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Abstract

This paper proposes a novel method to detect fire and/or flames in real-time by processing the video data generated by an ordinary
camera monitoring a scene. In addition to ordinary motion and color clues, flame and fire flicker is detected by analyzing the video in
the wavelet domain. Quasi-periodic behavior in flame boundaries is detected by performing temporal wavelet transform. Color variations
in flame regions are detected by computing the spatial wavelet transform of moving fire-colored regions. Another clue used in the fire
detection algorithm is the irregularity of the boundary of the fire-colored region. All of the above clues are combined to reach a final
decision. Experimental results show that the proposed method is very successful in detecting fire and/or flames. In addition, it drasti-
cally reduces the false alarms issued to ordinary fire-colored moving objects as compared to the methods using only motion and color
clues.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Conventional point smoke and fire detectors are widely
used in buildings. They typically detect the presence of cer-
tain particles generated by smoke and fire by ionization or
photometry. Alarm is not issued unless particles reach the
sensors to activate them. Therefore, they cannot be used in
open spaces and large covered areas. Video based fire
detection systems can be useful to detect fire in large audi-
toriums, tunnels, atriums, etc. The strength of using video
in fire detection makes it possible to serve large and open
spaces. In addition, closed circuit television (CCTV) sur-
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veillance systems are currently installed in various public
places monitoring indoors and outdoors. Such systems
may gain an early fire detection capability with the use of
a fire detection software processing the outputs of CCTV
cameras in real time.

Image and video content understanding and analysis
methods have been studied by many researchers including
(Davis and Bobick, 1997; Haering et al., 2000; Javed and
Shah, 2002; Naphade et al., 1998). Content based under-
standing methods have to be designed according to the
specific application. Fire detection in video is such an appli-
cation that needs specific methods. There are several video-
based fire and flame detection algorithms in the literature
(Chen et al., 2004; Fastcom Technology, 2002; Healey
et al., 1993; Liu and Ahuja, 2004; Phillips et al., 2002).
These methods make use of various visual signatures
including color, motion and geometry of fire regions. Hea-
ley et al. (1993) use only color clues for flame detection.
Phillips et al. (2002) use pixel colors and their temporal
variations. Chen et al. (2004) utilize a change detection
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scheme to detect flicker in fire regions. In (Fastcom Tech-
nology, 2002) Fast Fourier Transforms (FFT) of temporal
object boundary pixels are computed to detect peaks in
Fourier domain. Liu and Ahuja (2004) also represent the
shapes of fire regions in Fourier domain. An important
weakness of Fourier domain methods is that flame flicker
is not purely sinusoidal but random. Therefore, it is hard
to detect peaks in FFT plots. In addition, Fourier Trans-
form does not carry any time information. In order to
make FFTs also carry time information, they have to be
computed in windows of data. Hence, temporal window
size is very important for detection. If the window size is
too long, then one may not observe peakiness in the FFT
data. If it is too short, then one may completely miss cycles
and therefore no peaks can be observed in the Fourier
domain.

We developed a wavelet based fire detection method in
video. Our method not only detects fire and flame colored
moving regions in video but also analyzes the motion of
such regions in wavelet domain for flicker estimation. It
is observed that turbulent flames flicker with a characteris-
tic flicker frequency of around 10 Hz independent of the
burning material and the burner (Albers and Agrawal,
1999; Chamberlin and Rose, 1965). The appearance of an
object whose contours, chrominance or luminosity values
oscillate at a frequency greater than 0.5 Hz is an important
sign of the possible presence of flames (Fastcom Technol-
ogy, 2002). Therefore, fire detection schemes can be made
more robust to false alarms by detecting periodic high-
frequency behavior in flame colored moving pixels.

High-frequency analysis of moving pixels is carried out
in wavelet domain in our work. There is an analogy be-
tween our motion analysis in wavelet domain and the tem-
poral templates of (Davis and Bobick, 1997) and the
motion recurrence images of (Javed and Shah, 2002).
Wavelet transform is a time–frequency analysis tool, and
one can examine an entire frequency band in the wavelet
domain without completely loosing the time information
(Cetin and Ansari, 1994; Mallat and Zhong, 1992). Since
the wavelet transform is computed using a subband decom-
position filter bank, it does not require any batch process-
ing. It is ideally suited to determine an increase in high-
frequency activity in fire and flame colored moving objects
by detecting zero crossings of the wavelet transform
coefficients.

