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Abstract  
Our research shows that for large databases, without considerable additional storage overhead, cluster-
based retrieval (CBR) can compete with the time efficiency and effectiveness of the inverted index-
based full search (FS).  The proposed CBR method employs a storage structure that blends the cluster 
membership information into the inverted file posting lists.  This approach significantly reduces the 
cost of similarity calculations for document ranking during query processing and improves efficiency. 
For example, in terms of in-memory computations, our new approach can reduce query processing time 
to 39% of FS.  The experiments confirm that the approach is scalable and system performance 
improves with increasing database size.  In the experiments, we use the Cover Coefficient-based 
Clustering Methodology (C3M), and the Financial Times database of TREC-4 containing 210,158 
documents of size 564 MB defined by 229,748 terms with total of 29,545,234 inverted index elements.  
This study provides CBR efficiency and effectiveness experiments using the largest corpus in an 
environment that employs no user interaction or user behavior assumption for clustering. 
 
Keywords: Clustering, cluster-based retrieval, information retrieval, performance, query processing. 
 
 
1. Introduction 
 
The well-known clustering hypothesis states that "closely associated documents tend to be 

relevant to the same request."  It is this hypothesis that motivates clustering of documents in a 

database [van Rijsbergen, 1979]. In the IR research, clustering has been originally introduced 

with the expectation of increasing the efficiency and effectiveness of the retrieval process 

[Jardine, van Rijsbergen, 1971; Salton, 1975].   

In best-match cluster-based retrieval (CBR), it is assumed that there is a flat (one-level) 

clustering structure.  In this environment, the queries are first compared with the clusters, or 

more accurately with the cluster representatives called centroids.  Detailed query by document 

comparison is performed only within the selected clusters.  In hierarchical (multi-level) 

clustering structures, it is possible to implement top-down or bottom-up cluster-based search 

strategies [Salton, McGill, 1983; Salton 1989; van Rijsbergen, 1979].   
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As with any such algorithm, the efficiency of CBR is important.  In addition to being 

efficient, CBR should be effective in the sense of meeting user needs.  Users may employ the 

clustering structure in exploring the document space to locate items close to some known 

documents.  This is called browsing.  Documents within a cluster can also be stored in close 

proximity to each other within a disk medium to minimize I/O delays [Salton, McGill, 1983, 

pp. 222-227].   However, it is shown that the operational effectiveness of many clustering 

algorithms is low [Shaw et al., 1997].  It is also observed that the efficiency of CBR is less 

than the efficiency of full search, FS, i.e., inverted index search of all documents [Can, 1994; 

Salton, 1989; Voorhees, 1986a, 1986b]. 

In this paper we study the efficiency and effectiveness of query processing in large 

clustered document collections using the best-match strategy.  In the experiments we use the 

Cover Coefficient-based Clustering Methodology, C3M, which we have introduced in our 

previous work.  It is known that C3M has superior performance with respect to other 

algorithms of the literature [Can, Ozkarahan, 1990] and can be used in dynamic environments 

in an incremental manner for cluster maintenance [Can, 1993].  The contributions of this 

study are the following.   

• It shows that for large databases it is possible to perform CBR with an efficiency and 

effectiveness level, which is comparable with that of FS without considerable additional 

storage overhead. The CBR method proposed in this paper employs a simple and novel 

storage structure that blends the cluster membership information with the inverted file 

posting lists. As will be shown this approach significantly reduces the cost of similarity 

calculations during query processing.  Our new storage structure is generic and clearly 

applicable with other clustering algorithms. 

• It provides CBR experiments using the largest corpus in an environment with no user 

interaction or user behavior assumption. In the experiments we use the Financial Times 

database of the TREC-4 containing 210,158 documents of text size 564 MB defined by 

229,748 terms with total of 29,545,234 inverted index elements. For example, the 

studies reported in [Hearst, Pedersen, 1996; Silverstein, Pedersen, 1997] provide 

experiments with larger corpora; however, in their evaluations they assume that the user 

picks the optimal cluster or try to generate refined clusters with user interaction from an 

existing global clustering structure. In our work, all decisions are made automatically 

using similarity measures based on a global clustering structure with no user 

interaction. 

