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ABSTRACT

Motivation: The rapidly growing protein structure repositories have
opened up new opportunities for discovery and analysis of functional
and evolutionary relationships among proteins. Detecting conserved
structural sites that are unique to a protein family is of great value in
identification of functionally important atoms and residues. Currently
available methods are computationally expensive and fail to detect
biologically significant local features.

Results: We propose LFM-Pro (Local Feature Mining in Proteins)
as a framework for automatically discovering family specific local
sites and the features associated with these sites. Our method uses
the distance field to backbone atoms to detect geometrically signi-
ficant structural centers of the protein. A feature vector is generated
from the geometrical and biochemical environment around these cen-
ters. These features are then scored using a statistical measure, for
their ability to distinguish a family of proteins from a background set
of unrelated proteins, and successful features are combined into a
representative set for the protein family. The utility and success of
LFM-Pro are demonstrated on Trypsin-like Serine Proteases family
of proteins and on a challenging classification dataset via compari-
son with DALI. The results verify that our method is successful both
in identifying the distinctive sites of a given family of proteins, and in
classifying proteins using the extracted features.

Availability: The software and the datasets are freely available for
academic research use at http://bioinfo.ceng.metu.edu.tr/Pub/LFMPro
Contact: ahmet@ceng.metu.edu.tr, {ozturk,hakan,yusu}@cse.ohio-
state.edu

1 INTRODUCTION

The classical approaches of structural analysis have focused on
global pairwise structural alignment of proteins to detect similari-
ties and help transfer of information about a well-known protein to
unknown proteins that can be structurally aligned to it. The structu-
ral alignment methods, however, are computationally intensive and
do not lend themselves to large-scale comparisons. Moreover, they
miss remote homologies, especially when the proteins share only a
local region.

Many proteins have a multi-domain nature, and the global simi-
larities alone are not sufficient to identify functional similarities
existing in distinct local domains. Inevitablpcal structural motifs
are often required for identification of biological function and
homology relationships (Hodgman, 1989; Taylor and Jones, 1991).
Manual identification of these regions require intensive genetic and
molecular biology experimentation, which may take years of dili-
gent studies. An automated method of detecting potential sites
would thus be very much appreciated. We therefore focus, in this
study, on automatic discovery of local sites of proteins which have
distinguished structural and biochemical features, and may thereby
have functional significance.

Previous approaches have assumed that such functional sites are
already known (Bagley and Altman, 1995; Wallace et al., 1996), and
have focused on buildingdescription rather tharautomatic detec-
tion of these sites, with the hope of cataloguing these descriptions as
structural motifs, so that unknown proteins could be annotated via
comparison with these motifs. Thecal Feature Mining in Prote-
ins (LFM-Pro) framework proposed in this study starts with a group
of proteins that share a certain function, and does not assume any
prior knowledge about the location or nature of the functional sites.
Through comparison of this group of proteins with a background

Rapidly growing protein structure repositories open up new posset of unrelated proteins, it is able to detect sites that yield features
sibilities for discovering functional and evolutionary relationships Unique to the family members.
among proteins, and for elucidating the principles by which a cer- Structural motif search is generally based on graph theoretical
tain structure produces an observed function. The increase in dagdgorithms (Spriggs et al., 2003; Huan et al., 2005), geometric
size, however, also calls for more efficient and accurate methods dfashing (Wallace etal., 1997; Shatsky et al., 2005) and others (Singh
comparing proteins and identifying potential functional residues andind Saha, 2003). In order to discover motifs, these methods search
binding sites. for commonly recurrent local structures in space, based on their
specific models. The graph theoretic approaches generally require
exponential time in the number of the localities being matched.
*To whom correspondence should be addressed The computational bottle-neck of these approaches prevent effec-
TThis study was conducted while the author was a Visiting Scholar at Thetlve automated detection O_f local motlfs. More Impprtantly, these
Ohio State University meth(.)ds. analyze the proteln .at ttm@ue leveland fail to handle
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Early Career Principal Investigator Award DE-FG02-03ER25573 and usit has been shown that residues can adopt quite different conforma-
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functional atoms (Wallace et al., 1996). Therefore, eficient
method that can analyze the protein structures at the finer granularity
of atomic levels needed.