Turbulent high-frequency behaviors exist not only on
the boundary but also inside a fire region. Another novelty
of the proposed method is the analysis of the spatial vari-
ations inside fire and flame colored regions. The method
described in (Fastcom Technology, 2002), does not take
advantage of such color variations. Spatial wavelet analysis
makes it possible to detect high-frequency behavior inside
fire regions. Variation in energy of wavelet coefficients is
an indicator of activity within the region. On the other
hand, a fire-colored moving object will not exhibit any
change in values of wavelet coefficients because there will
not be any variation in fire-colored pixel values.
2. Detection algorithm

The proposed video-based fire detection algorithm
consists of four steps: (i) moving pixels or regions in the
current frame of a video are determined, (ii) colors of mov-
ing pixels are checked to see if they match to pre-specified
fire-colors, then wavelet analysis in (iii) temporal and (iv)
spatial domains is carried out to determine high-frequency
activity within these moving regions. In the following sub-
sections, each step of the proposed algorithm is explained
in detail.

2.1. Moving region detection

Moving pixels and regions in the video are determined
by using a hybrid background estimation method devel-
oped by Collins et al. (1999). Let xn[k, l] represent the inten-
sity (brightness) value at pixel position [k, l] in the nth
image frame xn. Estimated background intensity value at
the same pixel position, Bn+1[k, l], is calculated as follows:

Bnþ1½k; l� ¼

aBn½k; l� þ ð1� aÞxn½k; l�
if ½k; l� is non-moving

Bn½k; l�
if ½k; l� is moving;

8>>><
>>>:

ð1Þ

where Bn[k, l] is the previous estimate of the background
intensity value at the same pixel position. The update
parameter a is a positive real number close to one. Initially,
B0[k, l] is set to the first image frame x0[k, l]. A pixel posi-
tioned at [k, l] is assumed to be moving if the brightness val-
ues corresponding to it in image frame xn and image frame
xn�1 satisfy the following inequality:

jxn½k; l� � xn�1½k; l�j > T n½k; l�; ð2Þ
where Tn[k, l] is a threshold that is adaptively determined as
described in (Collins et al., 1999). It is assumed that the re-
gions significantly different from the background are mov-
ing regions. Estimated background image is subtracted
from the current image to detect moving regions. In other
words, all of the pixels satisfying

jxn½k; l� � Bn½k; l�j > T n½k; l� ð3Þ
are determined. These pixels at [k, l] locations are grouped
into connected regions (blobs) and labeled by using a two-
level connected component labeling algorithm (Heijden,
1996). The output of the first step of the algorithm is a bin-
ary pixel map Blobs[k, l] that indicates whether or not the
pixel at location [k, l] in image x is moving.

Other more sophisticated methods, including the ones
developed by Bagci et al. (2002) and Stauffer and Grimson
(1999), can also be used for moving pixel estimation. In our
application, accurate detection of moving regions is not as
critical as in other object tracking and estimation problems;
we are mainly concerned with real-time detection of moving
regions as an initial step in the fire and flame detection
system. We choose to implement the method suggested by
Collins et al. (1999), because of its computational efficiency.
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2.2. Detection of fire-colored pixels

Color values of moving pixels are compared with a pre-
determined color distribution, which represents possible
fire-colors in video in RGB color space. The fire-color dis-
tribution is obtained from sample images containing fire re-
gions. Possible color values form a three dimensional point
cloud in the RGB color space as shown in Fig. 1(a) (For
interpretation of colors in the figures the reader is referred
to the web version of this article). The cloud is represented
by using a mixture of Gaussians in the RGB color space as
described in (Reynolds and Rose, 1995). A Gaussian mix-
ture model with ten Gaussian distributions is estimated
from past observations as shown in Fig. 1(b).

Let x[k, l] be a pixel at location [k, l] with color values
[r[k,l],g[k,l],b[k,l]]. We check if the pixel lies within two stan-
dard deviations of the centers of the Gaussians to deter-
mine its nature. In other words, if a given pixel color
value is inside one of the spheres shown in Fig. 1(b), then
it is assumed to be a fire-colored pixel. We set a binary
mask, called fire-colored, which returns whether a given
pixel is fire-colored or not. The intersection of this mask
with Blobs formed in the first step is fed into the next step
as a new binary mask called fire.
Fig. 1. (a) A sample fire-color cloud in RGB space, and (b) the spheres centered
deviation.