There are various optimization techniques used for inverted index searches [Buckley, 

Lewit, 1985; Persin, 1994; Brown 1995; Moffat, Zobel, 1996].  They aim to use only the most 

informative parts of inverted list and try to increase efficiency of query processing without 
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deteriorating retrieval effectiveness.  Such techniques can be employed during query 

processing to further improve the query optimization provided by CBR; however, search 

optimization (or pruning) with techniques other than clustering is beyond the scope of this 

study.   

The rest of the paper is organized as follows. Section 2 explains our clustering algorithm 

C3M and the file structures that can be used for the implementation of CBR including our 

new approach. Section 3 describes the experimental environment in terms of document 

database and queries.  Section 4 covers the experimental results and their discussion.  Section 

5 reviews the previous and related work.  The conclusions and pointers for future research are 

given in Section 6.  A list of frequently used symbols and acronyms is provided in Table I. 

 
Table I. Expanded form and meaning of frequently used acronyms and symbols 

Acronym Expanded Form  Symbol Meaning 
 

C3M 

Cover Coefficient-based Clustering 
Methodology 

  
dc 

Average no. of documents per 
cluster 

 
CBR 

 
Cluster Based Retrieval 

  
ds 

No. of documents selected 
during information retrieval 

CVDV* Centroid Vector Document Vector  m No. of documents 
CVIIS* Centroid  Vector Inv. Index Search  n No. of terms 
ICDV* Inverted Centroid Document Vector  nc No. of clusters 

 
ICIIS* 

 
Inverted Centroid Inverted Index Search 

  
ns 

No. of selected best matching 
clusters 

 
ICsIIS* 

 
Inverted Centroid skip Inv. Index Search 

  
nt 

Average no. of target clusters 
per query 

 
FS 

 
Full Search 

  
ntr 

Average no. of target clusters 
per query in random clustering 

 
FT 

 
Financial Times database of TREC-4 

  
tg 

Term generality (avg. no. of 
documents per term) 

FTs 
FTm 

FT small and  
FT medium size versions 

  
xd 

Depth of indexing (avg. no. of 
terms per document) 

          * CBR implementation method. 
 
2. Clustering Algorithm and File Structures for CBR Implementation 
 
In this section we briefly explain our clustering algorithm, the file structures that can be used 

for CBR, and our new CBR file structure that blends the clustering information with the  

traditional inverted file. 

 

2.1 Clustering Algorithm: C3M 
 
As we indicated earlier in the experiments we use the C3M algorithm, which is known to 

have good information retrieval performance.  The C3M algorithm assumes that the 

operational environment is based on the vector space model.  Using this model, a document 

collection can be abstracted by a document, D, matrix of size m by n whose individual entries, 

dij (1 < i < m, 1 < j < n), indicate the number of occurrences of term j (tj) in document i (di).  
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Determining the number of clusters in a collection is a difficult problem [Jain, Dubes, 

1988].  In other clustering algorithms, if it is required, the number of clusters, nc, is usually a 

user specified parameter; in C3M it is determined by using the cover-coefficient (CC) concept 

[Can, Ozkarahan, 1990; Yu, Meng, 1998].  In C3M some of the documents are selected as 

cluster seeds and non-seed documents are assigned to one of the clusters initiated by the seed 

documents.  According to CC, for an m by n document matrix the value range of nc and the 

average cluster size (dc) are as follows.  

1 < nc < min (m, n);  max (1, m/n) < dc < m 
In C3M, the document matrix D is mapped into an m by m cover-coefficient (C) matrix 

using a double-stage probability experiment.  This asymmetric C matrix shows the 

relationships among the documents of a database.  Note, however, that the implementation of 

C3M does not require the complete C matrix.  The diagonal entries of C are used to find the 

number of clusters, nc, and the selection of cluster seeds.  During the construction of clusters, 

the relationships between a non-seed document (di) and a seed document (dj) is determined 

by calculating the cij entry of C, where cij indicates the extent with which di is covered by dj.  