2 APPROACH

We focus on identification of local sites which are unique to a family

of proteins sharing a certain structural or functional property. A SiteFig. 2. Delaunay tessellation (dashed lines) and Voronoi diagram (solid

can be defined as a three dimensional location in the protein, anghes) of a set of points in 2D. Region enclosed by a Voronoi polyhedron

a local spatial neighborhood around this location having a certaifis the area that is closest to the enclosed point than to any other point in

structure or function (Bagley and Altman, 1995). In order to mine athe set. Delaunay tesselation is obtained by connecting points that share a

protein dataset for possible functional sites, we are faced with threkoundary. In 3D, Delaunay tessellation would give space-filling tetrahedra.

main challenges. A circle (sphere) can be drawn whose center is a vertex of Voronoi diagram
The first challenge is deciding on a data structure for sampling”‘”d which passes through the points in the corresponding Delaunay triangle

of the 3D distributions of the site locations and determining the(tétrahedra).

size of their spatial neighborhood. For this purpose, a three dimen-

sional grid has previously been utilized (Goodford, 1985; Bagley

and Altman, 1995). Although grids offer computational advantagesshared by a family of proteins without requiring prior knowledge of

the protein space has to be sampled in high resolution in order tthe location or nature of these sites. Moreover, it is robust to noisy

capture micro-environments, which causes very large grids, defedaatterns, and can handle incorrect initial classification of the data.

ting the purpose of using a grid-based distribution. Some methods

therefore only consider local patterns centered at each residue qr

at some manually-chosen positions as potential motifs (Jonassgw METHODS

et al., 2001; Liang et al., 2003), possibly missing motifs not centeFigure 1 shows an overall flow-chart of the steps followed in LFM-Pro. We

red around such positions. Furthermore, these methods usually midest identify topologically significant local structural centers of each pro-

relatively rare and novel motifs. An automatic method that produced€in. by calculating the critical points of a particular distance field. A ball

a concise yet complete coverage of the motif space is stil missingc_entered around each crltlc_:._al point dgfmes the spa_ual ne|ghborhood_of these

The method we present in this paper is able to efficiently sampl structural centers. Each critical point is then associated with topological and

h if for identificati funi | and f A I%iochemical features of its spatial environment.
the motif space for identification of unique structural and functiona Once we generate the feature vectors for each critical point of the proteins,

local motifs. Our method relies on a novel computational geometry, tamily of proteins are then searched for shared feature vectors. The aim

method for identification of topologically significant locations and nere is to find critical points unique to a family; therefore, a set of shared

also dynamically adjusts the size of the site based on the residu@sature vectors are chosen such that it is able to distinguish the members of

surrounding the microenvironment. the protein family from a background set of proteins that lack the properties
The second challenge is the characterization of the microenvironand functions of interest. The group of critical points that are unique to a

ment features. Presence of certain amino-acid types as the badgmily are combined to obtaia representative feature skr the family. In

feature (Wako and Yamato, 1998; Singh et al., 1996; Munson andhe following subsections, each of these steps are described in detail.

Singh, 1997) does not provide a detailed characterization of the .

site, and may miss certain motifs because of the similarity and sub3-1 Sampling of the Structural Centers

stitutability of amino acids. More detailed characterization of theGiven a proteinP as the set of its alpha Carbo@'{) atom centers® =

microenvironment (Bagley and Altman, 1995) consider properties{pi, . --,pn}, the distance functio®p : R® — R w.rt. P is defined as

such as hydrophobicity, mobility, and solvent accessibility whichfollows: ®p(z) is the nearest distance framto anyp; € P. ® p describes

can capture the physico-chemical nature of the site at the cost ¢he influence of (the backbone atoms of) protéitto its neighboring space

requiring more time for the computation of these properties. Wewathe dlstanc_e ]‘leld._lntwtlvelly, if two proFelns hgve similar strL_Jcturg, they
should have similar distance fields. In particular, if there are regions in space

have found that using the atom frequencies (Li and Parthasarath o -
2001 Milik L 2003) i d tradeoff b dzlhere proteins display similar local structural patterns, then they should have
» Milik et al., ) Is a goad tradeoff between accuracy an imilar distance fields in and around that region as well.

