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Smolign: A Spatial Motifs Based Protein
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Abstract—Availability of an effective tool for protein multiple structural alignment (MSTA) is essential for discovery and analysis
of biologically significant structural motifs that can help solve functional annotation and drug design problems. Existing MSTA
methods collect residue correspondences mostly through pairwise comparison of consecutive fragments, which can lead to
suboptimal alignments, especially when the similarity among the proteins is low.
We introduce a novel strategy based on: building a contact-window based motif library from the protein structural data, discovery
and extension of common alignment seeds from this library, and optimal superimposition of multiple structures according to
these alignment seeds by an enhanced partial order curve comparison method. The ability of our strategy to detect multiple
correspondences simultaneously, to catch alignments globally, and to support flexible alignments, endorse a sensitive and robust
automated algorithm that can expose similarities among protein structures even under low similarity conditions. Our method
yields better alignment results compared to other popular MSTA methods, on several protein structure datasets that span various
structural folds and represent different protein similarity levels.
A web-based alignment tool, a downloadable executable, and detailed alignment results for the datasets used here are available
at http://sacan.biomed.drexel.edu/Smolign and http://bio.cse.ohio-state.edu/Smolign

Index Terms—Protein structure, multiple structure alignment, partial order curve comparison, structural motif library, secondary
structure elements (SSE), distance map, contact map, HOMSTRAD.
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1 INTRODUCTION

P ROTEINS carry out their specific biological
roles through interaction with other proteins

or other macro-molecules. This interaction is deter-
mined largely by the three dimensional structures of
molecules. Therefore, an important direction toward
understanding how proteins function is to study and
analyze their structures. In particular, since many
structurally similar proteins have a common evolu-
tionary origin, one fundamental task involved in such
an analysis is the structural alignment problem, where
the proteins are superimposed in order to find the
similarities and differences in their structures. Align-
ment and comparison of protein structures can help
discover biologically significant structural motifs and
reveal distant evolutionary relationships that may not
be detectable from the sequence information alone.

In recognition of the important relationship be-
tween structure and function, there has been a large
volume of research on the structural alignment prob-
lem over the past twenty years. Early research focused
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primarily on the pairwise structural alignment problem
[1], where an optimal superposition of two protein
structures is sought such as to minimize a given geo-
metric distance measure. The quality of an alignment
is generally quantified by two parameters: the number
of corresponding residues among the structures and
the root mean square distance (RMSD) between the
atomic coordinates of these correspondences. Whereas
finding the optimal superimposition is a relatively
simple task if the set of correspondences is already
known [2], finding the optimal superimposition and
correspondences simultaneously is NP-hard [3]. Nev-
ertheless, various heuristics have been developed and
successfully applied to the pairwise alignment prob-
lem [4], [5], [6], [7], [8], [9], [10], [11], [12].

Recently, there has been an increasing focus on the
more complex, multiple structure alignment problem
(MSTA). Structural alignment of a set of related pro-
teins helps find the conserved cores shared by all or
a subset of proteins and gives better insight into the
significance of these structural cores than the pairwise
alignment. Unfortunately, MSTA is computationally
a very difficult problem. Even for a fixed transfor-
mation, finding the optimal correspondences among
residues from k proteins of average length L takes
O(Lk) time under most standard distance measures.

In order to reduce the computational complexity,
most approaches build a multiple alignment based on
progressively aligning inputs in a pairwise manner
[13], [14]. For example, the center-star approach used
by Gerstein and Levitt [15] maintains a consensus
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template, and at each step, a new input structure
is aligned to this consensus by pairwise alignment
method. Alternatively, one can also construct a con-
sensus template hierarchically using a binary similar-
ity tree, where each leaf represents an input structure,
and each internal node aligns the two structures from
its children [13], [16]. One of the main limitations of
these greedy methods is that following locally (pair-
wise) optimal solutions may not lead to a globally
optimal solution. As a result, these methods are not
effective at detecting low levels of similarities, as
an incorrect decision committed early on may cause
to miss the few correspondences that would have
otherwise led to the globally optimal solution.

In contrast to progressive pairwise methods,
aligned fragment pair (AFP) chaining methods break
each input structure into a set of small motifs, such as
short fragments of protein backbones [17] or the sec-
ondary structure elements (SSEs) [18]. Motifs shared
by all proteins are then assembled in a geometrically
consistent manner. Since the motifs are much smaller
than the whole protein, one can afford to use more ac-
curate methods to align them. Furthermore, using the
alignments between motifs as seeds to align the entire
structures helps detect partial local similarities among
the input structures, yielding flexible alignments.

While the AFP methods tend to be more effective
at aligning proteins with diverse structures, they still
present limitations and challenges. We observe that
the performance of the AFP methods rely heavily
on the quality of the representation provided by the
fragments. Using backbone fragments [17] tend to
produce too many motifs and each motif is only
constructed by local sequence fragments which hardly
reflect spatial similarity; while using SSEs (or relations
between SSEs) [18] may miss motifs that are not
based on secondary structures. Specifically, we wish to
find a concise (so that the computational cost remains
low), yet complete (so that we do not miss important
structural similarities) set of motifs. Furthermore, the
extension of the seed fragment alignments to global
alignments also remain a challenging problem. Cur-
rently, the filtering employed on the possible seeds
and the geometric constraints imposed during the
extension stage, in most cases, speed up the process
at the cost of missing better global alignments.

In this paper, we propose and develop a robust
MSTA algorithm that addresses the aforementioned
limitations and challenges. In particular, for each in-
put protein, we construct a small set of structurally
related motifs based on interacting windows in its
contact map. The contact map motifs are able to
capture features from both SSEs and the residues
that do not form distinct SSEs. Additionally, they are
spatially constructed to encode geometrical and func-
tional information not available in sequence fragment
based motifs. We then develop a novel multi-level
extension algorithm that rapidly extends seed align-

ments from contact-map motifs to global alignments
among multiple structures. Finally, we iteratively im-
prove the resulting alignments by an enhanced partial
order curve comparison method [19], which further
optimizes the correspondences among proteins.

This strategy induces a sensitive and robust auto-
mated algorithm that can detect similarities among
multiple protein structures even under low similarity
conditions. The success of our method is demon-
strated on several protein structure datasets that have
previously been used under the context of MSTA and
that span various structural folds and represent dif-
ferent protein similarity levels. For all of the datasets,
our method yields better alignment results compared
to other popular MSTA methods in general. Our
resulting software is available both as a downloadable
binary and as a web service at http://bio.cse.ohio-
state.edu/Smolign

2 METHODS

THE objective of our algorithm is to find the largest
multiple alignment among k protein structures

while maintaining a cumulative error below a thresh-
old ε. This error is quantified as the multiple RMSD
(mRMSD) measure [17] which computes the average
of the RMSD values between the aligned residues of
a pivot protein p and the corresponding residues of
the other proteins:

mRMSDp =
1

k − 1

k∑
i=1,i6=p

RMSD(Pp, Pi) (1)

where Pp denotes the pivot protein and Pi represents
each of the k proteins. Variations of this error measure
exist, such as using all-pairs average RMSD instead of
the average RMSD to a pivot structure, or weighting
the contribution of individual residues or individual
structures in the calculation of the error measure [20].
For brevity, we have focused our discussion to the
mRMSD measure defined above, which is a widely
accepted and reported error measure.

A high level description of our algorithm is shown
in Figure 1. From a dataset of k protein structures,
we first extract contact window patterns from the
distance map of each protein. These patterns pro-
vide a transformation-invariant representation of local
structures. We observe that pairs of contact windows
present a good balance between sensitivity and speci-
ficity of fragments to be utilized in multiple structure
alignment. Therefore, the contact window patterns in
a distance map that are in close proximity are paired
up into linked motifs, which make up the Spatial
Motifs Library (SML). Compatible motifs common to
all proteins are identified from the SML using a dy-
namic filtering procedure. An efficient distance-map
based alignment method is used to build local seed
alignments as a set of correspondences. The local seed
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alignments that induce similar 3D transformations
and whose combination satisfy a predefined mRMSD
threshold are merged to build larger extended seed
alignments. To obtain a rigid structure alignment, a
single extended seed is refined using the EPO method,
an enhanced partial order curve comparison algo-
rithm [19]. To obtain a flexible structure alignment,
multiple extended seed alignments that cover differ-
ent portions of the protein structures are used in the
refinement step. In the following sections, we describe
each of these steps in detail.