Therefore, the whole clustering process implies the calculation of (m + (m - nc) x nc) entries 

of the total m2 entries of C.  This is a small fraction of m2, since nc << m (for some database 

examples please refer to Table II in Section 3.1).  A thorough discussion and complexity 

analysis of C3M are available in [Can, Ozkarahan, 1990].   

The CC concept reveals the relationships between indexing and clustering [Can, 

Ozkarahan, 1990].  The CC-based indexing-clustering relationships are formulated as follows. 

nc= t / (xd x tg) = (m x n) / t = m / tg = n / xd, and dc = m / nc = tg 

In these formulas, the meanings of the variables not used in the text so far are as follows. 

dc: m/nc, average number of documents per cluster, 

t: total number of non-zero entries in D matrix,  

tg: t/n, average number of different documents a term appears (term generality),  

xd: t/m, average number of distinct terms per document (depth of indexing). 

These relationships can be used to predict the clustering structure of the algorithm. 

It is shown that the algorithm can be used in a dynamic environment in an incremental 

fashion and such an approach saves clustering time and generates a clustering structure 

comparable to that of cluster regeneration by C3M [Can, 1993; Can et al., 1995].   

C3M is a non-overlapping (partitioning) type clustering algorithm.  In this paper, we 

introduce a new version of C3M that creates overlapping clusters to test the effects of 

overlapping on efficiency and effectiveness of CBR.  In the overlapping version a document 
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can be assigned to more than one cluster.  For this purpose we slightly modified C3M: Let cij 

be the CC value used to cluster di, i.e., let us assume that di joins to the cluster initiated by dj 

since dj provides the highest coverage of di among all cluster seeds.  In the overlapping 

version we define a tolerance threshold h (1 > h > 0) and assign di also to the cluster initiated 

by seed document dk if cik > h x cij.  Furthermore, non-seed documents can be assigned to a 

preset maximum number of clusters at the most.  We intuitively set the tolerance threshold to 

0.9 and the maximum to five clusters. 

 
2.2 File Structures for the Implementation of CBR 
 
2.2.1 Previous File Structures for the Implementation of CBR 
 
The (best-match) CBR search strategy has two components (a) selection of ns number of best 

matching clusters using centroids, (b) selection of ds number of best matching documents of 

the selected best matching clusters.  For item (a) we have two file structure possibilities: CV 

(centroid vectors), and IC (inverted index of centroids).  For item (b) we again have two 

possibilities: DV (document vectors), and IIS (inverted index of all documents).  One 

remaining possibility for (b), a separate inverted index for the members of each cluster, is 

ignored due to its excessive cost in terms of disk accesses (for a query with k number of terms 

it would involve k disk accesses for each selected cluster).  Hence, possible combinations of 

(a) and (b) define the following CBR implementation policies: CVDV, ICDV, CVIIS, ICIIS. 

 

CVDV Use Centroid Vectors for cluster selection and 
                        Document Vectors for document selection. 
ICDV  Use Inverted index of Centroids for cluster selection and 
                        Document Vectors for document selection. 
CVIIS Use Centroid Vectors for cluster selection and  
                         Inverted Index Search for document selection. 
ICIIS Use Inverted index of Centroids for cluster selection and  
                         Inverted Index Search for document selection. 

Figure 1.  Summary of possible file structure strategies for CBR  
implementation (adapted from [Can, 1994]). 

 
As summarized in Figure 1, CVDV means that for cluster match use centroid vectors as 

they are and for document selection from the selected clusters use the document vectors of the 

member documents.  In ICIIS the documents of the best-matching clusters are selected using 

the results of FS, which is implemented by IIS.  Notice that ICIIS is somewhat counter 

intuitive to the concept of CBR, since CBR considers only a subset of the database for 

retrieval purposes, but the IIS component of ICIIS will be performed on the complete 

database.  However, ICIIS still has the potential of being efficient, since query vectors may 

contain a limited number of terms. 
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In [Can, 1994] the efficiency of these methods are measured in terms of CPU time, disk 

accesses, and storage requirements in a simulated environment defined in [Voorhees, 1986b].    

