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Abstract—In recent years, there has been a great effort in the
research of implementing automated diagnostic systems for tissue
images. One major challenge in this implementation is to design
systems that are robust to image variations. In order to meet this
challenge, it is important to learn the systems on a large num-
ber of labeled images from a different range of variation. How-
ever, acquiring labeled images is quite difficult in this domain,
and hence, the labeled training data are typically very limited. Al-
though the issue of having limited labeled data is acknowledged
by many researchers, it has rarely been considered in the system
design. This paper successfully addresses this issue, introducing
a new resampling framework to simulate variations in tissue im-
ages. This framework generates multiple sequences from an image
for its representation and models them using a Markov process.
Working with colon tissue images, our experiments show that this
framework increases the generalization capacity of a learner by
increasing the size and variation of the training data and improves
the classification performance of a given image by combining the
decisions obtained on its sequences.

Index Terms—Automated cancer diagnosis, cancer, histopatho-
logical image analysis, Markov models, resampling.

1. INTRODUCTION

OLORECTAL cancer is one of the most common yet most
C curable cancer types in western countries. Its survival rates
increase with early diagnosis and selection of a correct treatment
plan, for which correct grading is critical [1]. The final diagnosis
and grading of colorectal cancer is based on histopathological
assessment of biopsy tissue samples. In this assessment, pathol-
ogists decide on the presence of cancer based on the existence
of abnormal formations in a tissue and determine cancer grade
based on the degree of the abnormalities. As this assessment
mainly relies on visual interpretation, it may contain subjectiv-
ity [2]. Thus, it has been proposed to use computational methods
that help decrease the subjectivity level by providing quantita-
tive measures.
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The previous methods provide automated classification sys-
tems that use a set of features to model the difference between
the normal tissue appearance and corresponding abnormalities.
These features are usually defined by the motivation of mimick-
ing a pathologist, who uses morphological changes in cell nuclei
and organizational changes in the distribution of tissue compo-
nents to detect abnormalities. Morphological methods aim to
model the first kind of these changes by extracting features that
quantify the size and shape characteristics of cell nuclei. These
features can be used to characterize an individual nucleus [3]
as well as an entire tissue by aggregating the features of its
nuclei [4]. Extraction of morphological features requires de-
termining the exact locations of nuclei beforehand, which is,
however, very challenging for histopathological tissue images
due to their complex natures [5].

Structural methods are designed to characterize topological
changes in tissue components by representing the tissue as a
graph and extracting features from this graph. In literature, al-
most all methods construct their graphs considering nuclear
components as nodes and generating edges between these nodes
to encode spatial information of the nuclear components. The
studies use different graph generation methods including De-
launay triangulations (and their dual Voronoi diagrams) [6], [7],
minimum spanning trees [4], [8], probabilistic graphs [9], [10],
and weighted graphs [11]. To model topological tissue changes
better, we have recently proposed to consider different tissue
components as nodes and construct a color graph on these nodes,
in which edges are colored according to the tissue type of their
end points [12]. Likewise, the main challenge of defining struc-
tural features is the difficulty of locating the components. The
incorrect localization may affect the success of the classification
systems.

Textural methods avoid difficulties relating to correct local-
ization of cells (and other components) by defining their textures
on pixels, without directly using the tissue components. They as-
sume that abnormalities from the normal tissue appearance can
be modeled by texture changes observed in tissues. There are
many ways to define textures for tissues; they include using in-
tensity/color histograms [13], co-occurrence matrices [14], [15],
run-length matrices [16], multiwavelet coefficients [17], local
binary patterns [18], [19], and fractal geometry [13], [20]. Textu-
ral features typically characterize small regions in tissue images
well but they may have difficulties to find a constant texture
characterizing the entire tissue. To alleviate this difficulty, it
is proposed to divide the image into grids, compute textural
features on the grids, and aggregate the features for characteriz-
ing the tissue [14]. Although grid-based approaches improve
accuracies, they may still have difficulties arising from the
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Fig. 1. Cytological components in normal and cancerous colon tissues. Differ-
ent components are illustrated with different colors: green for luminal regions,
red for stromal regions, purple for epithelial cell nuclei, and blue for epithelial
cell cytoplasms. Colon glands are confined with black boundaries.

Fig. 2. Histopathological images of colon tissues: (a), (b) Normal and (c)-(d)
cancerous. Nonglandular regions in images are shaded with gray.

existence of irrelevant tissue regions. For example, for diag-
nosing colon adenocarcinoma, which accounts for 90-95 %
of colorectal cancers, pathologists examine glandular tissue re-
gions since this cancer type originates from glandular epithelial
cells and causes deformations in glands (Fig. 1). Nonglandu-
lar regions, which do not include epithelial cells, are irrelevant
within the context of colon adenocarcinoma diagnosis. More-
over, such nonglandular regions can be of different sizes (Fig. 2).
Thus, directly including these regions into texture computation
may result in lower accuracies [21]. Aggregation methods that
consider the existence of such irrelevant regions have potential
to give better accuracies.