2.1 Construction of the SML
The residue-contact patterns of protein structures are
the most conserved features of distantly-related pro-
teins [21], which motivates us to capture and use such
patterns for aligning multiple structures. We represent
each protein structure using the distance matrix [22] of
its alpha-carbon atoms. Distance matrix captures the
structural and connectivity information and provides
a complete representation of the protein structure that
is invariant under rigid transformations [23].

The entries of the distance matrix that are less
than a predefined threshold (typically 6Å) are denoted
as contact cells and they correspond to the residues
that are in close proximity in the 3D structure. The
collection of these cells give the contact map of the
protein (Figure 1b), which can be used to identify SSE
or other structural patterns. Specifically, the fragments
along the diagonal are alpha-helices (α), the fragments
parallel or perpendicular to the diagonal are parallel
and anti-parallel beta-sheets (β+ and β−), and other,
less regular fragments of residue contacts correspond
to small loops (L) and free shapes (F ). We utilize
the distance and contact maps to extract and classify
similar structural motifs that constitute the Spatial
Motif Library (SML).

Contact windows. An initial 4×4 sliding window is
used to scan the distance map for detecting any of the
SSEs and other significant patterns. We then expand
the initial size of the captured window row and
column-wise simultaneously until such an expansion
no longer incorporates a new contact cell.

Note that individual contact windows by them-
selves do not in general provide a sensitive represen-
tation to be used for structural alignment. Because of
the regularities in SSEs, many of the contact windows
from multiple proteins would align well, but would
not necessarily induce a good alignment for the rest of
the protein. On the other hand, using pairs of contact
windows as seed motifs greatly increases the discrimi-
nation power of such motifs. One can use even higher
order motifs by combining multiple contact windows;
however, this risks being too restrictive and it may not
be possible to find such higher order motifs shared
by all proteins. Therefore, we use pairs of contact
windows as our primary spatial motifs, to serve as seed
alignments.

Using pairs of structural fragments have previously
been utilized by one of the earlier MSTA methods [18],
where SSEs are represented as line segments and pairs
of SSEs are used to provide seed alignments. Using
contact windows instead of SSEs provides a more de-
scriptive representation of motifs and captures spatial
arrangements that do not form distinct SSEs.

Spatial Motifs. Pairs of interacting and compati-
ble contact windows are linked to form the Spatial
Motifs (Figure 1c). A regular spatial motif is formed
by linking two α helices (αα), or an α helix and a β
sheet (αβ), or two β sheets (ββ). In order to impose
that the linked contact windows are interacting in the
3D structure, we further require that the fragments
represented by the contact windows are closer than a
predefined threshold (typically 13Å), and in the case
of β sheets, that they share one of their strands.

Note that for some sets of proteins, the regular
motifs formed by α and β contact windows may not
be sufficient to induce a global alignment. Moreover,
the SSE assignments are error-prone and may not
be consistent across the related proteins. In order
to handle such cases, we store the irregular contact
windows from loops (L) and free shapes (F ) as part
of the SML, and resort to these motifs if the regular
motifs do not provide satisfactory alignment seeds.

2.2 Obtaining seed alignments
Alignment of similar motifs from the SML would
provide seed alignments around which the rest of the
protein structure can be aligned. However, determi-
nation of similarity involves the expensive operations
of finding residue correspondences and performing
structural alignment. We develop several pruning
strategies to reduce the number of spatial motifs to be
compared. In order to facilitate efficient identification
and fast alignment of compatible motifs, we associate
each motif with the following features:
• Number of amino acid residues (δ) separating the

contact windows along the backbone.
• The minimum Euclidean distance (D) between

the amino acid residues of the pairs of contact
windows.

• The angle (θ) between the backbone segments in
each applied contact window.

Our pruning strategy relies on heuristics using the
SSE types, and the D, δ and θ feature values of the
motifs. We only perform alignment of motifs that
are similar within the thresholds for these features.
The thresholds are adjusted dynamically starting from
strict similarity and gradually relaxing the threshold
values until a desired number of high quality seed
alignments are obtained. After the pruning step, we
obtain a set of candidate seeds, where each seed consists
of k similar motifs, with exactly one from each protein.

Alignment of candidate seeds. In the alignment
stage, we consider each candidate seed separately and
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Fig. 1: Overview of the algorithm. (a) Input protein structures. (b) An example contact map. The contact cells
are shown as dots in the corresponding matrix entries. The sub-windows are extracted to cover the spatial
patterns in the contact map. (c) Spatial Motif Library composed of motifs extracted from the contact maps.
(d) Seed alignment of an αβ motif. (e) Extended seed alignment from compatible seeds. (f) Refined alignment
using EPO on the extended seed.

perform alignment of its member motifs to generate
and identify the seed alignments satisfying the mRMSD
criteria. The alignment of the spatial motifs involves
identifying residue correspondences and from these
correspondences, calculating the superimposition that
minimizes the mRMSD measure.

The beta-sheets possess relatively well-defined
shapes. Thus, for the ββ category, we simply se-
lect the smallest motif to be the central motif and
slide it over the rest of the motifs in the candidate
seed to generate gapless alignments. We then apply
Quaternion transformation and rotation [24] based on
the correspondences induced by each alignment and
identify the seed alignments that satisfy the mRMSD
criteria.

For the rest of the motif categories, we utilize the
contact windows of the motifs to assign the residue
correspondences. The contact window (CW ) of a mo-
tif is part of the contact map that covers only the
residues forming the motif. The alignment of two
contact windows (CW1 and CW2) is found using
the MaximumOverlap algorithm below. The contact
windows are slided over each other and each sliding
window defines a gapless alignment between the two
motifs. The algorithm returns the sliding window that
maximizes the number of contacts common to both
contact windows as induced by the alignment.

We consider each motif in a candidate seed as the
central motif and calculate the pairwise alignments
with each of the rest of the motifs in the candidate
seed. If a contact cell from the central motif’s contact
window overlaps with a contact cell from every other
motif, we note that there is a common correspondence
involving a pair of amino acids from each protein.

Algorithm 1: MaximumOverlap

Input: contact windows CW1, CW2

Output: bestS: sliding window with maximum
overlap of contacts

maxContacts← 0;
foreach sliding window s aligning CW1 and CW2

do
count← 0;
foreach pair of overlapped cells do

if both are contact cells then
count++;

if count > maxContacts then
maxContacts← count;
bestS ← s;

We repeat the alignment procedure, considering each
of the motifs as the central motif, and seek the one
that gives the maximum number of common cor-
respondences. Based on these correspondences, the
Quaternion transformations are calculated to obtain
the mRMSD error of the alignment.

Figure 1d shows an example candidate seed from
the αβ category, which includes 5 Serine Protease
proteins represented in color. The longest common
correspondences of the candidate seed is found to be
34, which gives a seed alignment with an mRMSD of
0.44Å.

2.3 Extending the seed alignments

Each seed alignment contains a small local geometri-
cal motif common to all protein structures and can
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be used as a reference to rotate and translate the
whole structures. However, we realize that an indi-
vidual candidate seed may be too small to gener-
ate high quality global transformations. Furthermore,
some of the seed alignments may induce the same
global alignment causing redundant computation. To
alleviate these problems, we construct more reliable
skeleton structures through merging of compatible
seed alignments.

In the ExtendSeed algorithm outlined below, a
seed alignment si is enriched with the compatible
correspondences from other seeds that have similar
transformations. A correspondence is added onto si
so long as it does not conflict with a correspondence
already present in si and its addition still maintains
a structural superposition error below the threshold
(mRMSD < ε).

Algorithm 2: ExtendSeed
Input: S: the set of seed alignments
Input: si ∈ S: the seed to be extended
Output: si: the extended seed
foreach sj ∈ S and sj 6=si do

if τj ≈ τi then //similar transformations
foreach cp ∈ sj do //cp: residue
correspondence

if not Conflicts(cp,si) and
mRMSD(si ∪ cp)< ε then

si ← si ∪ cp

Each extended seed combines multiple motifs from
the seed alignments and obtains longer high quality
correspondences. A larger extended seed provides
more reliable basis for the Quaternion transformation
and induces a better global alignment with a larger
core. In the sample shown in Figure 1e, the seed
alignment is extended from 34 (0.44Å) to 134 (1.0Å)
common correspondences.