The implementations from best to worst efficiency performance are ordered in the following 

way: ICIIS, ICDV, CVIIS, CVDV.  It is observed that the ICIIS strategy is significantly better 

than the others.  It is also shown that ICIIS is significantly better (5.42 times faster) than a 

hierarchical cluster search technique, which is based on a complete link hierarchy [Can, 

1994].  However, this earlier study has further revealed that ICIIS is inferior to FS (1.5 times 

slower) in terms of efficiency. In this study our aim is to introduce a CBR implementation 

strategy that would outperform ICIIS and achieve comparable efficiency and effectiveness 

with FS, and measure its performance in a large document collection.  

 
2.2.2 The new CBR Implementation Using Skips  
 
If we could generate a separate inverted index for the members of individual clusters, this 

would provide the most efficient computational environment for CBR.  However, for a query 

with k terms if we select ns best clusters this file structure implies (k x ns) number of disk 

accesses, which is large since ns would be large.  To keep both the number of computations 

and number of disk accesses at its minimum, we have introduced a new CBR implementation 

structure that we call ICsIIS (IC skip IIS).  In this structure IC has its usual structure; 

however, the IIS component stores not only the traditional posting list information but also 

the cluster membership information.  In this organization posting list information associated 

with the members of a cluster are stored next to each other, and this is followed by those of 

the next cluster’s.  At the same time we keep a pointer from the beginning of one cluster sub-

posting list to the next one.  During query processing we use these pointers to skip the 

clusters, which are not selected as a best matching cluster.  Another skips idea for efficient 

decompression of inverted indexes can be seen in [Moffat, Zobel, 1996]. 

An example file structure is provided in Figure 2 for a D matrix, which is clustered using 

C3M.  In this figure each posting list header contains the associated term, the number of 

posting list elements associated with that term, and the posting list pointer (disk address).  The 

posting list elements are of two types, “cluster number – position of the next cluster,” and 

“document number – term frequency” for the preceding cluster.   
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Figure 2. Example inverted file structure with skips. 

 

Our skip structure is simple yet novel.  In the previous CBR research a similar approach 

has not been used.  For example, Salton and McGill’s classical textbook [Salton, McGill, 

1983, pp. 223-224] defines three cluster search strategies.  Two of them are related to 

hierarchical cluster search and their concern is the storage organization of the cluster 

centroids.  In the third CBR strategy, documents (not their inverted lists) are stored in cluster 

order, that is, one access to the “document file” retrieves a cluster of related documents.  Our 

skip idea provides a completely new way of implementing CBR by clustering the individual 

posting lists elements.  This is certainly different than accessing the “documents” in cluster 

order. 

Salton wrote [Salton, 1989, p. 344]: 

“In general, the efficiencies of inverted-file search techniques are difficult to 

match with any other file-search system because the only documents directly 

handled in the inverted-list approach are those included in certain inverted lists 

that are known in advance to have at least one term in common with the 

queries.  In a clustered organization, on the other hand, many cluster centroids, 

and ultimately many documents, must be compared with query formulations 

that may have little in common with the queries.” 



F. Can, İ. S. Altıngövde, E. Demir: Efficiency and effectiveness of query processing                p. 8 

The CBR using the skip-based inverted index search technique overcomes the problem 

stated by Salton, i.e., it prevents matching many unnecessary documents with the queries.  For 

example, in the clustering environment of Figure 2, if we assume that the user query contains 

the terms {t3,  t5} and the best matching clusters for this query are {C1, C3}, using the ICsIIS 

approach during query processing after selecting the best matching clusters we only consider 

the posting lists associated with t3 and t5.  While processing the posting list of t3 we skip the 

portion corresponding to C2 (since it is not a best matching cluster).  Similarly, while 

processing the posting list of t5, we again skip the unnecessary C2 portion of the posting list 

and only consider the part corresponding to C3.  In other words, by using the skip approach 

we only handle the documents that we really need to match with the query.  