Additionally, all classification systems face a common diffi-
culty regardless of their feature types: large variance observed
in tissue images. This is mainly because of the variation among
different biopsies. The variance becomes even larger due to
nonideal steps in tissue preparation. Thus, to make success-
ful generalizations [22], a classification system usually needs a
large number of images from different patients in its training.
On the other hand, this number is usually very limited since
acquiring a large number of labeled tissue images from a large
number of patients is quite difficult in this domain. When such
limited data are used for training, the learned systems may be
vulnerable to variations in tissue images, also leading to unstable
classifications.

In this paper, we propose a new framework for the effective
and robust classification of tissue images even when only lim-
ited data are available. In the proposed framework, our main
contributions are the introduction of a new resampling method
to simulate the variations in tissue images for learning better
generalizations and the use of this method for obtaining more
stable classifications. The resampling method relies on gener-
ating multiple sequences from an image, each of which corre-
sponds to a “perturbed sample” of the image, and modeling the
sequences using a first order discrete Markov process. Work-
ing with colon tissue images, our experiments show that such a
resampling method is effective in increasing the generalization
capacity of a learner by increasing the size and variation of the
training set as well as boosting the classifier performance for
an unseen image by combining the decisions of the learner on
multiple sequences of that image.

This study differs from the previous tissue classification meth-
ods in two main aspects. First, it proposes a new framework in
an attempt to alleviate an issue of having limited labeled train-
ing data. For that, it introduces the idea of generating perturbed
images from the training data and modeling them by a Markov
process. Although the issue of having limited training data is
acknowledged by many researchers, it has rarely been consid-
ered in the design of tissue classification systems. Second, it
proposes to classify a new image using its perturbed samples.
The use of different samples of the same image is more effective
to reduce the negative outcomes of large variance observed in
tissue images, as opposed to the use of the entire images at once.
Moreover, modeling the perturbed samples with Markov pro-
cesses provides an effective method in modeling the irrelevant
regions.

There also exist resampling techniques in machine learning
literature. In the first category, random sampling methods, such
as bootstrapping, are used especially for balancing unbalanced
datasets [23]. However, such methods select new samples from
the original data without changing their contents. Thus, they do
not increase the variability of a training set although they can
increase the size. In the second category, there exist resampling
methods, such as jittering and perturbation, that help increase the
variability. These methods obtain samples slightly modifying
the original data [24]. The resampling method proposed by this
study can be considered as an example of the latter category.
It introduces a framework that modifies (perturbs) the image
content to increase the data variability.

II. METHODOLOGY

The proposed resampling-based Markovian model (RMM)
relies on generating perturbed samples (sequences) from an
image and using them in learning and classification. It includes
two main parts: sequence generation and Markov modeling.

A. Sequence Generation

Let I be a tissue image that is to be either classified or used in
training. The RMM represents this image by N of its perturbed
samples, I = {S(™)1N_ each of which is represented by a

sequence of T observation symbols, 5" = O\ o{") .. o).
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(For better readability, we will drop n from the terms unless
its use is necessary. Thus, each sample is represented by S =
0,0y ...071.)

The first step of generating a sequence S from the image [
is to select 7' random data points from the image and character-
ize them by extracting features. The RMM proposes a generic
framework that does not impose any particular feature type.
Thus, one can use his/her own features within this framework to
characterize the data points. In this work, we characterize each
point by using pixels of its neighborhood. To this end, we locate
a window at the center of each point and extract four simple
features that quantify color distribution and texture of the pixels
falling within this window. These four features are defined on
the quantized pixels. The k-means algorithm is used to quantize
the pixels of the image [ into three, each of which corresponds
to one dominant color (white, pink, or purple) in a tissue stained
with hematoxylin-and-eosin. The first three features are the ra-
tios of these colors over the window. The last feature is a texture
descriptor (J-value) that quantifies how uniform the quantized
pixels are distributed in space [25].

After selecting the data points and extracting their features,
the second step is to discretize the features into K observation
symbols since discrete Markov models are used. For that, we use
k-means clustering to learn K clusters on the features of the data
points selected from the training images'. Then, for a new data
point P, we use the label of the clustering vector (observation
symbol O) whose features are the closest to those of the data
point. At the end of this step, each sample is represented with a
set of observation symbols, but not as a sequence of them. Thus,
the next step is to order the data points and construct a sequence
from their observation symbols.