Fig. 2. A two-stage filter bank. HPF and LPF represent half-band high-p
{0.25,0.5,0.25}, respectively. This filter bank is used for wavelet analysis.
2.3. Temporal wavelet analysis

The third step of our fire detection algorithm is to keep
track of the frequency history of pixels in the fire-colored
region and analyze the history. In order to detect flicker
or oscillations in pixels due to fire in a reliable manner,
the video capture rate should be high enough to capture
high-frequency flicker in flames. To capture 10 Hz flicker,
the video should capture at least 20 frames per second
(fps). However, in some surveillance systems, the video
capture rate is below 20 Hz. If the video is available at a
lower capture rate, aliasing occurs but flicker due to flames
can still be observed in the video. For example, 8 Hz sinu-
soid appears as 2 Hz sinusoid in a 10 fps video.

Each pixel xn[k, l] of the binary mask fire is fed to a two
stage-filter bank as shown in Fig. 2. The signal xn[k, l] is a
one-dimensional signal representing the temporal varia-
tions in color values at location [k, l] in the nth frame. Tem-
poral wavelet analysis can be carried out using either the
luminance (Y component) in YUV color representation
or the red component in RGB color representation. In
our implementation the red channel values of the pixels
are used. The two-channel subband decomposition filter
bank is composed of half-band high-pass and low-pass fil-
at the means of the Gaussian distributions with radius twice the standard

ass and low-pass filters, with filter coefficients {�0.25,0.5,�0.25} and
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ters with filter coefficients {�0.25,0.5,�0.25} and
{0.25,0.5,0.25}, respectively, as shown in Fig. 2. The filter
bank produces wavelet subsignals dn[k, l] and en[k, l]. If
there is high frequency activity at pixel location [k, l],
high-band subsignals d and e get non-zero values. How-
ever, in a stationary pixel, the values of these two subsig-
nals should be equal to zero or very close to zero because
of high-pass filters used in subband analysis. If the pixel
is part of a flame boundary at some time (see Fig. 3), then
there will be several spikes in one second due to transitions
from background colors to flame colors and vice versa. If
there is an ordinary fire-colored moving object going
through pixel [k, l], then there will be a single spike in one
of these wavelet subsignals because of the transition from
the background pixel to the object pixel as shown in
Fig. 4. The number of zero crossings of the subband signals
dn and en in a few seconds is used to discriminate between a
flame pixel and an ordinary fire-colored object pixel. If this
number is above some threshold, then an alarm can be
issued for this pixel.

The temporal history of the red channel of a pixel
xn[111,34] which is part of a flame, and the corresponding
wavelet signals are shown in Fig. 3. A flicker in the red
channel values of this flame pixel is obvious from the
figure. The pixel is part of a flame for image frames In,
n = 1, 2, 3, 19, 23, 24, 41 and 50. It becomes part of the
background for n = 12, . . . , 17, 20, 21, 26, 27, 31, . . . , 39,
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Fig. 3. (a) Temporal variation of image pixels xn[111,34] in time. The pixel at [1
50. It becomes part of the background for n = 12, . . . , 17, 20, 21, 26, 27, 31, . . .
the fluctuations of the pixel at [111,34].
45, 52, . . . and 60. Wavelet domain subsignals dn and en re-
veal the fluctuations of the pixel at [111,34] with several
zero crossings. Due to a down-sampling operation during
wavelet computation, the length of wavelet signals are
halved after each stage of subband filtering. As a result,
the value of a sample in a subband signal corresponds to
several samples in the original signal, e.g., the value of
d5[111,34] corresponds to the values of x10[111,34] and
x11[111,34], and the value of e4[111,34] corresponds to
the values of x12[111,34], x13[111,34], x14[111,34] and
x15[111,34], in the original signal.

The temporal history of the red channel of a pixel
xn[18,34], which is part of a fire-colored object, and the
corresponding wavelet signals are shown in Fig. 4. As
shown in this figure, neither the original nor the wavelet
signals exhibit oscillatory behavior. The pixel is part of a
white-colored background for n = 1, 2 and 3, becomes part
of a fire-colored object for n = 4, 5, 6, 7 and 8, then it be-
comes part of the background again for n > 8. Correspond-
ing wavelet signals dn and en do not exhibit oscillatory
behavior as shown in Fig. 4. Small variations due to noise
around zero after the 10th frame are ignored by setting up
a threshold.

