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ABSTRACT
Motivation: The rapidly growing protein structure repositories have
opened up new opportunities for discovery and analysis of functional
and evolutionary relationships among proteins. Detecting conserved
structural sites that are unique to a protein family is of great value in
identification of functionally important atoms and residues. Currently
available methods are computationally expensive and fail to detect
biologically significant local features.
Results: We propose LFM-Pro (Local Feature Mining in Proteins)
as a framework for automatically discovering family specific local
sites and the features associated with these sites. Our method uses
the distance field to backbone atoms to detect geometrically signi-
ficant structural centers of the protein. A feature vector is generated
from the geometrical and biochemical environment around these cen-
ters. These features are then scored using a statistical measure, for
their ability to distinguish a family of proteins from a background set
of unrelated proteins, and successful features are combined into a
representative set for the protein family. The utility and success of
LFM-Pro are demonstrated on Trypsin-like Serine Proteases family
of proteins and on a challenging classification dataset via compari-
son with DALI. The results verify that our method is successful both
in identifying the distinctive sites of a given family of proteins, and in
classifying proteins using the extracted features.
Availability: The software and the datasets are freely available for
academic research use at http://bioinfo.ceng.metu.edu.tr/Pub/LFMPro
Contact: ahmet@ceng.metu.edu.tr, {ozturk,hakan,yusu}@cse.ohio-
state.edu

1 INTRODUCTION
Rapidly growing protein structure repositories open up new pos-
sibilities for discovering functional and evolutionary relationships
among proteins, and for elucidating the principles by which a cer-
tain structure produces an observed function. The increase in data
size, however, also calls for more efficient and accurate methods of
comparing proteins and identifying potential functional residues and
binding sites.
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The classical approaches of structural analysis have focused on
global pairwise structural alignment of proteins to detect similari-
ties and help transfer of information about a well-known protein to
unknown proteins that can be structurally aligned to it. The structu-
ral alignment methods, however, are computationally intensive and
do not lend themselves to large-scale comparisons. Moreover, they
miss remote homologies, especially when the proteins share only a
local region.

Many proteins have a multi-domain nature, and the global simi-
larities alone are not sufficient to identify functional similarities
existing in distinct local domains. Inevitably,local structural motifs
are often required for identification of biological function and
homology relationships (Hodgman, 1989; Taylor and Jones, 1991).
Manual identification of these regions require intensive genetic and
molecular biology experimentation, which may take years of dili-
gent studies. An automated method of detecting potential sites
would thus be very much appreciated. We therefore focus, in this
study, on automatic discovery of local sites of proteins which have
distinguished structural and biochemical features, and may thereby
have functional significance.

Previous approaches have assumed that such functional sites are
already known (Bagley and Altman, 1995; Wallace et al., 1996), and
have focused on building adescription, rather thanautomatic detec-
tion of these sites, with the hope of cataloguing these descriptions as
structural motifs, so that unknown proteins could be annotated via
comparison with these motifs. TheLocal Feature Mining in Prote-
ins (LFM-Pro) framework proposed in this study starts with a group
of proteins that share a certain function, and does not assume any
prior knowledge about the location or nature of the functional sites.
Through comparison of this group of proteins with a background
set of unrelated proteins, it is able to detect sites that yield features
unique to the family members.

Structural motif search is generally based on graph theoretical
algorithms (Spriggs et al., 2003; Huan et al., 2005), geometric
hashing (Wallace et al., 1997; Shatsky et al., 2005) and others (Singh
and Saha, 2003). In order to discover motifs, these methods search
for commonly recurrent local structures in space, based on their
specific models. The graph theoretic approaches generally require
exponential time in the number of the localities being matched.
The computational bottle-neck of these approaches prevent effec-
tive automated detection of local motifs. More importantly, these
methods analyze the protein at theresidue level, and fail to handle
substitutions of the amino-acids or displacements of the backbone.
It has been shown that residues can adopt quite different conforma-
tions while managing to conserve the positions of their important
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functional atoms (Wallace et al., 1996). Therefore, anefficient
method that can analyze the protein structures at the finer granularity
of atomic levelis needed.