The data points are so ordered as to minimize the distance
between the adjacent points. Formally, this ordering problem
can be represented as finding S = 0105 ... O such that

T
> dist(Py, ) (1

t=2

is minimized. Here dist(u, v) is the Euclidean distance between
the points u and v and Oy is the observation symbol defined for
the point P;. This problem corresponds to finding the shortest
Hamiltonian path among the given points, which is known as
NP-complete. Thus, we use a greedy solution for ordering. This
solution selects the point closest to the top-left corner as the first
data point P; and then, at every iteration ¢, it selects the data
point P; that minimizes dist(P;_1, P;). Note that it is possible
to obtain the orders using different methods. For example, one
can construct a graph on the selected points based on proximity
and obtain a seriated graph using Fiedler vectors [26]. Although
such methods may give better sequence orders, they typically
have higher computational requirements. The appendix gives

'We learn clusters selecting 100 random data points from each training image.
Although the number of selected points does not have too much effect for larger
training sets, its smaller values lead to decreased performance when smaller
training sets are used. In general, this number should be selected large enough
so that different “good” clusters can be learned. However, it should be selected
smaller to decrease the computational time of training.
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Fig. 3. Sequences generated for the tissue images given in Fig. 2(c) and (d).

the pseudocode for observation symbol learning and sequence
generation.

At the end of this step, we have obtained N sequences, which
are expected to model variances in tissue images better. To il-
lustrate the reason behind this, let us consider the images shown
in Fig. 2(c) and (d) to belong to the training and test sets, re-
spectively (we will refer to these images as I2c and I2d). In
the RMM, instead of considering I2c as an individual training
instance, we generate multiple sequences from I2c and put all
these sequences in the training set. Fig. 3(a) illustrates five such
sequences; here a data point is represented with its window, in
which its features are extracted. Likewise, instead of consid-
ering I2d as an individual test instance, we generate multiple
sequences from I2d, classify them by the Markov models, and
combine the class of each sequence by voting. Fig. 3(b) illus-
trates five sequences to be classified. Now suppose that our
model works on entire images but not sequences. In this case,
since the training image I2c and the test image I2d show differ-
ences at the pixel level, the classifier, which was learned on the
training set that includes I2c, may give an incorrect classifica-
tion for I2d. Next suppose that our model works on sequences.
In this case, it is more likely to correctly classify the sequences
of I2d (and thus I2d) thanks to the existence of the first three
sequences of I2c in the training set. Note that this process may
generate some noisy sequences that introduce erroneous data
for training. However, since the sequence length is typically
selected as large, we expect the sequences to contain only par-
tial noises. Moreover, as the RMM uses multiple sequences but
not a single one, we expect this kind of erroneous sequences
to be tolerated by the others provided that a large number of
sequences are generated.

B. Markov Modeling

The classification of a given image I is done using its se-
quences. For each sequence .S, the posterior probability of every
class C,, is computed and the class C* that maximizes these
posterior probabilities is selected.

C* = argmax P(C,, | S). 2)

m
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Subsequently, a majority voting scheme is used to combine the
selected classes of the sequences.

Posteriors P(C,, | S) are estimated using first order discrete
Markov models; it is assumed that there exist dependencies
between subsequent observation symbols and that there is one-
to-one correspondence between observation symbols and states.
Thus, in the proposed RMM, the states are observable and each
sequence S = 0105 ... Op satisfies the Markovian property, in
which the current state (observation symbol) depends on only
its predecessor state.

P(Ot =v; | Otfl = ’Uj,Ot,Q = ’Uk7...)
= P(Ot = V; | Ot,1 = ’Uj). (3)

For each class C,,, the Markov model has three parameters:
the number of states (observation symbols) I, initial state
probabilities IT,, = {w(v; | C},,)}, and state transition proba-
bilities A,, = {a(v;,v; | Cy,)}, where

W(Ui‘cm):P(Ol :UZ‘|Cm) (4)
a(vi,v; | Cp) = P(Opp1 = vj | Crp and Oy = v;). (5)

For learning the probabilities I1,,, and A,,, a new training set,
D,, = {8 | S(") ¢ C,,}, is formed generating N sequences
from each training image that belongs to the class C,,. Using
this new training set, the probabilities are learned by maximum
likelihood estimation that uses additive smoothing [27] with
& = 1. The class likelihood is written as

T-1
P<S | Om) = 7T-(Ol | Cm) H a(OtaOt+1 | Om)- (6)

t=1

The posteriors P(C,, | S) are calculated by the Bayes rule as-
suming that each class is equally likely. The steps of the RMM
to classify an unseen image are given in Fig. 4.

III. EXPERIMENTS
A. Dataset

The dataset contains 3236 images of colon tissues of 258
randomly selected patients from the Pathology Department
Archives in Hacettepe University Medical School. The tissues
are stained with hematoxylin and eosin and the images are taken
with a Nikon Coolscope Digital Microscope using a 20 x mi-
croscope objective lens and 480 x 640 image resolution.