efficiency in characterizing the microenvironment for the purpose e igentify the potential motif centers by finding the critical points of
of local motif detection. Moreover, unlike previous studies, we alsoris distance function. Formally, critical points of a smooth funcgomre
augment the feature vector to capture the topological information opoints with vanishing gradients. In our case, for a function defined&%er
the backbone surrounding the microenvironment. there are four types of critical points: local minima, local maxima, and two
The last main challenge is having an efficient and sensitivetypes of saddle points. Note that, when distance to backbone atoms is used
method for detecting common patterns. Determining which motifsas functiong, it turns out that the set of critical points @fp is the set of
are responsible for an observed function is a difficult task. Graphintersection points between some Delaunay simplex (a point, edge, triangle,
theoretic approaches try to find common subgraphs, but they arer tetrahedron) with its dual Voronoi elements (a polytope, face, edge, point,
currently not scalable for large space of possible motifs, and theyespectively) (Figure 2), and can be compute@im?) time wheren = |P|
cannot easily handle noise in the data or substitution of residuegGiesen and John, 2003).
Statistical methods have been used (Bagley and Altman, 1995) in We now collectII as the set of critical points of the distance function.
characterization of the motif structure while comparing a group ofSome examples of structural motifs that such critical points can capture are
known sites and non-sites, but these methods rely prriori know- illustrated in Figure 3. Thepatial neighborhooaf a critical point is defi-
ledge of the functional sites. Whereas, the method we present usesd as the spherical region centered at the critical point, whose radius is its
a data mining approach to discover distinguishing functional siteslistance function value.
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Fig. 1. The general strategy of LFM-Pro. For each protein, 1) location of the critical points of distance field to backbone atoms are identified, 2) the critical
points are filtered to remove nonpersistent or unimportant ones, 3) a feature vector that captures the topological and biochemical properties of its spatic
neighborhood is associated with each critical point. 4) Feature vectors for the remaining critical points of each protein in the dataset are pooled and 5) thos
that are generated from family members are assessed for their ability to discriminate the family proteins from the rest of the dataset. 6) the critical points tha
display the best discriminating behavior in step 5 are combined into a representative feature set of the family.

The writhing number, or writhe, is originally used to measure the super-
coiling phenomenon for a space curve, and has been used to characterize
both DNA (Fuller, 1978; Klenin and Langowski, 2000; Swigon et al., 1998)
and protein structures (Levitt, 1983; Rogen and Fain, 2003). We compute the
writhe of those backbone pieces contained within the spatial neighborhood
to measure their relative spatial arrangements.

(b) In order to capture the biochemical nature of the spatial environment, we
use the frequencies of each of the side-chain Carbon, Nitrogen, Oxygen, and

Fig. 3. Two types of motifs captured by critical points of the distance func- Sulfur atoms within the spherical region. Furthermore, the location informa-
tion. In (a), four pieces of protein backbone come close in space, forming &on of these atoms is captured by computing the center of mass for each
contact as indicated by the tetrahedron in the middle. The double point is atom type. Note that our framework can be easily extended to use physico-
local maximum of®. In (b), the cross-point is a saddle point. Local spatial chemical properties such as hydrophobicity, solvent accessibility, Van der

patterns can be Cap[ured by [aking a ball centered at these critical points_ Waals radii, or mObIlIty, which can capture more detailed information about
the spatial environment (Bagley and Altman, 1995). However, we did not

use such extended features in this study, because of the computational cost
they incurred.

Following the generation of all critical points of distance, we perform
a filtering of these points to eliminate noise. The structural importance of
the critical points were assigned using the topological persistence algorithm o .
from (Edelsbrunner et al., 2002), and those with small persistence werd-3 Mining for a Representative Feature Set
removed fromlL. This topological method of removing noise is fundamen- gach proteirp; now has aséfl = {c1, . .. ¢, } of feature vectors generated
tally different from those that employ clustering of neighboring points, in from its important critical points. LeF = {p1,...pm} denote a family of
terms of the type of noise it removes. Roughly speaking, it measures thgoteins that are known to share a common structural or functional property.
importance of a feature (critical point) by measuring how persistent this feaand let the setG denote the rest of the proteins in the dataset. We wish to
ture remains if the distance field is perturbed. Note that filtering based oRjetermine the critical points that are unique to famfly and assess their
persistence effectively eliminates the noise inherent in the crystallographypility to discriminate the proteins within the family from the rest of the
methods used to obtain the atom coordinates. After the filtering step, th@roteins. Note that the algorithm to detect family-specific critical points has
number of remaining critical points are roughly the same as the number ofy ajlow changes in the values of the feature vectors. We utilized a distance-

the amino acids in the protein. based approach for this purpose.
The dissimilarityd(c;, c;) of any given two critical points can be defined
3.2 Characterizing the Spatial Neighborhood in terms of an appropriate distance function between their corresponding

feature vectors. We observed that a simple Euclidean distance measure on

Asa by-prqduct of our structural cepter sar_'npll_ng method, we ha\_/e_ a naturq“ormalized feature vectors was sufficient in detecting family specific struc-
way to decide the nelghborhopd size, which is better than pref_l)flng SOMGral centers. Aweighted-Euclidean distance, that can highlight varying
threshold.value. For the spatial neighborhood around each Cm'(_:al po'r_'tcontributions of the individual environment features could also be designed
we associate a feature vector, based on both the structural and biochemi optimizing the weights against an objective function.

nature of the neighborhood. The structural features include: the persistence ., comparing a critical poirt, to a proteinp, we take the distance of
value of the critical point, the radius of the neighborhood, andattithing ¢, 10 its closest match ip as defined with the distance function:

number The biochemical features we use are based on the frequency and

location of the constituent atoms within the neighborhood. d(cz,p) = min{d(cz,c1),...,d(cz,cn)}
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wherec, . ..,c, are the critical points of the protejp. Intuitively, if a The one-time-only generation of critical points and their cor-
critical pointc, is part of a proteirp, one would expect a very small value responding feature vectors took 49 seconds on the average per
for d(cz, p). protein.