The number of wavelet stages needed for used in flame
flicker analysis is determined by the video capture rate.
In the first stage of dyadic wavelet decomposition, the
low-band subsignal and the high-band wavelet subsignal
30 40 50 60
 number n

30

11,34] is part of a flame for image frames xn, n = 1, 2, 3, 19, 23, 24, 41 and
, 39, 45, 52, . . . and 60. Wavelet domain subsignals (b) dn and (c) en reveal
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Fig. 4. (a) Temporal history of the pixel [18,34] in time. It is part of a fire-colored object for n = 4, 5, 6, 7 and 8, and it becomes part of the background
afterwards. Corresponding subsignals (b) dn and (c) en exhibit stationary behavior for n > 8.
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dn[k, l] of the signal xn[k, l] are obtained. The subsignal
dn[k, l] contains [2.5 Hz,5 Hz] frequency band information
of the original signal xn[k, l] in 10 Hz video frame rate. In
the second stage the low-band subsignal is processed once
again using a dyadic filter bank, and the wavelet subsignal
en[k, l] covering the frequency band [1.25 Hz,2.5 Hz] is ob-
tained. Thus by monitoring wavelet subsignals en[k, l] and
dn[k, l], one can detect fluctuations between 1.25 Hz and
5 Hz in the pixel [k, l].

2.4. Spatial wavelet analysis

The fourth step of our fire detection algorithm is the
spatial wavelet analysis of moving regions containing fire

mask pixels to capture color variations in pixel values. In
an ordinary fire-colored object there will be little spatial
variations in the moving region as shown in Fig. 5(a). On
the other hand, there will be significant spatial variations
in a fire region as shown in Fig. 6(a). The spatial wavelet
analysis of a rectangular frame containing the pixels of
fire-colored moving regions is performed. The images in
Figs. 5(b) and 6(b) are obtained after a single stage two-
dimensional wavelet transform that is implemented in a
separable manner using the same filters explained in Sec-
tion 2.3. Absolute values of low–high, high–low and
high–high wavelet subimages are added to obtain these
images. A decision parameter v4 is defined for this step,
according to the energy of the wavelet subimages:
v4 ¼
1

M � N

X
k;l

jxlh½k; l�j2 þ jxhl½k; l�j2 þ jxhh½k; l�j2; ð4Þ

where xlh[k, l] is the low–high subimage, xhl[k, l] is the high–
low subimage, and xhh[k, l] is the high–high subimage of the
wavelet transform, respectively, and M · N is the number
of pixels in the fire-colored moving region. If the decision
parameter of the fourth step of the algorithm, v4, exceeds
a threshold, then it is likely that this moving and fire-col-
ored region under investigation is a fire region.

Both the 1-D temporal wavelet analysis described in
Section 2.3 and the 2-D spatial wavelet analysis are compu-
tationally efficient schemes because a multiplierless filter
bank is used for both 1-D and 2-D wavelet transform
computation (Gerek and Cetin, 2000; Kim et al., 1992).
Lowpass and highpass filters have weights ½1

4
; 1
2
; 1
4
� and

½�1
4
; 1
2
; �1

4
�, respectively. They can be implemented by regis-

ter shifts without performing any multiplications.
The wavelet analysis based steps of the algorithm are

very important in fire and flame detection because they dis-
tinguish ordinary motion in the video from motion due to
turbulent flames and fire.
3. Decision fusion

In this section, we describe a voting based decision fu-
sion strategy. However, other data fusion methods can be



Fig. 5. (a) A child with a fire-colored t-shirt, and (b) the absolute sum of spatial wavelet transform coefficients, jxlh[k, l]j + jxhl[k, l]j + jxhh[k, l]j, of the
region bounded by the indicated rectangle.

Fig. 6. (a) Fire, and (b) the absolute sum of spatial wavelet transform coefficients, jxlh[k, l]j + jxhl[k, l]j + jxhh[k, l]j, of the region bounded by the indicated
rectangle.
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also used to combine the decision of four stages of the
flame and fire detection algorithm.