2 APPROACH
We focus on identification of local sites which are unique to a family
of proteins sharing a certain structural or functional property. A site
can be defined as a three dimensional location in the protein, and
a local spatial neighborhood around this location having a certain
structure or function (Bagley and Altman, 1995). In order to mine a
protein dataset for possible functional sites, we are faced with three
main challenges.

The first challenge is deciding on a data structure for sampling
of the 3D distributions of the site locations and determining the
size of their spatial neighborhood. For this purpose, a three dimen-
sional grid has previously been utilized (Goodford, 1985; Bagley
and Altman, 1995). Although grids offer computational advantages,
the protein space has to be sampled in high resolution in order to
capture micro-environments, which causes very large grids, defea-
ting the purpose of using a grid-based distribution. Some methods
therefore only consider local patterns centered at each residue or
at some manually-chosen positions as potential motifs (Jonassen
et al., 2001; Liang et al., 2003), possibly missing motifs not cente-
red around such positions. Furthermore, these methods usually miss
relatively rare and novel motifs. An automatic method that produces
a concise yet complete coverage of the motif space is still missing.
The method we present in this paper is able to efficiently sample
the motif space for identification of unique structural and functional
local motifs. Our method relies on a novel computational geometry
method for identification of topologically significant locations and
also dynamically adjusts the size of the site based on the residues
surrounding the microenvironment.

The second challenge is the characterization of the microenviron-
ment features. Presence of certain amino-acid types as the basic
feature (Wako and Yamato, 1998; Singh et al., 1996; Munson and
Singh, 1997) does not provide a detailed characterization of the
site, and may miss certain motifs because of the similarity and sub-
stitutability of amino acids. More detailed characterization of the
microenvironment (Bagley and Altman, 1995) consider properties
such as hydrophobicity, mobility, and solvent accessibility which
can capture the physico-chemical nature of the site at the cost of
requiring more time for the computation of these properties. We
have found that using the atom frequencies (Li and Parthasarathy,
2001; Milik et al., 2003) is a good tradeoff between accuracy and
efficiency in characterizing the microenvironment for the purpose
of local motif detection. Moreover, unlike previous studies, we also
augment the feature vector to capture the topological information of
the backbone surrounding the microenvironment.

The last main challenge is having an efficient and sensitive
method for detecting common patterns. Determining which motifs
are responsible for an observed function is a difficult task. Graph
theoretic approaches try to find common subgraphs, but they are
currently not scalable for large space of possible motifs, and they
cannot easily handle noise in the data or substitution of residues.
Statistical methods have been used (Bagley and Altman, 1995) in
characterization of the motif structure while comparing a group of
known sites and non-sites, but these methods rely ona priori know-
ledge of the functional sites. Whereas, the method we present uses
a data mining approach to discover distinguishing functional sites

Fig. 2. Delaunay tessellation (dashed lines) and Voronoi diagram (solid
lines) of a set of points in 2D. Region enclosed by a Voronoi polyhedron
is the area that is closest to the enclosed point than to any other point in
the set. Delaunay tesselation is obtained by connecting points that share a
boundary. In 3D, Delaunay tessellation would give space-filling tetrahedra.
A circle (sphere) can be drawn whose center is a vertex of Voronoi diagram
and which passes through the points in the corresponding Delaunay triangle
(tetrahedra).

shared by a family of proteins without requiring prior knowledge of
the location or nature of these sites. Moreover, it is robust to noisy
patterns, and can handle incorrect initial classification of the data.

3 METHODS
Figure 1 shows an overall flow-chart of the steps followed in LFM-Pro. We
first identify topologically significant local structural centers of each pro-
tein, by calculating the critical points of a particular distance field. A ball
centered around each critical point defines the spatial neighborhood of these
structural centers. Each critical point is then associated with topological and
biochemical features of its spatial environment.