A schematic overview of the proposed resampling-based Markovian model (RMM) for classifying a given image.

We randomly divide the patients into two groups such that
the training set contains 1644 images of the first half of the
patients and the test set contains 1592 images of the remaining.
We label each image with one of the three classes: normal, low-
grade cancerous, or high-grade cancerous®. The training set
contains 510 normal, 859 low-grade cancerous, and 275 high-
grade cancerous tissues. The test set contains 491 normal, 844
low-grade cancerous, and 257 high-grade cancerous tissues.

B. Comparisons

To investigate the effectiveness of our proposed method, we
compare its results with those of the two sets of algorithms. The
first set includes algorithms that define their features similar to
the RMM but take different algorithmic steps for classification.
We particularly implement these algorithms to understand the
effectiveness of the sequence generation and Markov modeling
steps proposed by the RMM. The second set includes algorithms
that use different textural and structural features proposed by
existing methods. We use them to compare the performance of
the RMM and previous approaches.

1) Algorithms with Similar Features: First, we implement
a grid-based counterpart of our method. In this GridBasedAp-
proach, an image is divided into grids, the same RMM features
are extracted for the grids, and the grid features are averaged
all over the tissue. Then, a support vector machine (SVM) with
a linear kernel® is used for classification. This method directly
uses grid features, as opposed to the RMM where grids are first
discretized and then used for classification. Besides, it does not
use resampling-based voting, which votes the decisions of a
classifier obtained for the samples of the same image.

Second, we modify the previous grid-based approach so that it
includes resampling-based voting. This VotingApproach gener-
ates NV samples from a test image similar to the RMM, classifies
them using the learned SVM, and combines the decisions by
majority voting. This method selects 1" random grids to gener-
ate a sample and defines the features of the sample by averaging
those of the selected grids.

>The images are labeled by Prof. C. Sokmensuer, MD, who is specialized in
colorectal carcinomas.

3We also conduct our experiments using an RBF kernel. However, an RBF
kerneled SVM is negatively affected from skewed class distribution and favors
the low-grade over the high-grade cancerous class. Hence, we use a linear
kerneled SVM, which is less likely to overfit the distribution of training data.
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The previous two approaches directly use the extracted grid
features, without discretizing the grids. The BagOfWordsAp-
proach discretizes the grids into K clusters in the same way of
the RMM, forming the visual words of a vocabulary. Then, it
divides a test image into grids, assigns each grid to its closest
word, and uses the words’ frequency to characterize the image.
It also uses an SVM with a linear kernel for classification.

2) Algorithms with Different Features: First, we calculate
the first-order histogram features. The IntensityHistogramFea-
tures include mean, standard deviation, kurtosis, and skewness
values calculated on the intensity histogram of a gray-level tis-
sue image [28]. To reduce the effects of noise or small intensity
differences, pixel intensities are quantized into N bins. Addi-
tionally, we calculate the grid-based version of these features.
In calculating the IntensityHistogramGridFeatures, instead of
computing a single histogram for an entire image, we divide the
image into grids, find the histogram of each grid, and average
the features of the grids all over the image.

Next, we compute the CooccurrenceMatrixFeatures that use
second-order statistics. They include energy, entropy, contrast,
homogeneity, correlation, dissimilarity, inverse difference mo-
ment, and maximum probability features derived from a gray-
level cooccurrence matrix of an entire image [14]. In our exper-
iments, for a given distance, we compute cooccurrence matrices
at eight different directions, § = {in/4 | 0 < i < T}, take their
average to obtain a rotation invariant cooccurrence matrix, and
calculate the features on this averaged matrix. Here gray-level
pixel intensities are also quantized into N bins. Likewise, as
their grid-based version, we calculate the CooccurrenceMa-
trixGridFeatures.

We use two sets of structural features in comparisons. The
first set is extracted on color graphs [12]. In a color graph, nodes
correspond to different types of tissue components located by
a circle-fit algorithm, which has two parameters, and edges are
defined by a Delaunay triangulation of these nodes. After col-
oring the edges according to their end nodes, colored versions
of the average degree, average clustering coefficient, and diam-
eter are defined as the ColorGraphFeatures. The second set is
extracted on a standard (colorless) Delaunay triangulation that
is constructed on nuclear components located using the circle-
fit algorithm. The DelaunayTriangulationFeatures include the
average degree, average clustering coefficient, and diameter of
the entire Delaunay triangulation as well as the average, stan-
dard deviation, minimum-to-maximum ratio, and disorder of
edge lengths and triangle areas [8].