2.4 Refinement by EPO
The extended candidate sets provide correspondences
for only certain sections (motifs) of the protein struc-
tures, from which pairwise translation and rotation
matrices are generated. It still remains to find corre-
spondences for the rest of the structure and optimize
the transformations to minimize the global mRMSD.
We use the Enhanced Partial Order (EPO) curve com-
parison algorithm [19] to find common superpositions
of the transformed structures and optimize the global
rigid-body alignment.

The EPO algorithm has been developed as an im-
provement over the partial order alignment (POA)
methods [25], [26], especially enhancing the sensitivity
in detecting low levels of similarity and the ability
to handle high dimensional curves. The overall algo-
rithm of EPO is composed of two main stages: the
initial construction of a partial order graph (POG)

representing the consensus alignment of structures,
and a merging stage that refines the POG by merging
its nodes while maintaining the constraints defined
by the order of residues along each path. Using
this update scheme, EPO performs an iterative opti-
mization process, where each iteration generates new
correspondences and transformations, which are then
used as input to the next iteration. The process is
repeated until no improvement in mRMSD is ob-
tained. The details of the EPO algorithm, along with
its application to investigation of folding trajecto-
ries, are discussed in [19]. Figure 1f shows the final
alignment of 5 protein structures; where EPO finds a
structural superposition of 243 correspondences with
mRMSD = 1.15Å.

2.5 Flexible alignments
Introducing flexibility to structural alignment be-
comes useful for two main reasons. First, a protein
may be present in multiple conformational states due
to phosphorylation, interaction with other proteins,
or ligand binding [27]. Second, distantly related pro-
teins contain twists and bends in their structures that
cannot be detected by rigid alignment alone. Because
Smolign uses a bottom-up approach starting from
local structural motifs, the method introduced thus
far can naturally be extended to handle flexibility in
alignments. Specifically, we achieve this by building
multiple structural cores that cover different areas of
the proteins, without restricting that they share the
same rigid transformation. The final set of alignments
generated in this way not only handle flexibility in
the structures, but also can capture sequence order
independent alignments.

The CollectF lexibleSeeds algorithm below outlines
the process of identifying a complementary set of
structural cores from the extended seed alignments
produced in Section 2.3. In order to avoid testing
an exponential number of different combinations of
seeds, we use a heuristic cost measure to focus the
grouping of seeds toward combinations that include
larger, complementary fragments. For each seed, we
quantify the cost of combining it with other seeds by
a mergeCost, defined as:

mergeCosti =
number of seeds conflicting seedi

size of seedi
(2)

We sort the list of seeds by their mergeCost val-
ues and starting with the seed that has the smallest
mergeCost, we combine compatible seeds to cover
as much of the proteins as possible. A new seed
is combined with the collection of compatible seeds
S′, only if its inclusion increases the coverage of
the correspondence set by a minFragment threshold
(minFragment = 4 is used as the default value). This
ensures that the proteins are not over-fragmented in
the final flexible alignment.
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Algorithm 3: CollectF lexibleSeeds
Input: S = {si}: the set of extended seeds
Output: S′: collection of compatible extended

seeds
Sort S in ascending order of mergeCost;
S′ ← {s0};
for i = 1 . . . |S| do

if mergeCost == 0 then //can be added
without conflicts

S′ ← S′ ∪ si
else

s′i ← si\S′ //residues not already covered;
if |s′i| ≥ minFragment then

S′ ← S′ ∪ si

After a collection of core alignments is obtained,
each core is used to induce an optimized multiple
alignment through EPO, as done in Section 2.4. When-
ever a residue correspondence conflict arises between
the assignments of different cores, the assignment of
the larger core is kept. In order to spatially combine
the transformations of multiple cores, we take the
central protein structure from the first core in the
collection as the rigid structure. The transformations
of the other cores are calculated in reference to this
central structure. The residues that do not have any
correspondences are transformed using the transfor-
mation of the first core.

3 EXPERIMENTS

We performed a number of case-based and large scale
experiments to demonstrate the capability of Smolign
to handle different challenges of MSTA problems. In
Section 3.1, we report the results of typical multiple
alignment datasets from the literature and discuss
how well Smolign handles different spatial data. In
Section 3.2, we describe a flexible alignment case
in detail. Finally, in Section 3.3, we provide a large
scale comparison with other MSTA methods using
the Homstrad benchmark [28]. The experiments pre-
sented here, along with alignments from the BAl-
iBASE [29] benchmark dataset, are made available on
the supplementary website.

We compare the multiple alignments generated by
Smolign with those generated by other multiple struc-
ture alignment method, namely CE-MC [30], Mul-
tiprot [17], MAMMOTH-mult [31], POSA [32], and
MASS [18]. CE-MC [30] uses the CE [7] algorithm
to perform all-pairwise alignments, which are then
progressively combined following the order defined
by the UPGMA guide tree [33] of the pairwise align-
ments. The progressive alignments are refined us-
ing Monte Carlo simulations. The CE [7] pairwise
alignment algorithm that forms the basis for CE-MC
uses short backbone segments as aligned fragment

pairs (AFP), which are combined using combinatorial
extension.

Multiprot [17] is also a fragment-based multiple
structure alignment method. In contrast to the guide-
tree approach of CE-MC, it follows a center-star
[15] method where each protein is tested as a pivot
against which all others are aligned. Multiprot uses
a sweeping technique to detect aligned fragments
from multiple proteins, enabling Multiprot to detect
partial alignments that do not involve all of the input
proteins.

MAMMOTH-mult [31] (also referred as MAM-
MOTH in this report) follows an approach simi-
lar to CE-MC [30]. It generates a guide tree from
all pairwise alignments, where each pairwise align-
ment is produced using the MAMMOTH [9] pair-
wise alignment method. MAMMOTH-mult addition-
ally employs a SIMPLEX [34] optimization of the
multiple alignment at each step, to counteract the
greediness of the progressive alignment. Like CE-
MC and Multiprot, MAMMOTH is a fragment-based
alignment method. MAMMOTH uses unit-vector root
mean square (URMS) distance [35] between hepta-
peptide segments as the main mechanism to detect
corresponding residues. A method similar to MaxSub
[36] is used to find the largest subset of residues that
align within a predefined distance threshold (4Å).

The POSA [32] multiple structure alignment pro-
gram extends the formalism introduced by the FAT-
CAT [37] pairwise structure alignment method. Sim-
ilar to other structure alignment methods, it starts
with identifying a list of aligned fragment pairs (AFP),
where each fragment is 8 residues long and the RMSD
between the AFPs is defined to be less than a distance
threshold (3Å). The structure alignment of these AFPs
is represented using a Partial Order Graph, which is a
Directed Acyclic Graph. POSA follows a progressive
alignment using a guide-tree, similar to CE-MC and
Multiprot, but uses single linkage clustering instead of
average linkage. POSA has the unique feature of being
one of the few multiple structure alignment methods
that can generate a flexible alignment.

The MASS [18] multiple structure alignment differs
from the other multiple alignment methods in that
it considers all the given structures simultaneously,
rather than progressive alignment following a guide-
tree. MASS uses secondary structure elements as the
basic representation of the proteins, and identifies
matching SSEs from multiple proteins using Geomet-
ric Hashing [38]. Each SSE is represented as a least
squares line from its Cα atoms, and each pair of SSEs
is represented as two line segments, and the midpoint-
distance and angle between them. The type of SSE is
also utilized to focus the matching on the most similar
SSE segments. Like Multiprot and POSA, MASS is
able to detect alignments involving only a subset of
the proteins.

Smolign differs from these multiple structure align-
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Data set Members Average Size PDB Codes
Set 1

Serine Proteases 5 277 1cseE 1sbnE 1pekE 3prkE 3tecE
Set 2

Calmodulin-like 3 161 1jfjA 1ncx 2sas
Set 3

Tim-barrels 7 391 1btc 1pii 1tml 4enl 5rubA 6xia 7timA
Set 4

2 Helix-Bundle 10 140 1flx 1aep 1bbhA 1bgeB 1le2 1rcb 256bA 2ccyA 2hmzA 3inkC
Set 5 1afp 1b9nA3 1ckmA2 1esfA1 1fr3A 1jic 1tiiD 2tmp 1b7yB2

OB fold 15 176 1bovA 1eif02 1fjgQ 1htp 1sro 2sns

TABLE 1: Protein data sets used for comparing structural alignment methods. Average Size is the average
number of residues in the proteins in each data set.

ment methods mainly in its use of contact windows
as the main representation of proteins. Smolign uses
contact windows, which is less restrictive than back-
bone segments of predefined lengths or backbone
segments that form well-defined SSE elements. The
filtering employed in Smolign is similar to MASS,
except that using contact windows allows additional
opportunities for filtering as described in Algorithm 1
above, before a more costly structure superposition is
to be employed. Like MASS, Smolign considers all of
the protein structures at once, and avoids the local
optima caused by the guide-tree based approaches.
The refinement step used in Smolign is comparable
in its nature to the Partial Order Graph (POG) search
used in POSA; Smolign employs the EPO algorithm
[19] to refine and extend a multiple alignment of all
of the proteins, whereas POSA employs POG search
at each of its pairwise iterations. Like POSA, Smolign
is able to generate flexible structure alignments.