For each candidate critical point, of the proteins in the family, we
cal_culate_ ?ts distgnce to a_II the proteins in the_dataset. For an ideal discrimi4_2 Mining Functional Sites
native critical point, the distances to the proteinginvould be clustered at o .
a minimal, whereas the distances to the rest of the protéinsyould take TherCCGSS of LFM-Pro CQU|d be assessed.by applylng it to protein
upon higher values. We modeled this intuition by definingdiserimination ~ families that have well-defined functional sites, and investigating

score sof a critical point as follows: whether the sites detected by LFM-Pro match the known functional
w(ca, G) sites in these proteins. Serine Proteases are the most studied family
Ty . . . .
s(ca) = (1) of proteins, in the context of structural motif extraction (Bagley and

(1+ plea, 1))+ (1 + wlea, 1, G)) Altman, 1995; Wallace et al., 1996; Milik et al., 2003; Huan et al.,
wherey(cz, F') is the average distance of to proteins in the family”, 2004, 2005). We follow the tradition and also use Serine Proteases
u(ca, F) = avg(d(ca,p € F)) ) fo_r this study. The pr_ote_ins were selected from the SCOP superfa-
] ) ) mily (b.47.1.*) “trypsin-like serine proteases,” here on referred as
andk is t_he num_be_r of ba_ckgljound proteins that have a distance smallertha{he SP superfamily and included both prokaryotic (PSP: 10 SCOP
the maximum within-family distance” (c;, I') = maz(d(cz, p € F)). entries) and eukaryotic (ESP: 19 SCOP entries) proteins, which
k(cz, Fy G) = count(d(cqy,p € G) < d*(cg, F)) 3) share the same catalytic site.

In Equation 1,u(cs, F') and u(ce, G) ensure that those critical points The local site m!nlng for the SP family took 30 seconds to com-
that have small within-family distance and high out-of-family distance getp|6te' Note t_h"_ﬂ' with the same number of localities to compare, the
higher discrimination scores. The average distances alone, however, do ndtPgraph mining methods may take several days to complete (Huan
guarantee a clear separation of the family proteins from the rest. Thesterm €t al., 2005). Figure 4 shows the mapping of the top scoring fea-
favors those critical points that can cluster the family proteins with minimaltures on Alpha-lytic protein (1ssx). The top sites obtained by the
number of out-of-family proteins. In other worgsworks to select features  feature mining algorithm corresponded to the catalytic triad site of
common to family, whiles works to avoid features that cannot discriminate the Serine Proteases. The atoms within the immediate neighborhood
family proteins from the rest. Each term in the denominator is padded withyf the catalytic triad have relatively conserved positions, which is
1 for numerical stability. _ - , successfully picked up by the mining algorithm. The highest sco-

Using the discrimination scores, we obtain a set of critical points rankeqing site contained atoms of the residues Ser195, His57, Asp102
by the scores re.f lecting how.r.epresgmative they are for?given f.mwe Ser214 and Ala55. The residues Ser195-Hi357-/’-\sp102’ form the,
refer the collection of the critical point features with their associated scores ’ . .
as therepresentative feature sef the family. charge relay system responsible for the hydrolytic cleavage of the

appropriate substrate. Ser214 has also been found to be highly con-
Classification Modeling. Let IT = {c1,...cn} be the representative served in SP (Wallace et al., 1996). We also observed that Ala55
feature set of familyF, with corresponding discriminative scorés = g conserved in SP and we speculate that Ala55 keeps the catalytic
{s1,.. . on} an_d maximum W'th'n'fa'.m”y dlstance§_>* = {di, ...y} triad in its relative orientation via Van der Waals interactions.
The membership scoref a new proteirp to the family F' is calculated as The third highest scoring site includes the disulfide bridge
follows: 1 dy — d(ci,p) Cys189-Cys220, which is distant to the catalytic site, but is nevert-
Y, F) = n Z Sim “) heless conserved across Serine Proteases. This disulfide bond keeps
_ ' ’:l“'_" _ the backbone such that Ser195 and Ser214 can remain in close pro-
The membership scorg, is dominated by the matching features that ximity. The next highest scoring site is another disulfide bridge,

have small distance and high representative scores. The numerator term ®S42-Cy358 which helps keep the His57 and AlaS5 residues
the summation in Equation 4 provides a threshold logic based on the maxi- -, . L
within the catalytic site 4.

