

“jgt” — 2009/6/9 — 12:05 — page 40 — #10
�

�

�

�

�

�

40 journal of graphics, gpu, and game tools

Figure 8. Fluid particles flow into a cloth mesh.

8600 GT. If we use the neighbor-search algorithm for the CPU, we obtain a
frame rate of approximately 0.5 fps.

In Figure 8, fluid particles flow into a cloth mesh that is simulated by a mass-
spring network. The cloth mesh is composed of 20K particles, and collisions
between the cloth and the fluid particles are detected by the proposed method.
The frame rate is 5 fps on an NVIDIA 8600 GT.

6. Conclusion

This paper presents a neighbor-search algorithm to be used in particle-based
simulations. The algorithm sorts particles with respect to their grid coor-
dinates and registers them to their neighboring grid cells. It then looks for
potential particle proximities by using this grid-particle map. The main fo-
cus of the paper is to propose a method to overcome the current inability of
fragment shaders to do scatter operations.

The primary strength of the proposed method is that it does not, unlike
the existing techniques, make an assumption about the particle density, the
radius of the neighbor search, the number of grid cells, and the grid-cell size.
This is especially important when simulating compressible fluids and dense
natural phenomena, e.g., sand, smoke, and soil. The algorithm yields optimum
performance if the radius of the neighbor search is one cell.

The main shortcoming of the method is that it is slower than the simi-
lar sorting-based grid methods for fixed grid particle density, e.g., [Harada
et al. 07]. This is because of the expensive grid-map generation phase in our
method. As a future work, the method can be implemented by using Compute
Unified Device Architecture (CUDA), which has scatter capabilities.

References

[Cleary et al. 07] P. W. Cleary, S. H. Pyo, M. Prakash, and B. K. Koo. “Bubbling
and Frothing Liquids.” ACM Transactions on Graphics 26:3 (2007), Article
No. 97, 6 pages.

�

�

“jgt” — 2009/6/9 — 12:05 — page 41 — #11
�

�

�

�

�

�

Bayraktar et al.: GPU-Based Neighbor-Search Algorithm for Particle Simulations 41

[Gingold and Monaghan 77] R. A. Gingold and J. J. Monaghan. “Smoothed Parti-
cle Hydrodynamics: Theory and Application to Non-Spherical Stars.” Monthly
Notices of the Royal Astronomical Society 181 (1977), 375–389.

[Hadap and Magnenat-Thalmann 01] S. Hadap and N. Magnenat-Thalmann.
“Modeling Dynamic Hair as a Continuum.” Computer Graphics Forum 20:3
(2001), 329–338.

[Harada et al. 07] T. Harada, S. Koshizuka, and Y. Kawaguchi. “Smoothed Parti-
cle Hydrodynamics on GPUs.” In Proc. of Computer Graphics International,
pp. 63–70. Geneva: Computer Graphics Society, 2007.

[Kipfer and Westermann 06] P. Kipfer and R. Westermann. “Realistic and Interac-
tive Simulation of Rivers.” In GI ’06: Proceedings of Graphics Interface ’06,
pp. 41–48. Toronto: Canadian Information Processing Society, 2006.

[Kipfer et al. 04] P. Kipfer, M. Segal, and R. Westermann. “UberFlow: A GPU-
Based Particle Engine.” In Proc. of the ACM SIGGRAPH/EUROGRAPHICS
Conference on Graphics Hardware, pp. 115–122. Aire-la-Ville, Switzerland: Eu-
rographics Association, 2004.

[Melax 00] S. Melax. “Dynamic Plane Shifting BSP Traversal.” In Proc. of Graphics
Interface ’00, pp. 213–220. Toronto: Canadian Information Processing Society,
2000.

[Miller and Pearce 89] G. S. P. Miller and A. Pearce. “Globular Dynamics: A Con-
nected Particle System for Animating Viscous Fluids.” Computers and Graph-
ics 13:3 (1989), 305–309.

[Monaghan 92] J. J. Monaghan. “Smoothed Particle Hydrodynamics.” Annual
Review of Astronomy and Astrophysics 30 (1992), 543–574.

[Müller et al. 03] M. Müller, D. Charypar, and M. Gross. “Particle-Based
Fluid Simulation for Interactive Applications.” In Proc. of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pp. 154–159. Aire-
la-Ville, Switzerland: Eurographics Association, 2003.

[Müller et al. 04] M. Müller, S. Schirm, M. Teschner, B. Heidelberger, and M. Gross.
“Interaction of Fluids with Deformable Solids.” Journal Computer Animation
and Virtual Worlds 15:3–4 (2004), 159–171.

[Pharr and Fernando 05] M. Pharr and R. Fernando. GPU Gems 2: Programming
Techniques for High-Performance Graphics and General-Purpose Computation.
Reading, MA: Addison-Wesley Professional, 2005.

[Purcell et al. 03] T. J. Purcell, C. Donner, M. Cammarano, H. W. Jensen, and
P. Hanrahan. “Photon Mapping on Programmable Graphics Hardware.” In
Proc. of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics
Hardware, pp. 41–50. Aire-la-Ville, Switzerland: Eurographics Association,
2003.

[Reeves 83] W. T. Reeves. “Particle Systems - A Technique for Modeling a Class
of Fuzzy Objects.” ACM Transactions on Graphics 2:2 (1983), 91–108.

�

�

“jgt” — 2009/6/9 — 12:05 — page 42 — #12
�

�

�

�

�

�

42 journal of graphics, gpu, and game tools

[Terzopoulos et al. 91] D. Terzopoulos, J. Platt, and K. Fleischer. “Heating and
Melting Deformable Models.” The Journal of Visualization and Computer An-
imation 2:2 (1991), 68–73.

[Teschner et al. 03] M. Teschner, B. Heidelberger, M. Müller, D. Pomerantes, and
M. H. Gross. “Optimized Spatial Hashing for Collision Detection of Deformable
Objects.” In Proc. of Vision, Modeling, Visualization (VMV’03), pp. 47–54.
Aka GmbH: Heidelberg, Germany, 2003.

[Teschner et al. 04] M. Teschner, S. Kimmerle, G. Zachmann, B. Heidelberger,
L. Raghupathi, A. Fuhrmann, M.-P. Cani, F. Faure, N. Magnetat-Thalmann,
and W. Strasser. “Collision Detection for Deformable Objects.” In Eurographics
State-of-the-Art Report (EG-STAR), pp. 119–139. Aire-la-Ville, Switzerland:
Eurographics Association, 2004.

[Tonnesen 91] D. Tonnesen. “Modeling Liquids and Solids Using Thermal Parti-
cles.” In Proc. of Graphics Interface ’91, pp. 255–262. Toronto: Canadian
Information Processing Society, 1991.

Web Information:

Additional material can be found online at http://jgt.akpeters.com/papers/
BayraktarEtAl09/

Serkan Bayraktar, Department of Computer Engineering, Bilkent University,
06800, Bilkent, Ankara, Turkey (serkan@cs.bilkent.edu.tr)

Uǧur Güdükbay, Department of Computer Engineering, Bilkent University,
06800, Bilkent, Ankara, Turkey (gudukbay@cs.bilkent.edu.tr)

Bülent Özgüç, Department of Computer Engineering, Bilkent University,
06800, Bilkent, Ankara, Turkey (ozguc@bilkent.edu.tr)

Received June 27, 2008; accepted in revised form April 17, 2009.