Once we generate the feature vectors for each critical point of the proteins,
a family of proteins are then searched for shared feature vectors. The aim
here is to find critical points unique to a family; therefore, a set of shared
feature vectors are chosen such that it is able to distinguish the members of
the protein family from a background set of proteins that lack the properties
and functions of interest. The group of critical points that are unique to a
family are combined to obtaina representative feature setfor the family. In
the following subsections, each of these steps are described in detail.

3.1 Sampling of the Structural Centers
Given a proteinP as the set of its alpha Carbon (Cα) atom centersP =
{p1, . . . , pn}, the distance functionΦP : R3 → R w.r.t. P is defined as
follows: ΦP (x) is the nearest distance fromx to anypi ∈ P . ΦP describes
the influence of (the backbone atoms of) proteinP to its neighboring space
via the distance field. Intuitively, if two proteins have similar structure, they
should have similar distance fields. In particular, if there are regions in space
where proteins display similar local structural patterns, then they should have
similar distance fields in and around that region as well.

We identify the potential motif centers by finding the critical points of
this distance function. Formally, critical points of a smooth functiong, are
points with vanishing gradients. In our case, for a function defined overR3,
there are four types of critical points: local minima, local maxima, and two
types of saddle points. Note that, when distance to backbone atoms is used
as functiong, it turns out that the set of critical points ofΦP is the set of
intersection points between some Delaunay simplex (a point, edge, triangle,
or tetrahedron) with its dual Voronoi elements (a polytope, face, edge, point,
respectively) (Figure 2), and can be computed inO(n2) time wheren = |P |
(Giesen and John, 2003).

We now collectΠ as the set of critical points of the distance function.
Some examples of structural motifs that such critical points can capture are
illustrated in Figure 3. Thespatial neighborhoodof a critical point is defi-
ned as the spherical region centered at the critical point, whose radius is its
distance function value.
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Fig. 1. The general strategy of LFM-Pro. For each protein, 1) location of the critical points of distance field to backbone atoms are identified, 2) the critical
points are filtered to remove nonpersistent or unimportant ones, 3) a feature vector that captures the topological and biochemical properties of its spatial
neighborhood is associated with each critical point. 4) Feature vectors for the remaining critical points of each protein in the dataset are pooled and 5) those
that are generated from family members are assessed for their ability to discriminate the family proteins from the rest of the dataset. 6) the critical points that
display the best discriminating behavior in step 5 are combined into a representative feature set of the family.

(a) (b)

Fig. 3. Two types of motifs captured by critical points of the distance func-
tion. In (a), four pieces of protein backbone come close in space, forming a
contact as indicated by the tetrahedron in the middle. The double point is a
local maximum ofΦ. In (b), the cross-point is a saddle point. Local spatial
patterns can be captured by taking a ball centered at these critical points.

Following the generation of all critical points of distance, we perform
a filtering of these points to eliminate noise. The structural importance of
the critical points were assigned using the topological persistence algorithm
from (Edelsbrunner et al., 2002), and those with small persistence were
removed fromΠ. This topological method of removing noise is fundamen-
tally different from those that employ clustering of neighboring points, in
terms of the type of noise it removes. Roughly speaking, it measures the
importance of a feature (critical point) by measuring how persistent this fea-
ture remains if the distance field is perturbed. Note that filtering based on
persistence effectively eliminates the noise inherent in the crystallography
methods used to obtain the atom coordinates. After the filtering step, the
number of remaining critical points are roughly the same as the number of
the amino acids in the protein.

3.2 Characterizing the Spatial Neighborhood
As a by-product of our structural center sampling method, we have a natural
way to decide the neighborhood size, which is better than prefixing some
threshold value. For the spatial neighborhood around each critical point,
we associate a feature vector, based on both the structural and biochemical
nature of the neighborhood. The structural features include: the persistence
value of the critical point, the radius of the neighborhood, and thewrithing
number. The biochemical features we use are based on the frequency and
location of the constituent atoms within the neighborhood.