mum within-family distanced*. Those features that match the protein with

a distance smaller thad* contribute positively in the membership score,

! R ) ﬂSquection of Background ProteinsOne interesting question is
whereas those that have a greater distance are penalized in the scoring. ther th f a back d set of teins i I
overall membership score reflects how well a protein matches a represen- ether the use or a background set of proteins IS really necessary,

tative feature set. In a multi-family classification scheme, the membershiﬂ'e" whether it would be possible to detect the functional sites by

scorey(p, F) can be used to assign the protgito the closest family. just finding features common to a family of proteins, without com-
parison to unrelated proteins. Figure 5 illustrates the effect of the
4 RESULTS size and nature of the background class of proteins on the detection

. of functional site in SP. The rank of the first feature that map to the

4.1 Experimental Setup catalytic triad site is used as the basis of evaluation.
All the experiments were conducted on a single proceBsatium We expected that the performance of the algorithm would
4 PC with 2.8 GHz CPU and 1 GB main memory. The selectionimprove with increasing number of out-family proteins used. As the
of centers via determination of critical centers of the distance funcsize of the background set is increased, the contributiqi{ef, F')
tion was implemented in Python and C, using CGAL (CGAL, 2006) term in Equation 1 decreases, which translates digtinguishing
computational geometry library; the feature extraction and miningfeatures ranking higher thamommorfeatures. Figure 5 shows that
methods were developed under Matlab environment. for each type of background set of proteins we used, the algorithm

The proteins used in this study were selected from the representaras able to detect the functional site, when given a sufficiently large
tive ASTRAL (Brenner et al., 2000) dataset of SCOP 1.69 (Murzinnumber of background proteins.
et al., 1995) with less than 40% sequence homology. There were a Furthermore, Figure 5 demonstrates that using proteins that share
total of 7,237 entries in the ASTRAL dataset. structural features with the family under investigation increases the
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Fig. 4. Mapping of the top scoring sites onto Alpha-lytic protein (1ssx). The % : = = = = o
features were obtained by mining SP dataset against a random set of 200 number of family proteins F

background proteind.eft: Features 1,2,4,5 span the neighborhood of the

catalytic triad, whereas feature 3 contains a distant disulfide bridge CYS189-

CYS220.Right: A closer look into the catalytic region spanned by features Fig- 6. The effect of the size and composition of the family s&on detec-

1,2,4,5. The residues whose side-chain atoms are contained within these sif#0 Of the functional site. The background s@tfor this experiment is
are shown. composed of 200 randomly selected proteins from the b.* SCOP class of

all-beta proteins.

Size of out-family set G vs. rank of functional site

IS
S

— Selection of Family Proteins.While seeking features that are
| distinguishing from unrelated proteins, we also seek that these fea-
tures be common across the family. For this reason, appropriate
selection of the family proteins plays an important role in detection
of functional sites. Figure 6 demonstrates the effect of composition
and size of the family proteins on detection of the catalytic triad. The
region of the catalytic triad is more conserved in Eukaryotic prote-
ins, giving the functional site a higher score. When PSP and ESP
proteins are combined (SP), the family set would contain an evo-
lutionarily more diverse set and the algorithm can attribute lower
LD SN scores to those sites that are unique only to either of these two fami-
0 et e e 20 MO0 lies, and highlight the functional site that is shared by both protein
families.
Appropriate composition of the family proteins was more effec-
Fig. 5. The effect of the size of the background géton detection of the  tive in mining for the functional site than simply increasing the size
functional site. Results given for mining SP dataset against selection of progf the family. In fact, increasing the number of proteins did not give
teins using three sets of proteins: all proteins, only b.* all-beta class, or onlype catalytic triad significantly higher scores in PSP or ESP families.
a.* all-alpha class. The size @‘ls showp up to_lSO_protelns for illustration gor PSP and ESP families, the high scoring features involved the
purposes; the rank of the mined functional site did not change beyond 155ites that represent the hydrophobic cores and loops in the secon-
proteins. dary structure. These spatial regions show greater variation across
proteins, and are detected as representative of the family when a
smaller family set is used.