Using contact windows instead of backbone seg-
ments of predefined lengths or segments that form
well-defined SSE elements avoids missing structural
cores that do not obey these assumptions.

3.1 Sample Alignments

5 protein structural datasets are used to benchmark
the performance of our algorithm (See Table 1). These
datasets represent different structural folds, span dif-
ferent structural similarity levels, and have previously
been used in analysis of multiple structure alignment
algorithms. The multiple alignment results for all 5
datasets are compared with those of other popu-
lar MSTA methods. In particular, we compare with
CE-MC [30], Multiprot [17], MAMMOTH-mult [31],
POSA [32], and MASS [18].

We obtained the multiple alignments for each
dataset using the online web service provided for
these methods. Two vital norms are used for com-
paring the results: NCORE, which is the length of
the multiple alignment calculated as the number of
amino-acid correspondences, and mRMSD, which is
an indicator of the alignment quality.

The results for all methods are summarized in
Table 2. The POSA algorithm provides two sets of

results: flexible and non-flexible alignments. We use
the non-flexible alignments for comparison here and
use the flexible case in the next sub-section. For the
results from MAMMOTH, we count the number of
“strict cores” as NCORE since “loose cores” reported
by MAMMOTH only align partial structures closely.
Multiprot allows adjustment of its parameters and
returns the most competitive results; we have adjusted
its parameters to obtain an accuracy level that matches
that of Smolign, in order to make the NCORE com-
parison more meaningful. Specifically, the accuracy
values of 3.8Å, 4.4Å, 3.5Å, 3.1Å, and 3.0Å was used
for the Multiprot server for datasets 1-5, respectively.

Note that the main objective of our method is to
obtain the longest alignment that satisfies a user-
defined structural similarity threshold. In some cases,
smaller but more conserved alignments may also be
biologically important and of interest to the user.
Therefore, in the available implementation we provide
the top n final alignments, in decreasing order of the
alignment lengths. For comparison with other meth-
ods, we report here only the top scoring alignment for
each dataset in Table 2. The complete set of alignments
obtained by Smolign can be viewed and downloaded
from the supplementary website.

The 5 proteins in Set 1 belong to the Subtilases
family of subtilisin-like serine proteases, that have a
common evolutionary origin and share highly similar
structures and functional features [39]. All of the
compared methods align these proteins reasonably
well. Our method provides better alignments than CE-
MC, POSA, and Multiprot. POSA has the maximum
NCORE but incurs a large mRMSD cost. MAMMOTH
and MASS generate more conservative alignments,
that align tightly but have smaller coverage. If the
ε error threshold in Smolign is reduced from 3Å to
2Å in order to seek more conservative alignments, it
is possible to obtain an alignment with NCORE=230
and mRMSD=0.89Å, which is a longer alignment
than that of MAMMOTH, with only a slightly worse
mRMSD.

Set 2 has only 3 proteins (PDB: 1cnx, 1jfjA,
and 2sas), but the aligned motifs are very diverse.
CATH [40] classifies 1ncx and 2sas to have one alpha
helical domain and 1jfjA to have two alpha helical
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Data Set CE-MC POSA MAMMOTH Multiprot MASS Smolign
Ncore mRMSD Ncore mRMSD Ncore mRMSD Ncore mRMSD Ncore mRMSD Ncore mRMSD

Set 1 244 1.83Å 252 2.08Å 223 0.86Å 237 1.29Å 228 0.97Å 245 1.14Å
Set 2 62 5.80Å 67 2.92Å 15 1.64Å 58 1.92Å 50 1.4Å 59 1.95Å
Set 3 - - - - - - 27 2.08Å 30 2.00Å 41 2.08Å
Set 4 - - - - - - 22 1.80Å 15 1.80Å 34 1.78Å
Set 5 - - - - - - 9 1.27Å - - 13 1.74Å

TABLE 2: Comparison of multiple structure alignment methods on sample alignment datasets. In order to
obtain comparable results with other methods, a similarity threshold of ε = 3Å was used in Smolign. ”-”
indicates that the respective server did not return any results.

(a) CE-MC (b) POSA (c) MAMMOTH

(d) Multiprot (e) MASS (f) Smolign

Fig. 2: Multiple structure alignments of Set 2 Calmoduline-like proteins by different methods. Each protein is
shown in a different color: 1jfj, yellow; 1ncx, red; and 2sas, green. The thick blue portions of the backbones
indicate the aligned residues. CE-MC alignment provides the superposed structures, but not the residue
correspondences.

domains. The alignments produced by each method
is shown in Figure 2. CE-MC and POSA return align-
ments with inferior mRMSD scores, without signifi-
cant improvement in coverage over other methods.
Our method, Multiprot, and MASS align the same
domain regions, where our alignment is comparable
in both norms to Multiprot. MASS gives a smaller
core and a better mRMSD. MAMMOTH, as in Set
1, finds a very small conservative core with a worse
mRMSD than MASS. We are again able to control the
accuracy of our results by seeking more conservative
alignments that satisfy a smaller mRMSD threshold
and obtain an alignment with NCORE = 48 and
mRMSD = 1.4Å when ε = 1.7Å, which is compara-
ble to the output of MASS. The Smolign alignment is
shown in Figure 2f. The differences in the alignment

of this dataset is mainly due to the fact that the
progressive pairwise alignment procedure prevents
the methods to find the best alignment. While the
proteins 1ncx and 2sas are most similar at the EF-hand
calcium binding domain (cd00051 in the Conserved
Domain Database [41]), 1jfjA and 2sas are most similar
at the long alpha-helical segment that connects the
two EF-hand domains. An initial alignment of 1jfjA
and 2sas, having better global similarity than the other
two pairwise alignments, prevents the EF-hand do-
mains of all three proteins to be aligned properly. The
center-star alignment procedure used in Multiprot,
and the non-progressive alignment methodology of
MASS and Smolign avoid this pitfall and give better
results. MASS and Smolign capture the common EF-
hand domain by using the alignment seeds from the
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EF-hand region, and considering all of the proteins
simultaneously, extend these seeds to obtain the final
alignment core.

Set 3, the Tim-barrels proteins, contains 7 com-
plex structures. Each structure has multiple alpha-
helices and beta strands, creating a large number
of potential alignment combinations. CE-MC, POSA,
and MAMMOTH fail to produce an alignment. Our
algorithm not only outperforms both Multiprot and
MASS, but also produces an alignment with bet-
ter spatial continuity. Figure 3 shows that Multiprot
aligns less number of structural fragments, whereas
MASS produces an over-fragmented alignment core,
and only Smolign captures the most complete set of
structural fragments, including 3 alpha-helical seg-
ments and 4 beta strands. Note that, the Tim-barrel
proteins usually contain their enzymatic active sites
on the loop regions, frequently on the C-terminal end
of the sheets. While it is desirable to detect such
functional residues, they are not part of the conserved
structural core of the proteins and are not detected by
multiple structure alignment methods. Methods based
on residue conservation [42] are more appropriate for
such an analysis.

Set 4 contains helix-bundle proteins selected from
6 superfamilies, whose skeleton includes four closely
packed alpha-helices. It presents a challenge for MSTA
methods because of the large dataset size and its struc-
tural divergence. CE-MC, POSA, and MAMMOTH
again fail to report an alignment. MASS alignment
contains a very short helix pair, whereas Multiprot
reports either a single long helix or a shorter helix
pair depending on the chosen parameters. Smolign
consistently outperforms both methods in both norms:
it finds a longer alpha-helix pair and a higher quality
alignment. Smolign alignment takes under 8 minutes
for this dataset.