The writhing number, or writhe, is originally used to measure the super-
coiling phenomenon for a space curve, and has been used to characterize
both DNA (Fuller, 1978; Klenin and Langowski, 2000; Swigon et al., 1998)
and protein structures (Levitt, 1983; Rogen and Fain, 2003). We compute the
writhe of those backbone pieces contained within the spatial neighborhood
to measure their relative spatial arrangements.

In order to capture the biochemical nature of the spatial environment, we
use the frequencies of each of the side-chain Carbon, Nitrogen, Oxygen, and
Sulfur atoms within the spherical region. Furthermore, the location informa-
tion of these atoms is captured by computing the center of mass for each
atom type. Note that our framework can be easily extended to use physico-
chemical properties such as hydrophobicity, solvent accessibility, Van der
Waals radii, or mobility, which can capture more detailed information about
the spatial environment (Bagley and Altman, 1995). However, we did not
use such extended features in this study, because of the computational cost
they incurred.

3.3 Mining for a Representative Feature Set
Each proteinpi now has a setΠ = {c1, . . . cn} of feature vectors generated
from its important critical points. LetF = {p1, . . . pm} denote a family of
proteins that are known to share a common structural or functional property.
And let the setG denote the rest of the proteins in the dataset. We wish to
determine the critical points that are unique to familyF , and assess their
ability to discriminate the proteins within the family from the rest of the
proteins. Note that the algorithm to detect family-specific critical points has
to allow changes in the values of the feature vectors. We utilized a distance-
based approach for this purpose.

The dissimilarityd(ci, cj) of any given two critical points can be defined
in terms of an appropriate distance function between their corresponding
feature vectors. We observed that a simple Euclidean distance measure on
normalized feature vectors was sufficient in detecting family specific struc-
tural centers. Aweighted–Euclidean distance, that can highlight varying
contributions of the individual environment features could also be designed
by optimizing the weights against an objective function.

When comparing a critical pointcx to a proteinp, we take the distance of
cx to its closest match inp as defined with the distance function:

d(cx, p) = min{d(cx, c1), . . . , d(cx, cn)}
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wherec1, . . . , cn are the critical points of the proteinp. Intuitively, if a
critical pointcx is part of a proteinp, one would expect a very small value
for d(cx, p).

For each candidate critical pointcx of the proteins in the familyF , we
calculate its distance to all the proteins in the dataset. For an ideal discrimi-
native critical point, the distances to the proteins inF would be clustered at
a minimal, whereas the distances to the rest of the proteins,G, would take
upon higher values. We modeled this intuition by defining thediscrimination
score sof a critical point as follows:

s(cx) =
µ(cx, G)

(1 + µ(cx, F )) ∗ (1 + κ(cx, F, G))
(1)

whereµ(cx, F ) is the average distance ofcx to proteins in the familyF ,

µ(cx, F ) = avg(d(cx, p ∈ F )) (2)

andκ is the number of background proteins that have a distance smaller than
the maximum within-family distanced∗(cx, F ) = max(d(cx, p ∈ F )).

κ(cx, F, G) = count(d(cx, p ∈ G) ≤ d∗(cx, F )) (3)

In Equation 1,µ(cx, F ) andµ(cx, G) ensure that those critical points
that have small within-family distance and high out-of-family distance get
higher discrimination scores. The average distances alone, however, do not
guarantee a clear separation of the family proteins from the rest. The termκ
favors those critical points that can cluster the family proteins with minimal
number of out-of-family proteins. In other words,µ works to select features
common to family, whileκ works to avoid features that cannot discriminate
family proteins from the rest. Each term in the denominator is padded with
1 for numerical stability.

Using the discrimination scores, we obtain a set of critical points ranked
by the scores reflecting how representative they are for a given familyF . We
refer the collection of the critical point features with their associated scores
as therepresentative feature setof the family.