w
&

N W
a, S

rank of the mined functional site
N
S

accuracy of the mining. When random out-family members were . L
selected from b.* SCOP class of all-beta proteins, the functionaft-3  Binary Classification
triad site is detected among the top-scoring sites, even with only do investigate the classification capabilities of LFM-Pro, we used
few out-family proteins. Whereas, significantly more proteins area dataset that was previously utilized under a binary classification
needed in the out-family set if one uses a.* SCOP class of all-alphacheme (Huan et al., 2004). The first datagg {ncludes two fami-
proteins, which share little structural fold similarity with SP. This lies from different SCOP classes: nuclear receptor ligand-binding
observation is attributed to the fact that proteins that share structuralomain proteins (NB, 16 proteins) from all-alpha class, and the
folds with the investigated family can better prune out insignificantprokaryotic serine protease family (PSP, 10 proteins) from all-beta
scaffold sites and enhance detection of unique sites. class. The second datasét] uses ESP (19 proteins) and PSP fami-
The set of background proteins needed to obtain the most deslies which belong to the same superfamily. Note that PSP and ESP
rable feature-mining results would depend on the specific familywere used together above in the functional-site mining experiments.
being studied. Even though all available proteins can be used as th®hereas, the goal in this section is to evaluate the discrimination
background sefz, it may be desirable to reduce the size(offor power of the representative feature sets for clearly distinct families
efficiency purposes. As a general guideline, we recommend the ug€’;) and closely related families’k). The proteins were selected
of proteins that share the same structural folds, but are missing thieom theCulled-PDBlist (Wang and Dunbrack, 2003) with less than
target function of interest. 60% identity.
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Table 1. Binary classification results. Table 2. Multi-class classification results.
Dataset Method Features Dist.Feat Accuracy Method Training Accuracy Test Accuracy
C1 DT 20,646 934 100% DALI 100% 31.21%
AD 23,130-37,394 1,093-1,674 96-100 % LFMPro 100% 37.58%
LFM-Pro 5,282 1 100% DALI and LFMPro 100% 56.05%
Ca DT 15,895 20 95%

The training set is from SCOP 1.67 and test set is the newly added
proteins in SCOP 1.69. The last row assumes that an oracle chooses
the correct classification given by either method.

AD 18,491-32,569 29-36 93-95 %
LFM-Pro 2,180 139 100%

The methods Delaunay Tesselation (DT) and Almost Delaunay (AD) are from
subgraph mining approach in (Huan et al., 2004); results for the AD entry are Lo . . . . . .
given for a range of allowable perturbation values£ 0.1 — 0.75). The protein is assigned to the family of the protein with highest pair-

fourth column shows the number of features that hdigerimination power wise Z score. The results of multi-class classification experiment are
above 0.75, as defined by the authors; and the number of features required to tabulated in Table 1. The restriction of 40% homology in the data-
obtain maximum accuracy in LEM-Pro. Accuracy is defined as the fraction of - go¢ akes it particularly challenging. Moreover, an increase in the
correct predictions measured by five-fold cross validation. .. . . .
number of families result in higher number of false positives . DALI
could only classify 31.2% of the test proteins correctly, whereas

S LFMPro obtained a classification accuracy of 37.58%.
For families in dataset§’, andC», the feature sets were extrac- Note that the proteins classified correctly by LFMPro are dis-

ted and scored as described above, and these representative fea {difit from those classified correctly by DALI. Combining DALI and

sets were used for binary classification of proteins. The subgrapipyprg resuits and assuming an oracle to decide which one to use
mining approach in (Huan et al., 2004) have achieved perfect acCy, 5 give protein, 56.05% accuracy is possible. Therefore, a clas-

racy forC; dataset, where the two families are from different SCOPsifier combining the output of these complementary methods would

classes, but hadls classification error for the’ dataset, in which 5 nieve higher accuracy, which is among our future research goals.
the two families belong to the same superfamily. LFM-Pro classifies

the proteins in both of these datasets with 100% accuracy, when all
the extracted features were used in classification (Table 1). We attrb  DISCUSSION

bute the success of LFM-Pro, in Comparison with the graph mining/\/e have presented a data_mining based framewarkal Feature
approaches, to the fact that it can accommodate amino acid SUlMining in Proteins(LFM-Pro), whereby topologically and bioche-
stitutions and displacements in the backbone, and focuses on thfically conserved regions of a protein family could be automatically
individual atoms within a Spatial neighborhood rather than the coardiscovered. We have demonstrated the success of the method on
ser level information about location of CA atom of the amino acid Serine Protease fam”y of proteins and also on two binary classifica-
residues. tion datasets. The sites unique to a family of proteins were identified