C. Parameter Selection

The proposed resampling-based Markovian model (RMM)
has four external model parameters: 1) the size of a window, in
which the features of a sampled point are defined, 2) the number
of states K in a Markov model, 3) the length of a sequence 7T,
and 4) the number of sequences N generated for each image.
Note that the number of states and observation symbols is the
same in observable Markov models. In our experiments, we
consider all possible combinations of the following parameter
sets: winSize = {10, 20,40,80}, K = {4,8,16,32,64}, T =

TABLE 1
PARAMETERS OF THE ALGORITHMS TOGETHER WITH THEIR VALUES
CONSIDERED IN CROSS VALIDATION

GridBasedApproach Grid size = {10, 20, 40,80}
VotingApproach Grid size = {10, 20, 40,80}
Number of grids = {10, 25, 50, 100, 150}
Trial number = {10, 25, 50,100, 150}
BagOfWordsApproach Number of words = {4, 8,16, 32,64}

Grid size = {10, 20, 40,80}

Bin number = {4, 8, 16, 32}

Bin number = {4, 8,16, 32}

Grid size = {10, 20, 40,80}

Bin number = {4, 8,16, 32}

Distance = {5, 10, 20,40}

Bin number = {4, 8, 16, 32}

Distance = {5, 10, 20, 40}

Grid size = {10, 20, 40, 80}
Structuring element size = {3,5,7,9}
Circle area threshold = {5, 10, ..., 50}
Structuring element size = {3,5,7,9}
Circle area threshold = {5, 10, ...,50}

IntensityHistograms
IntensityHistogramGrids

CooccurrenceMatrices

CooccurrenceMatrixGrids

ColorGraphs

DelaunayTriangulations

{10, 25, 50,100,150}, and N = {10, 25,50, 100, 150}. Using
3-fold cross-validation on training images, we select the pa-
rameter combination that gives the maximum accuracy. The
selected parameters are winSize = 40, K = 64, T = 100, and
N =100.

The other algorithms have also parameters, which are listed
in Table I. In addition to these, they have the SVM param-
eter C' as they use SVM classifiers with linear kernels [29].
Similarly, we use cross-validation on training images to se-
lect the parameters of each algorithm. The candidate val-
ues of each parameter are given in Table I. For all algo-
rithms, the same set is considered for the SVM parameter:
c=112,...,9,10,20,...,90, 100, 150,...,950,1000}.

D. Test Results

As tissue images typically contain a considerable amount of
variance, classifiers usually require large amount of data to learn
this variance better. However, acquiring large datasets from a
large number of patients is quite difficult in this domain*. To
address this problem, we conduct our experiments using all
available training data as well as using less training data. For that,
we randomly divide the training set into smaller subsets such that
each subset includes P % of the training data. For all algorithms,
we repeat the experiments when P is selected as 1, 2.5, 5, 10, 25,
and 50 %. Since there are more than one subset for a selected P
value (e.g., 20 subsets when P = 5 %), we consider all subsets
and report the average results. Besides, point selection in the
RMM involves randomness. Thus, for the RMM, we repeat
the experiments for 40 times with the selected parameters and
also consider these runs in average computation. Fig. 5 plots
the overall test set accuracies as a function of P. Additionally,
Table II reports the class accuracies® for the selected P values.

“4For the first sight, our dataset seems to be a counter example. However, it is
worth noting that the preparation of this dataset, which includes case selection,
archive search, slide examination, image acquisition, and labeling steps, takes
more than three years. Thus, this dataset is actually a good example that indicates
the difficulty of acquiring large datasets in this domain.

SFor a particular class, the class accuracy is calculated considering only the
results of the classifier obtained on the images of this particular class.
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Performance of the algorithms as a function of the training set size: (a) The test set accuracies of the algorithms that use features similar to those of the

RMM and (b) the test set accuracies of the algorithms that use features different than those of the RMM.