In the implementation of the skip idea another alternative is to store the cluster number and 

skip information at the start of the posting lists.  Here we adopt the former approach 

illustrated in Figure 2.  Practically these two alternatives have no major difference in terms of 

posting list I/O time, since in almost all cases query term posting lists are read in their entirety 

because a term usually appears in enough number of different clusters that would require 

inputting its whole posting list.  In query processing a significant portion of the time cost 

comes from similarity calculations for ranking, and skipping information helps us in 

considerably decreasing the cost of these calculations. 

 

3. Experimental Environment 
 
3.1 Document Database 
 
In the experiments, Financial Times documents (FT database) of TREC-4 collection are used.  

The document database includes 210,158 newspaper articles published between 1991 and 

1994.  During the indexing stage, we eliminated English stop-words and numbers, and 

indexed the remaining words, and no stemming is used.  The resulting lexicon contains 

229,748 terms.  The D matrix contains 29,545,234 non-zero elements.  The average number 

of distinct terms per document, or depth of indexing xd, is 140.6, and the longest and shortest 

documents contain 3220 and 4 distinct terms, respectively.  On the average each term appears 

in 128.6 different documents.  This is the average number of distinct documents per term or 

term generality, tg.   

For easy reference statistical characteristics of the FT (TREC-4) collection are provided in 

Table II along with some other databases to give some sense of sizes of the important 

variables in traditional (INSPEC, NPL), and OPAC (BLISS, MARIAN) [Can et al., 1995; 

Kocberber et al., 1999] collections.  In this table the number of clusters, nc, is obtained by 

using C3M.  The numbers show that databases, more specifically their vector spaces, show 

various degrees of sparsity as indicated by the number of clusters.  For example, FT (TREC-



F. Can, İ. S. Altıngövde, E. Demir: Efficiency and effectiveness of query processing                p. 9 

4) is quite cohesive and the number of clusters is not that high.  On the other hand, OPAC 

(library), BLISS-1 and MARIAN, vector spaces are sparse and contain relatively large 

number of clusters, since they cover documents in many different subject areas.  The content 

cohesiveness of a database may be uniformly distributed and clusters may contain 

approximately the same number of documents or it can be skewed and it may contain a few 

number of large clusters containing relatively high number of related documents.  We will 

revisit this issue later in Section 4.1 from our database’s point of view. 

Table II.  Characteristics of the FT (TREC-4) and some Other Databases 
  
 
 Database 

 m 
 No. of 
 Documents 

 n 
 No. of 
 Terms 

 xd 
 Avg. No. of Dis- 
 tinct Terms/Doc. 

 nc 
 No. of 
 Clusters 

 dc 
 Avg. No. of 
 Docs./Clust. 

    BLISS-1* 152,850 166,216 25.7 6,468  25 
 MARIAN  42,815  59,536  11.2 5,218  8 

INSPEC 12,684 14,573 32.5   475  27 
 NPL  11,429  7,491  20.0   359       32 
 FT(TREC-4) 210,158 229,748 140.6 1,640 128 
*  Approximate nc value is calculated using the cover-coefficient-based formula: nc= n/x

d
. 

 
3.2 Queries and Query Matching 
 
We used the TREC-7 query topics corresponding to the TREC-4 collection (queries 351-400) 

along with their relevance judgments; on the average there are 38.1 relevant documents per 

query.  In the experiments we used four different types of query sets first two of which are 

created from the TREC queries. 

1. Qshort (short queries) created from the title field of the TREC queries, i.e., these are 

title-only queries. 

2. Qmedium (medium length queries) created from the title and description fields 

(combined) of the TREC queries. 

3. Qlong, created from the top retrieved document of each Qmedium query.  We assume 

that, the relevance judgments of the original query also apply to them.   

4. Qgiant created by combining a number of random documents from the original data 

set, and is used for the purpose of evaluating efficiency in its theoretical limits.  For 

this single query we do not measure effectiveness since we have no relevance 

information for it. 