In LFM-Pro, each feature in the representative feature set Contrivia Comparison toa background set of proteinsl We have confirmed
butes according to its corresponding score, which guarantees thgiat the sites detected by our method conforms with the previously
the features that are not as discriminative as the top scoring featureéported functional sites. When a background set of proteins is not
do not distort the C|aSSificati0n, but Only fine-tune it. However, it provided, LFM-Pro scores the local sites based on how common
may be desirable for efficiency and maintenance purposes, to keqpey are across the family proteins.
only a small fraction of the top-scoring features for classification. | FM-Pro gives the most desirable site-mining results when the
Even though perfect accuracy was achieved’indataset using a  family being studied contains proteins that are evolutionarily distant
single feature; the classification was more stable when more thagyt share the site of interest, and when the background family is
20 features are used. Considerably more features were required ghosen to contain proteins that share the same structural folds with
distinguish the closely related families in thi dataset. the family being studied. The objective of maximizing the dis-

. o criminative scores can be used to determine the optimal size of

4.4 Multi-class Classification the background set in feature mining, and the optimal number of
In order to further validate our method, we performed a multi-classfeatures in classification.
classification experiment on a more challenging dataset. Namely, LFM-Pro uses feature vectors associated with local neighbor-
the new entries introduced in SCOP 1.69 were classified based dmods that provides comprehensive sampling of the protein space.
family representations generated from SCOP 1.67. For both SCOPne of the major advantages of a feature-based approach is the com-
versions, ASTRAL dataset with less than 40% were used. The proputational efficiency; because the time-consuming graph matching
teins or families that were re-classified in 1.69 and families thator structural alignment steps are no longer required. Moreover, the
contain a training set less than 5 members were ignored. The findéature vectors can be stored in an index structure optimized for
dataset contained 90 families with a total of 1,056 training proterange queries, which would further improve the efficiency of the
ins from SCOP 1.67 and 157 test proteins that were newly added ialgorithm. A custom filtering step to remove features related to
SCOP 1.69. trivial secondary structures can also be performed to reduce the

For comparison, the test proteins were also classified based amumber of candidate features, which would further increase the
pairwise DALI (Holm and Sander, 1993) scores, such that a quenrgfficiency of the algorithm.




Detecting Protein Functional Sites

The framework presented in this study is easily extensible to mor&delsbrunner, H., Letscher, D., and Zomorodian, A. (2002). Topological persistence
sophisticated feature extraction and scoring schemes. One may, and simplification Discrete Comput. Geor28:511-533. .
for example, augment the features presented here with phySiCd:—u”er’ F.B. (1978). Decomposmon of the linking nu.mberofaclosed ribbon: a problem

. . S from molecular biology. IrProc. Natl. Acad. Sci. USAolume 75, pages 3557—

chemical features such as hydrophobicity, solvent accessibility, or g5¢;
mobility. It would also be interesting to investigate critical points Giesen, J. and John, M. (2003). The flow complex: A data structure for geometric
of other function fields, such as force fields. Note that we utilized modeling. Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete
a simple unweighted Euclidean distance function for measuring the AL%‘Jfghfss((lsgggA)PAages 28t5—t?94-l dure for determin el

. P - . - ooadrord, P. . computational procedure Tor aetermining energetically ravo-
dISSImllat_'Ity between f?ature Veth_)rS’ and it Wa_s our experlence_ tha% rable binding sites on biologically important macromolecules. Med Chem
the.algorlthm .allowed |mperfeF:t distance functions. H.oweve.r, fine-  ,g.849-857.
tuning the weights of the spatial features may be desirable in ordefiodgman, T. C. (1989). The elucidation of protein function by sequence motif analysis.
to highlight the contributions of each feature in the representation Computer Appl. in the Biosci. (CABIQE)1-13.

of local sites. The Weights of the distance function can be automatiHO'm' L_. and Sander,_C. (1993). Protein structure comparison by alignment of distance
matrices.J. Mol. Biol, 233:123-138.

cally optimized with the opjectlve of maximizing t_he dl_scrlmlnatlve Huan, J., Bandyopadhyay, D., Wang, W., Snoeyink, J., Prins, J., and Tropsha, A.
scores of the representative set. We have provided in the software (2005). Comparing graph representations of protein structure for mining family-
distribution of LFM-Pro, asimulated annealingpproach for such specific residue-based packing motifsurnal of Computational BiologyL 2:6:657—
fine-tuning. 71

. . . Huan, J., Wang, W., Bandyopadhyay, D., Snoeyink, J., Prins, J., and Tropsha, A.
Usmg local structural and biochemical features as opposed to (2004). Mining family specific residue packing patterns from protein structure gra-

structural a"gnment of proteins, can pOtentia”y yield in identifica- phs.Proc. of 8th Ann. Intl. Conf. on Research in Comp. Molecular Bio. (RECQMB)
tion of very distant evolutionary relationships, and can help discern pages 308-15.
the function of yet uncharacterized proteins_ Local sites of the proJonassen, I., Eidhammer, 1., Conklin, D., and Taylor, W. R. (2001). Structure motif

teins resist evolutionary modifications if they perform an important, discovery and mining the PDEBoinformatics 18(2):362-367. .
Klenin, K. and Langowski, J. (2000). Computation of writhe in modeling of supercoiled

biological functlon, whereas the re_sF of _the protein simply prow_des @ DNA. Biopolymers54:307 — 317.