Classification Modeling. Let Π = {c1, . . . cn} be the representative
feature set of familyF , with corresponding discriminative scoresS =
{s1, . . . sn} and maximum within-family distancesD∗ = {d∗1, . . . d∗n}.
The membership scoreof a new proteinp to the familyF is calculated as
follows:

ψ(p, F ) =
1

n

X
i=1...n

si
d∗i − d(ci, p)

d(ci, p)
(4)

The membership scoreψ, is dominated by the matching features that
have small distance and high representative scores. The numerator term in
the summation in Equation 4 provides a threshold logic based on the maxi-
mum within-family distancesd∗. Those features that match the protein with
a distance smaller thand∗ contribute positively in the membership score,
whereas those that have a greater distance are penalized in the scoring. The
overall membership score reflects how well a protein matches a represen-
tative feature set. In a multi-family classification scheme, the membership
scoreψ(p, F ) can be used to assign the proteinp to the closest family.

4 RESULTS

4.1 Experimental Setup
All the experiments were conducted on a single processorPentium
4 PC with 2.8 GHz CPU and 1 GB main memory. The selection
of centers via determination of critical centers of the distance func-
tion was implemented in Python and C, using CGAL (CGAL, 2006)
computational geometry library; the feature extraction and mining
methods were developed under Matlab environment.

The proteins used in this study were selected from the representa-
tive ASTRAL (Brenner et al., 2000) dataset of SCOP 1.69 (Murzin
et al., 1995) with less than 40% sequence homology. There were a
total of 7,237 entries in the ASTRAL dataset.

The one-time-only generation of critical points and their cor-
responding feature vectors took 49 seconds on the average per
protein.

4.2 Mining Functional Sites
The success of LFM-Pro could be assessed by applying it to protein
families that have well-defined functional sites, and investigating
whether the sites detected by LFM-Pro match the known functional
sites in these proteins. Serine Proteases are the most studied family
of proteins, in the context of structural motif extraction (Bagley and
Altman, 1995; Wallace et al., 1996; Milik et al., 2003; Huan et al.,
2004, 2005). We follow the tradition and also use Serine Proteases
for this study. The proteins were selected from the SCOP superfa-
mily (b.47.1.*) “trypsin-like serine proteases,” here on referred as
the SP superfamily and included both prokaryotic (PSP: 10 SCOP
entries) and eukaryotic (ESP: 19 SCOP entries) proteins, which
share the same catalytic site.

The local site mining for the SP family took 30 seconds to com-
plete. Note that, with the same number of localities to compare, the
subgraph mining methods may take several days to complete (Huan
et al., 2005). Figure 4 shows the mapping of the top scoring fea-
tures on Alpha-lytic protein (1ssx). The top sites obtained by the
feature mining algorithm corresponded to the catalytic triad site of
the Serine Proteases. The atoms within the immediate neighborhood
of the catalytic triad have relatively conserved positions, which is
successfully picked up by the mining algorithm. The highest sco-
ring site contained atoms of the residues Ser195, His57, Asp102,
Ser214 and Ala55. The residues Ser195-His57-Asp102 form the
charge relay system responsible for the hydrolytic cleavage of the
appropriate substrate. Ser214 has also been found to be highly con-
served in SP (Wallace et al., 1996). We also observed that Ala55
is conserved in SP and we speculate that Ala55 keeps the catalytic
triad in its relative orientation via Van der Waals interactions.

The third highest scoring site includes the disulfide bridge
Cys189-Cys220, which is distant to the catalytic site, but is nevert-
heless conserved across Serine Proteases. This disulfide bond keeps
the backbone such that Ser195 and Ser214 can remain in close pro-
ximity. The next highest scoring site is another disulfide bridge,
Cys42-Cys58, which helps keep the His57 and Ala55 residues
within the catalytic site 4.

Selection of Background Proteins.One interesting question is
whether the use of a background set of proteins is really necessary,
i.e., whether it would be possible to detect the functional sites by
just finding features common to a family of proteins, without com-
parison to unrelated proteins. Figure 5 illustrates the effect of the
size and nature of the background class of proteins on the detection
of functional site in SP. The rank of the first feature that map to the
catalytic triad site is used as the basis of evaluation.