Voting schemes include unanimity voting, majority vot-
ing, and m-out-of-n voting in which an output choice is
accepted if at least m votes agree with the decisions of n
sensors (Parhami, 1994). We use a variant of m-out-of-n
voting, the so-called T-out-of-v voting in which the output
is accepted if H ¼

P
iwivi > T where the wi�s are user-

defined weights, the vi�s are decisions of the four stages of
the algorithm, and T is a user-defined threshold. Decision
parameter vi can take binary values 0 and 1, corresponding
to normal case and the existence of fire, respectively. The
decision parameter v1 is 1 if the pixel is a moving pixel,
and 0 if it is stationary. The decision parameter v2 is taken
as 1 if the pixel is fire-colored, and 0 otherwise. The deci-
sion parameter v3 is 1 if the number of zero crossings of
en[k, l] and/or dn[k, l] in a few seconds exceed a threshold
value, and 0 otherwise. The decision parameter v4 is defined
in Eq. (4).

In uncontrolled fire, it is expected that the fire region
should have a non-convex boundary. To gain a further
robustness to false alarms, another step checking the
convexity of the fire region is also added to the proposed
algorithm. Convexity of regions is verified in a heuristic
manner. Boundaries of the regions in the fire mask are
checked for their convexity along equally spaced five verti-
cal and five horizontal lines using a 5 · 5 grid. The analysis
simply consists of checking whether the pixels on each line
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belong to the region or not. If at least three consecutive
pixels belong to the background, then this region violates
the convexity condition. A fire mask region which has
background pixels on the intersecting vertical and/or hori-
zontal lines, is assumed to have a non-convex boundary.
This eliminates false alarms due to match light sources,
sun, etc.

4. Experimental results

The proposed method, Method 1, is implemented on a
PC with an Intel Pentium 4, 2.40 GHz processor. It is
tested for a large variety of conditions in comparison with
the method utilizing only the color and temporal variation
information, which we call Method 2, described in Phillips
et al. (2002). The scheme described in (Chen et al., 2004)
is also implemented for comparison and it is called as
Method 3 in the rest of the article. The results for some
of the test sequences are presented in Table 1.

Method 2 is successful in determining fire and does not
recognize stationary fire-colored objects such as the sun as
fire. However, it gives false alarms when the fire-colored
Table 1
Comparison of the proposed method (Method 1), the method based on color
2002), and the method proposed in (Chen et al., 2004) (Method 3)

Video sequences Number of frames
with fire

Number of frames
detected as fire

Method

1 2 3

Movie 1 0 0 46 13
Movie 2 5 5 5 5
Movie 3 0 0 7 5
Movie 4 37 37 44 47
Movie 5 64 64 88 84
Movie 6 41 41 56 50
Movie 7 0 0 14 7
Movie 8 18 18 18 18
Movie 9 0 0 15 5
Movie 10 0 0 0 0
Movie 11 0 9 107 86

Fig. 7. (a) With the method using color and temporal variation only (Method 2
moving truck and the ground, (b) our method (Method 1) does not produce a
ordinary objects start to move, as in the case of a realistic
scenario. An example of this is shown in Fig. 7(a). The pro-
posed method does not give any false alarms for this case
(Fig. 7(b)). The fire-colored strip on the cargo truck trig-
gers an alarm in Method 2 when the truck starts to move.
Similarly, false alarms are issued with Method 2 in Movies
3, 7 and 9, although there are no fires taking place in these
videos. The moving arm of a man is detected as fire in Mo-
vie 7 (Fig. 8(c)), and a red parking car is marked as fire in
Movie 9 with Method 2 (Fig. 8(d)).

Method 3 gives similar detection results for fire. How-
ever, it also suffers from inefficient analysis of the motion
of fire-colored objects. Fire-colored ordinary moving ob-
jects causes Method 3 to give false alarms in Movies 1, 3,
7 and 9. If Method 1 is used, moving fire-colored ordinary
objects do not cause an alarm to be raised. This is because
the cyclic movement of flames is taken into account in our
method, as well as the spatial variation in the color/bright-
ness values of the moving fire-colored regions. Method 1
successfully detects fire in videos covering various scenar-
ios, including partial occlusion of the flame. Sample images
showing the detected regions are presented in Fig. 9.
and temporal variation clues only (Method 2) described in (Phillips et al.,

Number of false
positive frames

Description

Method

1 2 3

0 46 13 A fire-colored moving truck
0 0 0 Fire in a garden
0 7 5 A car leaving a fire-colored parking lot
0 7 10 A burning box
0 24 20 A burning pile of wood
0 15 9 Fire behind a man with a fire-colored shirt
0 14 7 Four men walking in a room
0 0 0 Fire in a fireplace
0 15 5 A crowded parking lot
0 0 0 Traffic on a highway
9 107 86 Dancing man with fire-colored shirt

) (Phillips et al., 2002), false alarms are issued for the fire colored line on the
ny false alarms.