TABLE Il
CLASSIFICATION ACCURACIES ON THE TEST SET AND THEIR STANDARD DEVIATIONS
P =100% P=10% P=5% P=1%
Normal [ Low High Normal | Low High Normal | Low High Normal Low High
M 95.64 | 87.77 | 8856 | 9522 | 8045 | 8646 | 94.60 | 90.76 | 8232 | 8646 | 9567 | 45.12
g (+0.18) | (£0.32) | (£0.39) | (+0.58) | (£1.99) | (£2.94) | (£1.37) | (£2.84) | (£527) | (£6.56) | (£2.92) | (+19.42)
5 9031 | 8430 | 8296 | 8725 | 85.12 | 7720 | 8467 | 8356 | 4596
E GridBasedApproach 9165 | 8531 | 8560 | 13700y (£328) | (23.13)| (£539)|(24.97)| (£8.15) | (29.38) | (49.60) | (£18.97)
; 0053 | 8402 | 83.62 | 8765 | 8484 | 7880 | 8231 | 8425 | 4361
5| VeringApproach 9084 | 8472 1 8638 | 105 | (+3.21)| (£2.96) | (+5.59) |(+4.73)| (£7.35) | (£9.38) | (+£9.60) | (£18.97)
E 9373 | 9020 | 61.40 | 9231 | 90.59 | 5848 | 8862 | 8730 | 4331
@ | BagOfWordsApproach AL | 8732 1 7665 | L gy | (4£2.04) | (£9.18) | (£2.84) | (+£4.05)| (£9.25) | (+5.43) | (+6.89) | (+£18.88)
— 7904 | 6964 | 6323 | 7708 | 69.54 | 5743 | 6460 | 71.84 | 2939
IntensityHistograms 8065 | 69.55 | 70.04 |1 358)|(+597)|(+8.84)| (+4.84) | (£0.44) | (£10.19)| (+13.78) | (+12.93) | (+14.38)
” — : 7770 | 7335 | 7525 | 7567 | 7335 | 7056 | 6922 | 7590 | 33.8
g| [miensityHistogramGrids | 7882 | 7417 | 7860 |13 33) ] (£561)|(£3.80)| (£6.21)|(£7.65)| (£6.43) | (£13.85) | (+12.96) | (£18.57)
g : 7888 T 8115 | 7023 | 7507 | 7926 | 6504 | 6666 | 76.17 | 4354
& | CooccurrenceMatrices 83.10 | 8164 | 7782 | 1 400)| (+4.02) | (£8.32)| (£6.75) | (£6.37) | (£11.12)| (£15.27) | (£10.58) | (+18.49)
B — 83.77 T 8395 | S1.87 | 8145 | 82.64 [ 7700 | 7197 | 75.13 | 48.36
g CooccurrenceMatrixGrids | 87.58 | 84.12 | 8560 | 30| (1305)| (£4.89) | (£5.01)](£5.39)| (£9.44) | (£12.92) | (L11.15) | (420.50)
= m— 8337 [ 8423 | 7564 | 8522 | 8579 | 6270 | 8089 | 8293 | 49.03
8| ColorGraphs 9267 | 8246 | 8638 | (| 3735 | (42.55) | (4£5.37)| (+4.38) | (+5.26)| (48.62) | (+9.32) | (£7.76) | (£20.92)
: ; 8680 T 7275 | 7494 | 8203 | 7531 | 6193 | 7296 | 73.60 | 418l
DelaunayTriangulations 89.61 71.56 | 87.55 (£1.91) | (£7.63) | (£8.62) | (£6.20) | (+8.68) | (£9.13) | (+12.46) | (+10.24) | (+17.11)

The results are obtained when all training data are used (when P = 100% and when limited training data are used (when P = 10 %, P = 5% and P = 1%.

When all training data are used (P = 100 %), the results show
that the RMM improves the accuracy of the other algorithms;
the McNemar’s test with Bonferroni correction gives that the
overall accuracy improvement is statistically significant with
o = 0.05. This may be due to the following: A tissue image
typically contains irrelevant information and noise at the pixel
level. Thus, feature extraction, which transforms the image into
a feature domain, may result in important data loss. Since the
RMM generates sequences (features) of the same image using
different image subregions, which can be very divergent from
one sequence to another, the sequences are expected to include
different data loss. This is opposed to the case of many algo-
rithms that extract just a single feature vector from the same
image. In that sense, the RMM contributes more information to
the feature domain, although it does not add any new informa-
tion in the image (entire data) domain.

The results also reveal that the algorithms that use grid-based
aggregation usually perform better than those that use the im-
age in its entirety. This is attributed to the issue of finding a
constant texture for an image that contains irrelevant regions in
the context of classification (see Fig. 2). The RMM, which can
be considered as an aggregation method, further improves these

grid-based algorithms. The RMM yields better accuracies than
the GridBasedApproach and the VotingApproach, which do not
use the discretized grids in their classification. This indicates
the usefulness of state definition of the RMM. Besides, compar-
ing the RMM against the VotingApproach, the results show that
generating sequences is more effective in resampling-based vot-
ing. The BagOfWordsApproach uses state definition but does not
employ resampling-based voting in its classification. The RMM
improves the performance of the BagOfWordsApproach, show-
ing the effectiveness of using resampling-based voting. This
improvement is especially observed for correct classification
of high-grade cancerous tissues; as future research work, one
could incorporate the proposed framework into a bag-of-words
approach. Additionally, none of the algorithms represent an im-
age using sequences. The results also indicate the importance
of this representation.