We expected that the performance of the algorithm would
improve with increasing number of out-family proteins used. As the
size of the background set is increased, the contribution ofµ(cx, F )
term in Equation 1 decreases, which translates intodistinguishing
features ranking higher thancommonfeatures. Figure 5 shows that
for each type of background set of proteins we used, the algorithm
was able to detect the functional site, when given a sufficiently large
number of background proteins.

Furthermore, Figure 5 demonstrates that using proteins that share
structural features with the family under investigation increases the
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HIS57

ASP102

CYS42

ALA55
SER195

SER214
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Fig. 4. Mapping of the top scoring sites onto Alpha-lytic protein (1ssx). The
features were obtained by mining SP dataset against a random set of 200
background proteins.Left: Features 1,2,4,5 span the neighborhood of the
catalytic triad, whereas feature 3 contains a distant disulfide bridge CYS189-
CYS220.Right: A closer look into the catalytic region spanned by features
1,2,4,5. The residues whose side-chain atoms are contained within these sites
are shown.
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Fig. 5. The effect of the size of the background setG on detection of the
functional site. Results given for mining SP dataset against selection of pro-
teins using three sets of proteins: all proteins, only b.* all-beta class, or only
a.* all-alpha class. The size ofG is shown up to 150 proteins for illustration
purposes; the rank of the mined functional site did not change beyond 150
proteins.

accuracy of the mining. When random out-family members were
selected from b.* SCOP class of all-beta proteins, the functional
triad site is detected among the top-scoring sites, even with only a
few out-family proteins. Whereas, significantly more proteins are
needed in the out-family set if one uses a.* SCOP class of all-alpha
proteins, which share little structural fold similarity with SP. This
observation is attributed to the fact that proteins that share structural
folds with the investigated family can better prune out insignificant
scaffold sites and enhance detection of unique sites.

The set of background proteins needed to obtain the most desi-
rable feature-mining results would depend on the specific family
being studied. Even though all available proteins can be used as the
background setG, it may be desirable to reduce the size ofG for
efficiency purposes. As a general guideline, we recommend the use
of proteins that share the same structural folds, but are missing the
target function of interest.
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Fig. 6. The effect of the size and composition of the family setF on detec-
tion of the functional site. The background setG for this experiment is
composed of 200 randomly selected proteins from the b.* SCOP class of
all-beta proteins.

Selection of Family Proteins.While seeking features that are
distinguishing from unrelated proteins, we also seek that these fea-
tures be common across the family. For this reason, appropriate
selection of the family proteins plays an important role in detection
of functional sites. Figure 6 demonstrates the effect of composition
and size of the family proteins on detection of the catalytic triad. The
region of the catalytic triad is more conserved in Eukaryotic prote-
ins, giving the functional site a higher score. When PSP and ESP
proteins are combined (SP), the family set would contain an evo-
lutionarily more diverse set and the algorithm can attribute lower
scores to those sites that are unique only to either of these two fami-
lies, and highlight the functional site that is shared by both protein
families.

Appropriate composition of the family proteins was more effec-
tive in mining for the functional site than simply increasing the size
of the family. In fact, increasing the number of proteins did not give
the catalytic triad significantly higher scores in PSP or ESP families.
For PSP and ESP families, the high scoring features involved the
sites that represent the hydrophobic cores and loops in the secon-
dary structure. These spatial regions show greater variation across
proteins, and are detected as representative of the family when a
smaller family set is used.

4.3 Binary Classification
To investigate the classification capabilities of LFM-Pro, we used
a dataset that was previously utilized under a binary classification
scheme (Huan et al., 2004). The first dataset (C1) includes two fami-
lies from different SCOP classes: nuclear receptor ligand-binding
domain proteins (NB, 16 proteins) from all-alpha class, and the
prokaryotic serine protease family (PSP, 10 proteins) from all-beta
class. The second dataset (C2) uses ESP (19 proteins) and PSP fami-
lies which belong to the same superfamily. Note that PSP and ESP
were used together above in the functional-site mining experiments.
Whereas, the goal in this section is to evaluate the discrimination
power of the representative feature sets for clearly distinct families
(C1) and closely related families (C2). The proteins were selected
from theCulled-PDBlist (Wang and Dunbrack, 2003) with less than
60% identity.
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Table 1. Binary classification results.