Table III provides query sets summary information. 

There are several query matching functions that depend on the term weighting used for 

document and query terms [Salton, Buckley, 1988].  In this study, the document term weights 

are assigned using the term frequency x inverse document frequency (IDF) formulation.  

While computing the weight of term tj in document di, term frequency is computed as the 

number of occurrences of tj in di, and IDF is ln(number of all documents/number of 
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documents containing tj)+1.  Once the term weights are obtained, document vector is 

normalized using cosine normalization [Salton, Buckley, 1988]. 

 
Table III. Query sets summary information  
(last three columns indicate no. of terms) 

Query Set Source  Average Min Max 
Qshort TREC Query Titles 2.38 1 3 

 
Qmedium 

TREC Query Titles and 
Descriptions 

 
8.16 

 
2 

 
19 

Qlong Top Relevant Document 190.04 13 612 
Qgiant Random Documents 2175.00 2175 2175 

 
The term weights for query terms are calculated in a similar fashion to document term 

weights.  In this case, for computing term frequency component, we use augmented 

normalized frequency formula defined as (0.5 + 0.5 x tf / max-tf). Here max-tf denotes the 

maximum number of times any term appears in the query vector.  IDF component is obtained 

in exactly the same manner with the document terms.  No normalization is done for query 

terms since it does not affect document ranking. 

After obtaining weighted document (d) and query (q) vectors in an n dimensional vector 

space the query-document matching is performed using the following formula.  

∑
=

=
n

j
djqj wwdqsimilarity

1
),(

 

The members of the best matching clusters (note that in CBR a subset of the entire 

collection is under consideration) are ranked according to their similarity to the query, and for 

the top 10 (20, 100) documents the effectiveness measures precision and recall are calculated.  

Precision is defined as the ratio of retrieved relevant documents to the number of retrieved 

documents, and recall is defined as the ratio of retrieved relevant documents to total number 

relevant documents in the collection.   

 
4. Experimental Results 
 
In this section, we present various experiments to compare the efficiency and effectiveness of 

three retrieval strategies: Full Search (FS), cluster based retrieval combined with a full 

inverted index  (ICISS), and cluster based retrieval incorporating the skipping concept 

(ICsIIS).  As stated before, it has been shown that ICISS is more efficient than some other 

CBR techniques in terms of paging and CPU time, but inferior to FS  [Can, 1994].  In the 

following set of experiments, we first investigate the validity of C3M clustering for the FT 

database, and then examine the effectiveness and efficiency of the three retrieval strategies 

(namely, FS, ICIIS, and ICsIIS) as we vary several environment parameters.  Actually, ICIIS 
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and ICsIIS are the same in terms of their effectiveness since they are two different 

implementations of the same CBR operation; therefore, for these two we can only compare 

their efficiency.  We also study the scalability of our results.  In the rest of the paper, we use 

CBR interchangeably with ICIIS and ICsIIS when it is appropriate. 

The experiments are performed on dual processor Pentium III 866 PC with 1 GB main 

memory and 20 GB SCSI HDD. The operating system installed on this PC is Windows NT 

4.0. The source code for the prototype implementation is available at 

http://www.cs.bilkent.edu.tr/~ismaila/ircode.htm.  

 
4.1 Clustering Structure: Generation, Characteristics and Validation 
 
4.1.1 Cluster generation and characteristics of the generated clustering structure 
 
Our experiments yield 1640 clusters (in both non-overlapping and overlapping cases) for the 

FT (TREC-4) collection. In the non-overlapping case the average cluster size is 128 (vs. 176 

in overlapping), and the average number of distinct terms in a cluster is 4700 (vs. 5560).  

Note that, in the overlapping case the total number of documents in the clusters is 288,685 

(vs. 210,158), which means 33% document duplication. 