scaffold and is more prone to modifications through mutation, insertevitt, M. (1983). Protein folding by restrained energy minimization and molecular
tion, deletion, and duplication events. Therefore, related proteins dynamics.J. Mol. Biol, 170:723-764.

can share a common evolutionary ancestry or a common biologi'=i' H. and Parthasarathy, S. (2001). Automatically deriving multi-level protein structu-

. . . Lo . res through data mining. IHIPC Workshop on Bioinformatics and Computational
cal function, which may only be identifiable through comparison of Biology.

these local sites. Liang, M. P, Banatao, D. R., Klein, T. E., and Brutlag, D. L. (2003). Webfea-
Inference of remote homology is also a key step in evolutionary- ture: An interactive web tool for identifying and visualizing functional sites on
based cataloguing of all available protein structures. Assigning macromolecular structureslucleic Acids Res31:3324-3327.

a new protein to unique pOSitiOﬂS in the classification SChemé\/lilik,M.,Szalma, S., and Olszewski, K. (2003). Common structural cliques: a tool for
protein structure and function analysRrotein Engineering16:8:543-52.

becomes I.m.pOSSIb|§ When_ the _h0m0|_09_y 'S_no_t detectable. U_S'nglunson, P. and Singh, R. (1997). Statistical significance of hierarchical multi-body
LFM-Pro, it is possible to identify a distinguishing representative  potentials based on delaunay tessellation and their application in sequence-structure
feature set for each family, and to quickly assign a new protein alignment.Protein Sci, 6:14671481.

to one (or more, for multi-domain proteins) of these families. ForMurzin, A. G., Brenner, S. E., Hubbard, T., and Chothia, C. (1995). SCOP: a structural

. . . lassification of protei for the investigation of .
instance, using the representative feature set generated by LFM-Proja,\jz'I ';‘a}gfnzifgg;e_'gjgatabase or the investigation of sequences and structures

for Globins family of proteins, we were able to discover proteins rogen, p. and Fain, B. (2003). Automatic classification of protein structure by using
1luby, 1gai, and 1xis to have similar distinctive sites as the Globins. Gauss integralsProc Natl Acad Sci U S AL00(1):119-124.
These three proteins were not previous|y classified to have struchatsky, M., Shulman-Peleg, A., Nussinov, R., and Wolfson, H. J. (2005). Recognition

tural or functional similarities with Globins: however. a multiple of binding patterns common to a set of protein structuexture Notes in Computer
’ ' Science3500:440 — 455.

a“gnment revealed that they could indeed be S'gn'ﬁcantly a“gne%ingh, R. and Saha, M. (2003). Identifying structural motifs in proteindan Symp
with Globins, confirming the detection by LFM-Pro. Biocompu pages 228-239.

Effective discovery of functional local motifs would have tremen- Singh, R., Tropsha, A., and Vaisman, I. (1996). Delaunay tessellation of protins.
dous impact in bioscience research, and would find applications in Comput. Biol, 3:213222.

. . . . priggs, R. V., Argymiuk, P. J., and Willett, P. (2003). Searching for patterns of amino
areas such as multiple structural alignment, protein modeling, drué acids in 3D protein structures.Chem Inf Comput Sob3(2)-412—421.

design and targeting. As a future work, we plan to undertake &wigon, D., Coleman, B. D., and Tobias, I. (1998). The elastic rod model for DNA
large-scale, systematic study where we would extract representative and its application to the tertiary structure of dna minicircles in mononucleosomes.

feature sets for all SCOP families, and provide them as a publicly Biophysical Journal74:2515-2530.

available motif database. The feature vectors extracted from th&/or W-and Jones, D. (1991). Templates, consensus patterns and riniffsnt
opinion in structural biology1:327-323.

proteins also lend themselves for an unsuperwsed Ieammg methqgako, H. and Yamato, T. (1998). Novel method to detect a motif of local structures in
where unique functional sites could be automatically discovered diferent protein conformationsrotein Engineering11:981-990.
without any prior family-membership information. Wallace, A., Laskowski, R., and Thornton, J. (1996). Derivation of 3d coordinate tem-
plates for searching structural databases: application to ser-his-asp catalytic triads in
the serine proteinases and lipasemotein Sci, 5:1001-1013.
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