Set 5 is a very large data set of OB-fold pro-
teins, serving as a stress test for the multiple align-
ment programs, and the similarity among proteins
is extremely low (7% average sequence identity).
It is commonly used as a special case to test the
sensitivity of MSTA methods. Only our method
and Multiprot survive the strain, giving comparable
NCORE and mRMSD trade-offs. The common fold
of the OB(oligonuclueotide/oligosaccharide binding)-
fold proteins has a five-stranded beta-barrel, capped
by an alpha helix [43]. Multiprot finds an alignment
involving only two of these beta-strands. Smolign is
able align three of these beta-strands common among
the 15 proteins in the dataset, at an execution time of
40 minutes.

3.2 Flexible Alignments

The flexible alignment feature of Smolign is demon-
strated here using the data set 2, Calmodulin-like
proteins. These proteins are composed of two distinct

Method Avg. mRMSD Avg. Core Size
MATT 2.04 172
Multiprot 1.35 142
MUSTANG 2.67 171
POSA (rigid) 2.00 165
POSA (flexible) 2.22 168
Smolign (rigid) 2.05 174
Smolign (flexible) 2.00 177

TABLE 3: Multiple alignment results for the Homstrad
benchmark. mRMSD and core size are averages of all
Homstrad datasets. The results (except for those of
Smolign) are taken from [45].

components separated by a long and flexible alpha
helix. Due to bending of this alpha helical segment, it
is not possible to simultaneously align the two sub-
structures by a rigid alignment (Figure 2f). The best
rigid alignment of Smolign aligns 59 residues from the
C-terminal domain with an mRMSD of 1.95Å. Using
this alignment as the anchor, we aggregate compatible
cores as described in Section 2.5 to obtain a flexible
alignment shown in Figure 4b.

The flexible alignments produced by POSA and
Smolign show comparable coverage and quality met-
rics, while Smolign achieves a less fragmented align-
ment (Figures 4a and 4b). The main difference of the
flexible alignment results comes from the philosophy
of applying flexibility. POSA and other MSTA algo-
rithms tend to bend a sequence of fragments multiple
times to gain better core size and mRMSD at the
cost of loosing structural integrity between aligned
fragments. Smolign, on the other hand, strictly main-
tains spatial consistency of each aligned core, while
optimizing for core size and mRMSD. The POSA
flexible alignment in Figure 4a breaks the PDB:1cnx
structure at 4 locations and does not preserve the
spatial relationship of the fragments. Whereas, the
Smolign alignment (Figure 4b) consists of only 2
cores whose spatial arrangement is more faithful to
the conformation of the structures being aligned and
readily yields the interpretation that a single flexible
alpha helical segment is responsible for the structural
differences among these proteins.

3.3 Homstrad Benchmark
Homstrad [28] benchmark dataset contains manually
curated pairwise and multiple alignments of highly
homologous proteins. The similarity of the aligned
proteins is comparable to that of the family level
in the SCOP [44] hierarchical classification database.
Following the experiments by [45] and [32], we use
the 399 Homstrad alignments that have more than two
structures, to illustrate the performance of Smolign.

The coverage and accuracy of the rigid alignments
obtained by Smolign is found comparable to other
methods (Table 3). MATT, POSA, and Smolign give
similar overall results, with Smolign giving slightly
longer alignments comparable or better mRMSD.
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(a) Multiprot (b) MASS (c) Smolign (d) Core fragments

Fig. 3: A closer look into the alignment produced by Multiprot, MASS, and Smolign for data set 3, Tim barrels.
We only show the complete structure of PDB:4enl as a blue trace. In (d), a helix or strand is considered to be
a fragment if its alignment spans more than 5 amino acids and the gaps within the fragment is less than 2.

(a) POSA flexible (b) Smolign flexible

Fig. 4: Rigid and flexible alignments of dataset 2, Calmodulin-like proteins. The rigid/seed core is shown in
thick blue trace in each subfigure. (a) Each structure in the rigid alignment is shown in a different color. (b and
c) Each alignment core in the flexible alignment is shown in a different color. Blue portion is the alignment
core without bending, other colors show alignments after bending. Only 1cnx is shown in full to provide
a perspective of the whole structure. The residues of 1jfjA and 2sas that are not part of the alignment are
omitted for clarity. Bending occurs on the conjunction points of different colors.

MUSTANG performs worse than others in both
mRMSD and core size. Multiprot alignments are more
conservative and do not capture the extent of struc-
tural fold similarity of the aligned proteins.

While the results for highly similar Homstrad
families were consistent among all the methods,
Smolign performed comparable to or better than
other methods on less similar datasets, such as the
seatoxin dataset, whose members do not include dis-
tinct secondary structure elements, but are composed
of many coils and turns. Furthermore, the Smolign
flexible alignments are particularly enhanced in de-
tecting multiply concurrent structural motifs while
maintaining the spatial continuity of the aligned
segments. Comparison of flexible and rigid align-
ments of the HOMSTRAD datasets identifies 57
cases of flexible alignments. The average coverage
of Smolign rigid alignments for these 57 sets were
201 residues (mRMSD=2.19Å). The flexible alignments
increase the coverage by 10% (Ncore=221 residues,
mRMSD=2.17Å), with an average of 2.2 bends in-

troduced in each alignment. The rigid and flexible
Homstrad alignment results can be accessed on the
supplementary web page.

Fig. 5: Running time distribution on 399 Homstrad
families. All experiments were performed on an Intel
Quad Core 2.66 GHz PC with 4G RAM.

Running time. The execution of Smolign on the
Homstrad families takes from seconds to hours, de-
pending on the number, length, and divergence of
the structures being aligned and the number of can-
didate seeds detected for the specified error thresh-



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. X, NO. X, OCTOBER 2010 11

old. Since a rigorous running-time comparison with
other methods is not possible due to unavailability
of their of software distributions, we summarize the
running time of only Smolign in Figure 5. Smolign
takes under 1 minute to align 70% of the families
and under 10 minutes to align 92% of the families.
Of the 8 families that take more than 1 hour to align,
5 families (Homstrad codes: Cyclodex-gly-tran, histone,
kunitz, HLH, and RRF) induce a large number of
candidate cores to evaluate; 2 families (alpha-amylase
and alpha-amylase-NC) include a large number of very
long peptide chains; and the remaining rhv family
involves isolated secondary structures which could
not be captured in the SML stage and thus forces EPO
to execute more iterations to combine the motifs into
an optimized rigid alignment.

4 ADDITIONAL DATASETS

We have presented above, the performance of Smolign
on a set of commonly used multiple structure align-
ments and on the Homstrad database. We have also
compared the alignments obtained by Smolign against
those of some of the popular multiple structure align-
ment methods. Additional datasets that have been
used to benchmark structural alignment methods in-
clude SISYPHUS [46], SABmark [47], and BALiBASE
[29]. A comprehensive evaluation of the available
methods and datasets is beyond the scope of the
current study and is left as a future exercise. In this
section, we compare Smolign to two of the more
recent multiple structure alignment methods, namely
MISTRAL [48] and MAPSCI [49].

The MISTRAL structure alignment method [48]
uses a piecewise-linear sigmoidal weight function to
reward short separations of pairs of amino acids from
proteins. A simulated annealing based search over
the relative orientations of the proteins is then per-
formed to obtain the translation and rotation matrices
that minimize this energy function. MISTRAL follows
a center-star multiple alignment approach, by first
computing all-pairwise structure alignments and then
assigning one of the proteins as the pivot protein to
which other proteins are aligned.

The performance of MISTRAL for multiple struc-
ture alignments have been demonstrated for four
datasets [48]. The first two datasets contain two sets
of globins previously considered in [50], and the
last two datasets are two groups of proteins from
the Homstrad database. The structural alignments
generated by Smolign using the default parameters
are compared with those reported for MISTRAL are
shown in Table 4. MISTRAL has a reported tendency
to generate smaller alignments than other methods
[48], and this is also observed for datasets 1 and 4,
when compared with Smolign. The alignments pro-
duced by MISTRAL and Smolign are similar for Set
3, with Smolign giving a slightly longer alignment.

Note, however, that Smolign gives a significantly
longer alignment with a better mRMSD for Set 2. The
residue correspondences reported by MISTRAL are a
subset of those reported by Smolign (Figure 6). We
attribute the insufficient expansion of the MISTRAL
alignment to its protein-centric pairwise evaluation
strategy, compared to the motif-centric all-inclusive
evaluation used in Smolign. Additional alpha helices
and turns detected by Smolign, and the reduced
mRMSD are due to the candidate expansion and
alignment optimization stages followed in Smolign.