When partial data are used for learning, we observe that the
test set accuracies decrease with the decrease in the number of
training samples. For the other methods, this decrease becomes
noticeable when P < 25 % (i.e., when < 411 samples are used
for training). However, the proposed RMM is able to keep the
test accuracy high even when 5 % of the training data are used.
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Note that, in these plots, there is a slight increase in the accuracy
of the RMM when P decreases. This is due to the unbalanced
class distribution in the test set. As P decreases, the accuracy of
the low-grade class increases at the expense of decreasing the
high-grade class accuracy. As the number of low-grade cancer-
ous tissue images is relatively high, this slightly increases the
overall accuracy.

The high performance of the RMM is attributed to the follow-
ing. The other algorithms do not attempt to vary training images
for better generalizations. They just use the available training
images in their current form. On the other hand, the RMM has
the flexibility to increase the variety of training images by re-
sampling. It can adapt itself to the cases where there are less
training images by increasing the number of sequences it gen-
erates from an individual image. In the experiments, we use this
property and adjust the number of generated sequences accord-
ing to the value of P (e.g., if N sequences are generated when
the entire dataset is used, 20 x N sequences are generated when
P =5 %). This property becomes especially important when
the training set becomes smaller. This may be one of the major
reasons behind obtaining stable accuracy results until P = 5 %.
When P < 5 %, a decrease is observed also for the RMM. This
is due to a relatively higher accuracy decrease in high-grade
cancerous tissues (Table II). The number of high-grade cancer-
ous tissue images is relatively smaller in the training set and
resampling is not able to sufficiently vary the data with such a
small size.

E. Parameter analysis

The RMM has four external parameters: window size, num-
ber of states, sequence length, and number of sequences. The
effects of each parameter on test accuracies are investigated.
For that, three of the four parameters are fixed and the accuracy
is observed as a function of the other parameter. Using the en-
tire training data for learning, we give the parameter analysis
performed on the test set in Fig. 6.

The window size controls the size of a region, in which the
features of a single data point are defined. Smaller regions do not
cover enough pixels to characterize the data points satisfactorily,
resulting in lower accuracies. On the other hand, larger regions
cover pixels of different characteristics, and hence, give too
generic features for the data points. This slightly decreases the
classification accuracy.

The number of states determines the number of observation
symbols in an observable Markov model. In the RMM, observa-
tion symbols represent tissue subregions with different charac-
teristics. Thus, larger values of this parameter allow increasing
the variety of subregions. This is effective in increasing the
accuracy. On the other hand, larger numbers also increase the
number of transition probabilities to be estimated. If this esti-
mation is not good enough, larger numbers may decrease the
accuracy. Although this effect is not seen in Fig. 6(b), we ob-
serve it when we use less data (smaller P) for estimation. In
such cases, better accuracies could be obtained by using smaller
values of this parameter.
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Fig. 6. Test accuracies as a function of the model parameters: (a) Window
size, (b) number of states, (c) sequence length, and (d) number of sequences.
TABLE III
TEST SET RESULTS FOR ALTERNATIVE DESIGN CHOICES
Overall Difference
Proposed RMM 90.32 £+ 0.18 -
RMM perturbing entire images 87.98 £+ 0.20 Yes
RMM using SIFT points 90.75 + 0.14 No
RMM with random initial points 90.28 + 0.15 No
RMM using zero-order Markov models | 87.54 £ 0.16 Yes

The sequence length affects the size of a region a sample
covers. If itis selected too small, the sample does not cover large
enough area to characterize the image. Increasing the length
increases the accuracy.

The number of sequences controls the number of samples
generated to represent a tissue image. If it is selected too small,
there is a risk of not obtaining representative samples from the
image. Moreover, the RMM does not use any normalization to
characterize its windows. Hence, it may label two biologically
similar windows differently (e.g., a window comprising a small
luminal region and another one comprising a large luminal re-
gion can be labeled differently). On the other hand, this may be
offset by the sequence generation step since the RMM is capable
of generating a variety of sequences for the same image, pro-
vided that a sufficient number of sequences is generated. Thus,
the number of sequences should not be selected too small. Ad-
ditionally, it should be more than one to use the voting scheme
in classification.

In addition to these parameters, the RMM includes implicit
design choices. In order to understand their effects, we repeat
our experiments using the same external parameters but with
alternative choices. We summarize our results in Table III. In
this table, we report the overall accuracies as well as whether or
not there exists statistically significant difference between our
design choices and their alternatives (with o = 0.05).