Dataset Method Features Dist.Feat Accuracy

C1 DT 20,646 934 100%
AD 23,130–37,394 1,093–1,674 96–100 %

LFM-Pro 5,282 1 100%

C2 DT 15,895 20 95%
AD 18,491–32,569 29–36 93–95 %

LFM-Pro 2,180 139 100%

The methods Delaunay Tesselation (DT) and Almost Delaunay (AD) are from
subgraph mining approach in (Huan et al., 2004); results for the AD entry are
given for a range of allowable perturbation values (ε = 0.1 − 0.75). The
fourth column shows the number of features that havediscrimination power
above 0.75, as defined by the authors; and the number of features required to
obtain maximum accuracy in LFM-Pro. Accuracy is defined as the fraction of
correct predictions measured by five-fold cross validation.

For families in datasetsC1 andC2, the feature sets were extrac-
ted and scored as described above, and these representative feature
sets were used for binary classification of proteins. The subgraph
mining approach in (Huan et al., 2004) have achieved perfect accu-
racy forC1 dataset, where the two families are from different SCOP
classes, but had5% classification error for theC2 dataset, in which
the two families belong to the same superfamily. LFM-Pro classifies
the proteins in both of these datasets with 100% accuracy, when all
the extracted features were used in classification (Table 1). We attri-
bute the success of LFM-Pro, in comparison with the graph mining
approaches, to the fact that it can accommodate amino acid sub-
stitutions and displacements in the backbone, and focuses on the
individual atoms within a spatial neighborhood rather than the coar-
ser level information about location of CA atom of the amino acid
residues.

In LFM-Pro, each feature in the representative feature set contri-
butes according to its corresponding score, which guarantees that
the features that are not as discriminative as the top scoring features
do not distort the classification, but only fine-tune it. However, it
may be desirable for efficiency and maintenance purposes, to keep
only a small fraction of the top-scoring features for classification.
Even though perfect accuracy was achieved inC1 dataset using a
single feature; the classification was more stable when more than
20 features are used. Considerably more features were required to
distinguish the closely related families in theC2 dataset.

4.4 Multi-class Classification
In order to further validate our method, we performed a multi-class
classification experiment on a more challenging dataset. Namely,
the new entries introduced in SCOP 1.69 were classified based on
family representations generated from SCOP 1.67. For both SCOP
versions, ASTRAL dataset with less than 40% were used. The pro-
teins or families that were re-classified in 1.69 and families that
contain a training set less than 5 members were ignored. The final
dataset contained 90 families with a total of 1,056 training prote-
ins from SCOP 1.67 and 157 test proteins that were newly added in
SCOP 1.69.

For comparison, the test proteins were also classified based on
pairwise DALI (Holm and Sander, 1993) scores, such that a query

Table 2. Multi-class classification results.

Method Training Accuracy Test Accuracy

DALI 100% 31.21%
LFMPro 100% 37.58%

DALI and LFMPro 100% 56.05%

The training set is from SCOP 1.67 and test set is the newly added
proteins in SCOP 1.69. The last row assumes that an oracle chooses
the correct classification given by either method.

protein is assigned to the family of the protein with highest pair-
wise Z score. The results of multi-class classification experiment are
tabulated in Table 1. The restriction of 40% homology in the data-
set makes it particularly challenging. Moreover, an increase in the
number of families result in higher number of false positives . DALI
could only classify 31.2% of the test proteins correctly, whereas
LFMPro obtained a classification accuracy of 37.58%.

Note that the proteins classified correctly by LFMPro are dis-
joint from those classified correctly by DALI. Combining DALI and
LFMPro results and assuming an oracle to decide which one to use
for a give protein, 56.05% accuracy is possible. Therefore, a clas-
sifier combining the output of these complementary methods would
achieve higher accuracy, which is among our future research goals.