Data Set Mistral Smolign
Ncore mRMSD Ncore mRMSD

Set 1 136 1.4Å 140 1.51Å
Set 2 72 2.1Å 99 1.89Å
Set 3 100 0.7Å 103 0.71Å
Set 4 54 2.0Å 69 2.84Å

TABLE 4: Comparison of multiple structure align-
ments obtained by MISTRAL and Smolign on four
datasets considered in [48].

MAPSCI [49] is another recent method employing a
center-star approach to construct the multiple align-
ment. The method is quite similar to that described
in [51], with the main difference being that MAPSCI
works on the Cα coordinates directly, whereas [51]
translates the backbone vectors to the origin. Both of
these methods work on a consensus pseudo-structure
as the average of the proteins being aligned. The
sum of the pairwise distances between this consensus
structure and each protein in the set is then iteratively
minimized to obtain the final alignment.

MAPSCI is reported to produce alignments that
compare favorably with the alignments produced by
MAMMOTH [9] and MATT [45]. The measurement
of the core RMSD is different in MAPSCI than the
mRMSD measure reported here, making a direct
comparison of the alignment quality difficult. On the
other hand, Smolign generally produces alignments
with greater coverage than MAPSCI. On a set of
232 HOMSTRAD families considered in [49], MAPSCI
produces alignments with an average coverage of 71%
(expressed in percent of the length of the shortest pro-
tein in each HOMSTRAD family), whereas Smolign
produces alignments with an average coverage of
85%.

5 DISCUSSION

We have presented Smolign as a novel multiple pro-
tein structure alignment method based on a spatial
motif library (SML) generated from residue distance
matrices. Smolign provides alignment-order indepen-
dent results and can generate flexible as well as rigid
structural alignments. The alignments produced are
comparable to or better than those of other methods,
both in alignment quality and coverage.



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. X, NO. X, OCTOBER 2010 12

(a) MISTRAL (b) Smolign (c) difference

Fig. 6: Multiple alignments produced by (a) MISTRAL and (b) Smolign on the dataset of globins from [48].
Residues that are part of the detected alignment are shown in blue. (c) Residues considered part of the
alignment by Smolign but not MISTRAL are highlighted in blue.

In the terminology and formalism introduced in
[52], Smolign uses an element based structure descrip-
tion, as opposed to a space based description such
as dividing a structure into a grid. Smolign utilizes
several element classes, including the contact win-
dows, residue coordinates, and secondary structure
elements. The clustering of compatible pairs of struc-
ture elements is done by use of transformations, where
the element pairs with similar translation and rotation
matrices are merged, similar to the SARF program [53]
and to the method introduced in [54].

Smolign differs from previous multiple alignment
methods in several major aspects. Most importantly,
Smolign utilizes contact windows as the basic rep-
resentation of proteins, from which 3D structural
similarities can be identified. Contact windows have
previously been used in pairwise structural align-
ment, DALI [4] being the most known example, but
not in multiple structural alignment problem. The
main bottleneck in using contact windows for struc-
tural alignment is the computational cost of identify-
ing and extending common structural conformations.
The problem of finding similar contact sub-windows,
known as the Contact Map Overlap (CMO) [55] can
be directly translated to a maximum clique problem
[56]. Because this is an NP-complete problem [57],
several heuristics have been proposed for the pairwise
alignment case [58]. Instead of modeling the prob-
lem directly as a maximum clique problem, Smolign
exploits the additional information contained in the
protein structures, such as secondary structure type,
and Euclidean distance and angle between backbone
segments, greatly reducing the search space.

Other aspects of the novelty of the Smolign include
its dynamic filtering of seed alignments that explore
the possible candidates in a best-first search and
refinement of the alignments by a powerful partial
order curve comparison algorithm [19]. Furthermore,
Smolign provides the ability to generate flexible align-
ments, which is not supported by many of the other
available methods.

We attribute the success of Smolign to the concise

yet complete representation of the input structures it
uses to construct the motif library. Pairs of interacting
contact map sub-windows provide a good balance
between the sensitivity of the representation and the
corresponding search space. Through its dynamic fil-
tering and efficient candidate evaluation and expan-
sion algorithms, Smolign handles large and complex
datasets where other methods fail to produce any
results.

Unless otherwise noted, the results reported here
were obtained using the default parameters. These
defaults are available on the job submission web site
as advanced options. Even though the default param-
eters achieve competitive results, we allow the inter-
ested users to change these parameters to control the
quality vs. coverage and the speed vs. accuracy trade-
offs. Of particular importance is the ε error threshold,
which sets an upper threshold for the mRMSD of
the alignment that can be obtained. A tight ε er-
ror threshold would generate fewer candidate seeds
but discover only highly conserved structural motifs,
whereas a relaxed ε would discover more divergent
motifs, at the computational cost of generating many
false candidates that need to be evaluated.

We believe that Smolign provides an import step
in the advancement of the multiple protein structural
alignment, but we acknowledge that it may not give
the best or most appropriate results in every single
case. While Smolign can be utilized for large scale
automated analysis, the use of different alignment
programs that are developed under varying assump-
tions and that use varying representations of proteins,
is likely to enrich any given case study. It must
also be noted that the currently available multiple
structure alignment programs, including Smolign, are
geared toward identifying conserved structural cores
of proteins, which is an important task in structure
classification, fold recognition, and structure predic-
tion problems. On the other hand, they may not be
able to identify conservation of individual residue
conformations or functional motifs, such as done by
LFMPro [59], gSpan [60] and [61].
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Smolign is provided both as a web service for
fast and convenient access and as a downloadable
binary for the more intensive batch tasks. The sample
alignments described here and the alignments for
Homstrad and BaliBase benchmark datasets are also
provided on the supplementary web site.

REFERENCES

[1] M. Sierk and G. Kleywegt, “Deja vu all over again: Finding
and analyzing protein structure similarities,” Structure, vol. 12,
no. 12, pp. 2103–2111, 2004.

[2] W. Kabsch, “A discussion of the solution for the best rotation
to relate two sets of vectors,” Acta Crystallogr., vol. A34, pp.
827–828, 1978.

[3] R. Lathrop, “The protein threading problem with sequence
amino acid interaction preferences is np-complete,” Protein
Eng., pp. 1059–1068, 1994.

[4] L. Holm and C. Sander, “Protein structure comparison by
alignment of distance matrices,” J. Mol. Biol., vol. 233, pp. 123–
138, September 1993.

[5] L. Holm and C. Sander, “3-D lookup: Fast protein structure
searches at 90% reliability,” Proc. Ann. Int. Conf. on Intelligent
Systems for Molecular, pp. 179–187, 1995.

[6] W. Taylor and C. Orengo, “SSAP: sequential structure align-
ment program for protein structure comparison,” Methods
Enzymol, vol. 266, pp. 617–35, 1996.

[7] I. N. Shindyalov and P. E. Bourne, “Protein structure alignment
by incremental combinatorial extension (CE) of optimal path,”
Protein Engineering, vol. 11, no. 9, pp. 739–747, 1998.

[8] J. D. Szustakowski and Z. Weng, “Protein structure alignment
using a genetic algorithm,” Proteins: Structure, Function, and
Bioinformatics, vol. 38, no. 4, pp. 428–440, 2000.

[9] A. R. Ortiz, C. E. Strauss, and O. Olmea, “MAMMOTH
(matching molecular models obtained from theory): An au-
tomated method for model comparison,” Protein Sci, vol. 11,
no. 11, pp. 2606–2621, 2002.

[10] A. I. Jewett, C. C. Huang, and T. E. Ferrin, “Minrms: an
efficient algorithm for determining protein structure similar-
ity using root-mean-squared-distance,” Bioinformatics, vol. 19,
no. 5, pp. 625–634, 2003.

[11] T. Can and Y.-F. Wang, “CTSS: A robust and efficient method
for protein structure alignment based on local geometrical and
biological features,” Proc. IEEE Computer Society Conference on
Bioinformatics, pp. 169–179, 2003.

[12] B. Kolbeck, P. May, T. Schmidt-Goenner, T. Steinke, and E.-
W. Knapp, “Connectivity independent protein-structure align-
ment: a hierarchical approach.” BMC Bioinformatics, vol. 7, pp.
510–530, 2006.

[13] W. R. Taylor, T. P. Flores, and C. A. Orengo, “Multiple protein
structure alignment,” Protein Science, vol. 3, pp. 1858–1870,
1994.

[14] D. F. Feng and R. F. Doolittle, “Progressive sequence alignment
as a prerequisite to correct phylogenetic trees.” J Mol Evol,
vol. 25, no. 4, pp. 351–360, 1987.