The RMM perturbs images by taking their different parts;
however, one may prefer perturbing the entire images. For that,
an image can be divided into windows and these windows can
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be characterized with states and reordered randomly. Our ex-
periments reveal that perturbing entire images is significantly
less effective. We attribute this to the diversity of the generated
sequences. When an entire image is used, the diversity is ex-
pected to be smaller since all sequences contain the same set
of windows. On the other hand, the RMM generates sequences
that contain different windows, which is expected to increase
the diversity among the generated sequences. We also compare
the diversity quantitatively by considering images one by one,
measuring the variation in the sequences of each image, and tak-
ing the sum of the variation over all images. For a given image,
the variation is measured by calculating a transition probability
matrix for each of its individual sequences and computing the
variance of probabilities that belong to the same transition. This
variance indicates the degree of how the frequency of a par-
ticular transition (from one state to another) varies in different
sequences of the same image. Then these variances are summed
over all transitions. The results obtained on the training images
show that the RMM increases the variance sum from 7.67 to
16.22, compared to its counterpart.

In order to select its points, the RMM follows a random
approach. We repeat our experiments selecting them among the
SIFT points [30]. The results show that the use of the SIFT points
gives similar results. This indicates that compared to the random
ones, the SIFT points do not carry additional information for
this particular application. However, one may work on defining
domain specific salient points and use them in selection. This
can be considered as future work.

In sequence generation, the RMM orders the points starting
from the one closest to the top-left corner. However, one may
select the initial point randomly. Our experiments show that this
yields similar results. This may be due to the following: First,
as the RMM employs the same greedy method, the sequences
generated for the same points will contain lots of similar sub-
sequences although their initial points are different. Second, it
uses many sequences instead of a single one. Some of the se-
quences can be similar to those of the other images since the
same initial point selection is used for all images.

To learn class probabilities, the RMM uses first order Markov
models. We explore the effects of using zero-order Markov mod-
els, which assume no dependency between the subsequent states.
This use gives significantly worse results. Here, it is also possi-
ble to use higher-order Markov models. Nevertheless, it requires
learning more number of parameters (transition probabilities).
This, however, may decrease the accuracy if there are not suffi-
cient occurrences of successive states in training samples. This
may especially become a problem when there are limited train-
ing samples.

IV. CONCLUSION

This paper successfully addresses the issue of having limited
labeled training data in the domain of histopathological tissue
image classification. To this end, it presents a new resampling
framework that generates multiple sequences from an image and
models them using first order discrete Markov processes.

The proposed resampling-based Markovian model (RMM) is
tested on 3236 colon tissue images. The experiments demon-
strate that the proposed RMM is more effective to keep the ac-
curacy high when less training data are used for learning. This
is attributed to the ability of the RMM to increase the general-
ization capacity of a learner by increasing the size and variation
of the training data. Additionally, the experiments show that the
voting scheme, which combines the decisions of its sequences
to classify an image, is also effective in increasing the classifi-
cation accuracy.

As noted earlier, the proposed RMM does not impose any
particular feature type to characterize data points. In this work,
we use a set of simple features since they are easy to extract
and do not introduce an additional parameter, unlike those used
in comparisons (e.g., the ColorGraphs approach involves two
additional parameters). One future research direction is to focus
on feature extraction and incorporate different features in the
proposed framework. For instance, one can use textural features
for a selected data point by centering a window at this point and
defining the texture of pixels located in this window. It is also
possible to extract structural features by defining a graph on the
tissue and calculating local features for the graph nodes. In this
case, data point selection should be restricted so that only the
node centroids are selected and the local features are used to
characterize the selected points.

The RMM uses Markov modeling since it is known as one of
the simplest and most effective ways for modeling sequences.
However, one may explore the use of other sequence modeling
methods such as hidden Markov models and recurrent neural
networks. Additionally, instead of using sequences, a feature
vector can be defined for an image using the features of its
selected points and such feature vectors can be used by different
classifiers such as SVMs.

Although it is particularly designed for histopathological im-
ages and the experiments are conducted on colon tissues, the
proposed method has a potential to be used for different types
of images as well as different types of tissues. This can also be
considered as a future research direction of the paper.

APPENDIX

We provide the pseudocode of observation symbol learning
and sequence generation in Algorithms 1 and 2, respectively.

Algorithm 1 LEARNOBSERVATIONS YMBOLS
Input: training set 7, window size winSize, number of
observation symbols K
Output: observation symbols V'
1: ®«0
2. for i =1— |7| do
3: for j =1— 100 do

4 P <~ SELECTRANDOMPOINT(7;)

5 F < EXTRACTFEATURES(7;, P, winSize)
6: ®+— dU{F}

7 end for

8: end for

9: V < KMEANSCLUSTERING(®, K)
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Algorithm 2 SEQUENCEGENERATION
Input: image I, observation symbols V, window size
winSize, sequence length T
Output: sequence S
PO, O«0
2: fort=1—T do
3: P, < SELECTRANDOMPOINT(I)
4:  Fy + EXTRACTFEATURES (I, P, winSize)
5: O < ASSIGNOBSERVATIONSYMBOL(F}, V)
6
7
8

P« PU{P}, O« 0OU{O:}
: end for
: S + ORDERPOINTS(P, O)
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