Fig. 8. Sample images (a) and (b) are from Movies 7 and 9, respectively. (c) False alarms are issued for the arm of the man with the method using color
and temporal variation only (Method 2) (Phillips et al., 2002) and (d) on the fire-colored parking car. Our method does not give any false alarms in such
cases (see Table 1).

Fig. 9. Sample images (a) and (b) are fromMovies 2 and 4, respectively. Flames are successfully detected with our method (Method 1) in (c) and (d). In (c),
although flames are partially occluded by the fence, a fire alarm is issued successfully. Fire pixels are painted in bright green.
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In Movie 11, a man wearing a fire-colored shirt inten-
tionally waves his arms to mimic the quasi-periodic flicker
behavior in flames. Although all of the methods produce
false alarms in this Movie, Method 1 significantly decre-



Table 2
Time performance comparison of Methods 1, 2 and 3 for the movies in
Table 1

Videos Method 1 Method 2 Method 3

Movie 1 16 12 14
Movie 2 16 12 14
Movie 3 16 12 14
Movie 4 16 12 14
Movie 5 17 13 15
Movie 6 17 13 15
Movie 7 17 13 15
Movie 8 17 13 15
Movie 9 16 12 14
Movie 10 16 12 14
Movie 11 16 12 14

The values are the processing times per frame in milliseconds.
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ases the number of false positives relative to Methods 2
and 3.

These methods are also compared to each other in terms
of computational cost (as shown in Table 2). Movies in Ta-
bles 1 and 2 are all captured at 10 fps with a frame size of
320 by 240 pixels. The average processing times per frame
are 16.5 ms, 12.5 ms and 14.5 ms, for our method, Methods
2 and 3, respectively. Our method is computationally more
demanding due to additional wavelet analysis based steps.
Since only shift and add type operations take place when
convolving signals with the wavelet filters, additional cost
is not high. Our implementation works in real-time for
videos with frame size 320 by 240 pixels, captured at 10
fps or higher in a PC.

The video clips that we tested our method contain a to-
tal of 83,745 frames in 61 sequences. In 19 of the sequences
fire takes place. Our method is successful in detecting fire in
all of these sequences. This corresponds to a fire detection
rate of 1.0. A fire contour recognition rate of 0.999 is re-
ported in (Liu and Ahuja, 2004) which corresponds to a fire
detection rate of 0.999. Our overall false alarm (false posi-
tive) rate is 0.001. It is reported that non-fire contour
recognition rate is 1.0 in (Liu and Ahuja, 2004) which cor-
responds to a false alarm rate of 0. The video sequences
containing fire in (Liu and Ahuja, 2004) are not publicly
available. Therefore we used our own data set. We also test
our method with the data set of the EU funded CAVIAR
project/IST 2001 37540, publicly available at URL: http://
homepages.inf.ed.ac.uk/rbf/CAVIAR/. Although there are
a lot of clips with moving fire-colored objects, none of the
clips in this data set contains fire. Our method gives no
false alarms in any of these sequences.

5. Conclusion

An algorithm for fire and flame detection in color video
is developed. The algorithm not only uses color and tempo-
ral variation information, but also checks flicker in flames
using 1-D temporal wavelet transform and color variation
in fire-colored moving regions using 2-D spatial wavelet
transform. Methods based on only color information and
ordinary motion detection may produce false alarms in real
scenes where no fires are taking place. The experimental re-
sults show that false alarms can be drastically reduced by
temporal and spatial wavelet analysis.

Themethod can be used for detection of fire inmovies and
video databases, as well as real-time detection of fire. It can
be incorporated into a surveillance system monitoring an in-
door or outdoor area of interest for early detection of fire.
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