[15] M. Gerstein and M. Levitt, “Comprehensive assessment of
automatic structural alignment against a manual standard, the
scop classification of proteins,” Protein Science, vol. 7, pp. 445–
456, 1998.

[16] R. Russell and G. Barton, “Multiple protein sequence align-
ment from tertiary structure comparison: assignment of global
and residue confidence levels,” Proteins, vol. 14, no. 2, pp. 309–
323, 1992.

[17] M. Shatsky, R. Nussinov, and H. J. Wolfson, “MultiProt – a
multiple protein structural alignment algorithm,” WABI ’02:
Proceedings of the Second International Workshop on Algorithms
in Bioinformatics, pp. 235–250, 2002.

[18] O. Dror, H. Benyamini, R. Nussinov, and H. J. Wolfson, “Mul-
tiple structural alignment by secondary structures: Algorithm
and applications,” Protein Science, vol. 12, pp. 1492–2507, 2003.

[19] H. Sun, H. Ferhatosmanoglu, M. Ota, and Y. Wang, “Enhanced
partial order curve comparison over multiple protein folding
trajectories.” Comput Syst Bioinformatics Conf., pp. 229–310,
2007.

[20] X. Wang and J. Snoeyink, “Multiple structure alignment by op-
timal rmsd implies that the average structure is a consensus.”
Comput Syst Bioinformatics Conf, pp. 79–87, 2006.

[21] A. Lesk and C. Chothia, “How different amino acid sequences
determine similar protein structures: I. the structure and evo-
lutionary dynamics of the globins,” J. Mol. Biol., vol. 136, pp.
225–270, 1980.

[22] J. Richardson, “The anatomy and taxonomy of protein struc-
ture,” Adv. Protein Chem., vol. 34, pp. 167–339, 1981.

[23] T. Havel, I. Kuntz, and G. Crippen, “The theory and practice
of distance geometry,” Bull. Math. Biol., vol. 45, p. 665720, 1983.

[24] J. C. Hart, G. K. Francis, and L. H. Kauffman, “Visualizing
quaternion rotation,” ACM Trans. Graph., vol. 13, no. 3, pp.
256–276, 1994.

[25] C. Lee, C. Grasso, and M. Sharlow, “Multiple sequence align-
ment using partial order graphs,” Bioinformatics, vol. 18, no. 3,
pp. 452–464, 2002.

[26] C. Grasso and C. Lee, “Combining partial order alignment
and progressive multiple sequence alignment increases align-
ment speed and scalability to very large alignment problems,”
Bioinformatics, vol. 20, no. 10, pp. 1546–1556, June 2004.

[27] C. Lemmen, T. Lengauer, and G. Klebe, “Flexs: A method for
fast flexible ligand superposition,” J. Medicinal Chem., vol. 41,
pp. 4502–4520, 1998.

[28] K. Mizuguchi, C. M. Deane, T. L. Blundell, and J. P. Overing-
ton, “HOMSTRAD: A database of protein structure alignments
for homologous families,” Protein Sci, vol. 7, no. 11, pp. 2469–
2471, 1998.

[29] P. O. Thompson JD, Plewniak F, “Balibase: a benchmark
alignment database for the evaluation of multiple alignment
programs,” Bioinformatics, vol. 15, no. 1, pp. 87–88, 1999.

[30] C. Guda, S. Lu, E. D. Scheeff, P. E. Bourne, and L. N.
Shindyalov, “CE-MC: a multiple protein structure alignment
server,” Nucleic Acids Research, vol. 32, pp. W100–W103, 2004.

[31] D. Lupyan, A. Leo-Macias, and A. R. R. Ortiz, “A new
progressive-iterative algorithm for multiple structure align-
ment.” Bioinformatics, pp. 3255–3263, June 2005.

[32] Y. Ye and A. Godzik, “Multiple flexible structure alignment
using partial order graphs,” Bioinformatics, vol. 21, no. 10, pp.
2362–2369, 2005.

[33] P. H. Sneath and R. R. Sokal, “Numerical taxonomy,” Nature,
vol. 193, pp. 855–860, Mar 1962.

[34] G. J. Barton and M. J. Sternberg, “A strategy for the rapid
multiple alignment of protein sequences. confidence levels
from tertiary structure comparisons.” J Mol Biol, vol. 198, no. 2,
pp. 327–337, Nov 1987.

[35] K. Kedem, L. Chew, and R. Elber, “Unit-Vector RMS(URMS) as
a Tool to Analyze Molecular Dynamics Trajectories,” Proteins:
Structure, Function and Genetics, vol. 37, pp. 554–564, 1999.

[36] N. Siew, A. Elofsson, L. Rychlewski, and D. Fischer, “Maxsub:
an automated measure for the assessment of protein structure
prediction quality.” Bioinformatics, vol. 16, no. 9, pp. 776–785,
Sep 2000.

[37] Y. Ye and A. Godzik, “Flexible structure alignment by chaining
aligned fragment pairs allowing twists,” Bioinformatics, vol. 19,
pp. ii246–ii255, 2003.

[38] R. Nussinov and H. J. Wolfson, “Efficient detection of three-
dimensional structural motifs in biological macromolecules by
computer vision techniques.” Proc Natl Acad Sci U S A, vol. 88,
no. 23, pp. 10 495–10 499, Dec 1991.

[39] R. J. Siezen and J. A. Leunissen, “Subtilases: the superfamily
of subtilisin-like serine proteases.” Protein Sci, vol. 6,
no. 3, pp. 501–523, Mar 1997. [Online]. Available: http:
//dx.doi.org/10.1002/pro.5560060301

[40] C. A. Orengo, A. D. Michie, S. Jones, D. T. Jones, M. B.
Swindells, and J. M. Thornton, “CATH–A hierarchic classifi-
cation of protein domain structures,” Structure, vol. 5, no. 8,
pp. 1093 –1108, 1997.

[41] A. Marchler-Bauer, S. Lu, J. B. Anderson, F. Chitsaz, M. K.
Derbyshire, C. DeWeese-Scott, J. H. Fong, L. Y. Geer, R. C.
Geer, N. R. Gonzales, M. Gwadz, D. I. Hurwitz, J. D. Jackson,
Z. Ke, C. J. Lanczycki, F. Lu, G. H. Marchler, M. Mullokandov,
M. V. Omelchenko, C. L. Robertson, J. S. Song, N. Thanki,
R. A. Yamashita, D. Zhang, N. Zhang, C. Zheng, and
S. H. Bryant, “Cdd: a conserved domain database for the
functional annotation of proteins.” Nucleic Acids Res, vol. 39,

http://dx.doi.org/10.1002/pro.5560060301
http://dx.doi.org/10.1002/pro.5560060301


IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. X, NO. X, OCTOBER 2010 14

no. Database issue, pp. D225–D229, Jan 2011. [Online].
Available: http://dx.doi.org/10.1093/nar/gkq1189

[42] A. Armon, D. Graur, and N. Ben-Tal, “Consurf: an algorithmic
tool for the identification of functional regions in proteins
by surface mapping of phylogenetic information.” J Mol Biol,
vol. 307, no. 1, pp. 447–463, Mar 2001. [Online]. Available:
http://dx.doi.org/10.1006/jmbi.2000.4474

[43] A. G. Murzin, “Ob(oligonucleotide/oligosaccharide binding)-
fold: common structural and functional solution for non-
homologous sequences.” EMBO J, vol. 12, no. 3, pp. 861–867,
Mar 1993.

[44] A. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia, “SCOP:
A structural classification of proteins database for the investi-
gation of sequences and structures,” J. Mol. Biol., vol. 247, pp.
536–540, 1995.

[45] M. Menke, B. Berger, and L. Cowen, “Matt: Local flexibility
aids protein multiple structure alignment,” PLOS Computa-
tional Biology, vol. 4, no. 1, p. e10, 2008.