5 DISCUSSION
We have presented a data-mining based framework,Local Feature
Mining in Proteins(LFM-Pro), whereby topologically and bioche-
mically conserved regions of a protein family could be automatically
discovered. We have demonstrated the success of the method on
Serine Protease family of proteins and also on two binary classifica-
tion datasets. The sites unique to a family of proteins were identified
via comparison to a background set of proteins. We have confirmed
that the sites detected by our method conforms with the previously
reported functional sites. When a background set of proteins is not
provided, LFM-Pro scores the local sites based on how common
they are across the family proteins.

LFM-Pro gives the most desirable site-mining results when the
family being studied contains proteins that are evolutionarily distant
but share the site of interest, and when the background family is
chosen to contain proteins that share the same structural folds with
the family being studied. The objective of maximizing the dis-
criminative scores can be used to determine the optimal size of
the background set in feature mining, and the optimal number of
features in classification.

LFM-Pro uses feature vectors associated with local neighbor-
hoods that provides comprehensive sampling of the protein space.
One of the major advantages of a feature-based approach is the com-
putational efficiency; because the time-consuming graph matching
or structural alignment steps are no longer required. Moreover, the
feature vectors can be stored in an index structure optimized for
range queries, which would further improve the efficiency of the
algorithm. A custom filtering step to remove features related to
trivial secondary structures can also be performed to reduce the
number of candidate features, which would further increase the
efficiency of the algorithm.
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The framework presented in this study is easily extensible to more
sophisticated feature extraction and scoring schemes. One may,
for example, augment the features presented here with physico-
chemical features such as hydrophobicity, solvent accessibility, or
mobility. It would also be interesting to investigate critical points
of other function fields, such as force fields. Note that we utilized
a simple unweighted Euclidean distance function for measuring the
dissimilarity between feature vectors, and it was our experience that
the algorithm allowed imperfect distance functions. However, fine-
tuning the weights of the spatial features may be desirable in order
to highlight the contributions of each feature in the representation
of local sites. The weights of the distance function can be automati-
cally optimized with the objective of maximizing the discriminative
scores of the representative set. We have provided in the software
distribution of LFM-Pro, asimulated annealingapproach for such
fine-tuning.

Using local structural and biochemical features as opposed to
structural alignment of proteins, can potentially yield in identifica-
tion of very distant evolutionary relationships, and can help discern
the function of yet uncharacterized proteins. Local sites of the pro-
teins resist evolutionary modifications if they perform an important
biological function, whereas the rest of the protein simply provides a
scaffold and is more prone to modifications through mutation, inser-
tion, deletion, and duplication events. Therefore, related proteins
can share a common evolutionary ancestry or a common biologi-
cal function, which may only be identifiable through comparison of
these local sites.

Inference of remote homology is also a key step in evolutionary-
based cataloguing of all available protein structures. Assigning
a new protein to unique positions in the classification scheme
becomes impossible when the homology is not detectable. Using
LFM-Pro, it is possible to identify a distinguishing representative
feature set for each family, and to quickly assign a new protein
to one (or more, for multi-domain proteins) of these families. For
instance, using the representative feature set generated by LFM-Pro
for Globins family of proteins, we were able to discover proteins
1uby, 1gai, and 1xis to have similar distinctive sites as the Globins.
These three proteins were not previously classified to have struc-
tural or functional similarities with Globins; however, a multiple
alignment revealed that they could indeed be significantly aligned
with Globins, confirming the detection by LFM-Pro.

Effective discovery of functional local motifs would have tremen-
dous impact in bioscience research, and would find applications in
areas such as multiple structural alignment, protein modeling, drug
design and targeting. As a future work, we plan to undertake a
large-scale, systematic study where we would extract representative
feature sets for all SCOP families, and provide them as a publicly
available motif database. The feature vectors extracted from the
proteins also lend themselves for an unsupervised learning method
where unique functional sites could be automatically discovered
without any prior family-membership information.
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