[46] A. Andreeva, A. Prli, T. J. P. Hubbard, and A. G.
Murzin, “Sisyphus–structural alignments for proteins with
non-trivial relationships.” Nucleic Acids Res, vol. 35, no.
Database issue, pp. D253–D259, Jan 2007. [Online]. Available:
http://dx.doi.org/10.1093/nar/gkl746

[47] I. V. Walle, I. Lasters, and L. Wyns, “Sabmark–a benchmark for
sequence alignment that covers the entire known fold space.”
Bioinformatics, vol. 21, no. 7, pp. 1267–1268, Apr 2005. [Online].
Available: http://dx.doi.org/10.1093/bioinformatics/bth493

[48] C. Micheletti and H. Orland, “Mistral: a tool for energy-based
multiple structural alignment of proteins.” Bioinformatics,
vol. 25, no. 20, pp. 2663–2669, Oct 2009. [Online]. Available:
http://dx.doi.org/10.1093/bioinformatics/btp506

[49] I. Ilinkin, J. Ye, and R. Janardan, “Multiple structure
alignment and consensus identification for proteins.” BMC
Bioinformatics, vol. 11, p. 71, 2010. [Online]. Available:
http://dx.doi.org/10.1186/1471-2105-11-71

[50] A. S. Konagurthu, J. C. Whisstock, P. J. Stuckey, and
A. M. Lesk, “Mustang: A multiple structural alignment
algorithm,” Proteins: Structure, Function, and Bioinformatics,
vol. 64, no. 3, pp. 559–574, 2006. [Online]. Available:
http://dx.doi.org/10.1002/prot.20921

[51] J. Ye and R. Janardan, “Approximate multiple protein structure
alignment using the sum-of-pairs distance.” J Comput Biol,
vol. 11, no. 5, pp. 986–1000, 2004.

[52] I. Eidhammer, I. Jonassen, and W. R. Taylor, “Structure
comparison and structure patterns.” J Comput Biol, vol. 7,
no. 5, pp. 685–716, 2000. [Online]. Available: http://dx.doi.
org/10.1089/106652701446152

[53] N. N. Alexandrov, K. Takahashi, and N. Go, “Common spatial
arrangements of backbone fragments in homologous and non-
homologous proteins.” J Mol Biol, vol. 225, no. 1, pp. 5–9, May
1992.

[54] L. P. Chew, D. Huttenlocher, K. Kedem, and J. Kleinberg, “Fast
detection of common geometric substructure in proteins.”
J Comput Biol, vol. 6, no. 3-4, pp. 313–325, 1999. [Online].
Available: http://dx.doi.org/10.1089/106652799318292

[55] A. Godzik, J. Skolnick, and A. Kolinski, “Regularities in inter-
action patterns of globular proteins.” Protein Eng, vol. 6, no. 8,
pp. 801–810, Nov 1993.

[56] D. Strickland, E. Barnes, and J. Sokol, “Optimal protein struc-
ture alignment using maximum cliques,” Operations Research,
vol. 53, pp. 389–402, 2005.

[57] D. Goldman, S. Istrail, and C. Papadimitriou, “Algorithmic
aspects of protein structure similarity,” In: Proc. 40th Annual
IEEE Sympos. Foundations Comput. Sci.. IEEE Computer Society,
Los Alamitos, pp. 512–522, 1999.

[58] W. Pullan, “Protein structure alignment using maximum
cliques and local search,” Advances in Artificial Intelligence,
LNCS, vol. 4830, pp. 776–780, 2007.

[59] A. Sacan, O. Ozturk, H. Ferhatosmanoglu, and Y. Wang, “Lfm-
pro: A tool for detecting significant local structural sites in
proteins,” Bioinformatics, vol. 23, no. 6, pp. 709–716, 2007.

[60] X. Yan and J. Han, “gSpan: Graph-based substructure pattern
mining,” in Proc. 2002 Int. COnf. Data Mining (ICDM’02),
Maebashi, Japan, Dec 2002, pp. 721–724.

[61] D. Bandyopadhyay, J. Huan, J. Prins, J. Snoeyink, W. Wang,
and A. Tropsha, “Identification of family-specific residue
packing motifs and their use for structure-based protein

function prediction: I. method development.” J Comput Aided
Mol Des, vol. 23, no. 11, pp. 773–784, Nov 2009. [Online].
Available: http://dx.doi.org/10.1007/s10822-009-9273-4

Hong Sun is a PhD candidate in the De-
partment of Computer Science and Engi-
neering at The Ohio state University and
currently working as a research scientist
at SRA international Inc(NIEHS contrac-
tor). His research interests include pro-
tein sequence and structure alignment,
biomedical data mining, and information
retrieval.

Ahmet Sacan received his B.Sc. de-
grees in Computer Science and in Cellu-
lar and Molecular Biology from University
of Michigan, Ann Arbor, USA, in 2001;
and his Ph.D. in Computer Engineering
from the Middle East Technical Univer-
sity, Turkey, in 2008. He is currently an
Assistant Professor at Drexel University,
School of Biomedical Engineering. His
research and teaching interests include
structural bioinformatics, microRNA and

mRNA expression analysis, biomedical image analysis, object
tracking, data mining, database indexing methods, multimedia
databases, software engineering for web applications, and dis-
tance learning technologies.

Yusu Wang obtained Her M.S and Ph.D
degree from Duke Univ., and B.S. degree
from Tsinghua Univ. Before joining The
Ohio State University, she was a post-
doctoral researcher at Geometric Com-
puting lab in Stanford Univ. from 2004-
2005. she received DOE (Dept. of En-
ergy) Career award in 2006, and NSF (Na-
tional Science Foundation) Career award
in 2008. She is currently on the editorial
board of Journal of Computational Geom-

etry (JoCG). Her research interests including Computational
geometry and topology, Shape analysis, Geometric computing,
and Computational biology. Her research projects are funded by
the NSF and DOE.

Hakan Ferhatosmanoglu received his
B.S. degree from Computer Science,
Bilkent University, Ankara, Turkey in
1997 and Ph.D. degree from University
of California, Santa Barbara in 2001.
Currently, he is an Associate Profes-
sor in the Department of Computer
Science and Engineering at The Ohio
State University. His research interests
focus on Database Systems and Ap-
plications, Biomedical Informatics, High-

Performance Data Management, Scientific, Multimedia, and
high dimensional databases and Social Networks.

http://dx.doi.org/10.1093/nar/gkq1189
http://dx.doi.org/10.1006/jmbi.2000.4474
http://dx.doi.org/10.1093/nar/gkl746
http://dx.doi.org/10.1093/bioinformatics/bth493
http://dx.doi.org/10.1093/bioinformatics/btp506
http://dx.doi.org/10.1186/1471-2105-11-71
http://dx.doi.org/10.1002/prot.20921
http://dx.doi.org/10.1089/106652701446152
http://dx.doi.org/10.1089/106652701446152
http://dx.doi.org/10.1089/106652799318292
http://dx.doi.org/10.1007/s10822-009-9273-4

	Introduction
	Methods
	Construction of the SML
	Obtaining seed alignments
	Extending the seed alignments
	Refinement by EPO
	Flexible alignments

	Experiments
	Sample Alignments
	Flexible Alignments
	Homstrad Benchmark

	Additional Datasets
	Discussion
	References
	Biographies
	 Hong Sun is a PhD candidate in the Department of Computer Science and Engineering at The Ohio state University and currently working as a research scientist at SRA international Inc(NIEHS contractor). His research interests include protein sequence and structure alignment, biomedical data mining, and information retrieval. 
	 Ahmet Sacan received his B.Sc. degrees in Computer Science and in Cellular and Molecular Biology from University of Michigan, Ann Arbor, USA, in 2001; and his Ph.D. in Computer Engineering from the Middle East Technical University, Turkey, in 2008. He is currently an Assistant Professor at Drexel University, School of Biomedical Engineering. His research and teaching interests include structural bioinformatics, microRNA and mRNA expression analysis, biomedical image analysis, object tracking, data mining, database indexing methods, multimedia databases, software engineering for web applications, and distance learning technologies. 
	 Yusu Wang obtained Her M.S and Ph.D degree from Duke Univ., and B.S. degree from Tsinghua Univ. Before joining The Ohio State University, she was a post-doctoral researcher at Geometric Computing lab in Stanford Univ. from 2004-2005. she received DOE (Dept. of Energy) Career award in 2006, and NSF (National Science Foundation) Career award in 2008. She is currently on the editorial board of Journal of Computational Geometry (JoCG). Her research interests including Computational geometry and topology, Shape analysis, Geometric computing, and Computational biology. Her research projects are funded by the NSF and DOE. 
	 Hakan Ferhatosmanoglu received his B.S. degree from Computer Science, Bilkent University, Ankara, Turkey in 1997 and Ph.D. degree from University of California, Santa Barbara in 2001. Currently, he is an Associate Professor in the Department of Computer Science and Engineering at The Ohio State University. His research interests focus on Database Systems and Applications, Biomedical Informatics, High-Performance Data Management, Scientific, Multimedia, and high dimensional databases and Social Networks.