The generated clustering structure of the non-overlapping case follows the indexing-

clustering relationships implied by the CC concept.  For example, the indexing-clustering 

relationships nc= (m x n)/t= m/tg= n/xd, and dc= tg are all observed in the experiments (for easy 

reference the values of these variables are repeated here, m= 210,158, n= 229,748, t= 

29,545,234, xd= 140.6, tg= 128.6 and the values obtained for nc and dc after clustering are 

1640 and 128).  For example, nc was implied as 1634 by the relationships, which shows only 

a %0.4 percent deviation from the real value obtained by actual clustering.  Similarly, the dc 

(128) value is almost identical with tg.  As shown in our related previous work [Can, 1990, 

1993; Can et al., 1994] for a given D matrix the clustering structure to be generated by C3M 

is predictable from the indexing characteristics of a database.   

The size distribution of the clusters for the non-overlapping case is presented in Figure 3.  

In Figure 3.a the x-axis (in logarithmic scale) shows the cluster size in terms of documents 

and y-axis shows the number of clusters for the corresponding size.  The figure shows that 

cluster sizes show variety, there are a few large clusters (largest one containing 26,076 

documents) and some small clusters, and there are many clusters close to the average cluster 

size.  Figure 3.b shows that majority of the documents (about 73% of them) are stored in 

clusters with a size 1 to 3,000.  Please note that for only 10% of the queries top ten results 

include documents from the largest cluster, which means that our results are not significantly 

biased by the existence of a large cluster. 

http://www.cs.bilkent.edu.tr/~ismaila/ircode.htm
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a. Cluster distributions in terms of no. of  clusters           b.  Ratio of total no. of documents observed 
         per cluster size (logarithmic scale).                                   in various cluster size windows. 

 
Figure 3. Cluster size distribution information. 

 
4.1.2 Validation of the generated clustering structure 
 
Before using a clustering structure for IR we must show that it is significantly different from, 

or better than, random clustering in terms of reflecting the intrinsic nature of the data.  Such a 

clustering structure is called valid.  Two other cluster validity issues, clustering tendency and 

validity of individual clusters, are beyond the scope of this study [Jain, Dubes, 1988]. 

Our cluster validation approach is based on the users’ judgment on the relevance of 

documents to queries and follows the methodology defined in [Can, Ozkarahan, 1990].  

Given a query, a cluster is said to be a target cluster if it contains at least one relevant 

document to the query. Let nt denote the average number of target clusters for a set of 

queries.  Next, let’s preserve the clustering structure and distribute all documents randomly to 

these clusters. The average number of target clusters for this case is shown by ntr and its value 

can be calculated without creating random clusters by the modified form [Can, Ozkarahan, 

1990] of Yao’s formula [Yao, 1977]; however, for the validity decision we need the 

distribution of the ntr values.  The case nt > ntr suggests that the tested clustering structure is 

invalid, since it is unsuccessful in placing the documents relevant to the same query into a 

fewer number of clusters than that of the average random case.  The case, nt < ntr, is an 

indication of the validity of the clustering structure; however, to decide validity one must 

show that nt is significantly less than ntr. 

According to our validity criterion, we must know the probability density function of ntr.  

For this purpose, we perform a Monte Carlo experiment and randomly distribute the 

documents to the cluster structure for 1000 times and for each experiment compute the 

average number of target clusters.  The minimum, maximum, and average ntr values are 

observed as 27.78, 29.02 and 28.41 (see Figure 4 for the probability density function of the ntr 

values).  Then, we compute the nt value, and it is 20.1. Clearly, nt is significantly different 
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than the random distributions ntr, since it is less than all of the observed random ntr values.  

These observations show that the clustering structure used in the retrieval experiments is not 

an artifact of the C3M algorithm, on the contrary, significantly better than random and valid.   
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Figure 4. Histogram of ntr values for the FT (TREC-4) database (nt= 20.1). 

 
4.2 Determining Number of Best Matching Clusters for CBR 
 
The experiments show that selecting more clusters increases effectiveness since as we 

increase ns (i.e., the number of selected clusters) more relevant documents would be covered 

[Salton, 1975, p. 376].  In our previous research, it is observed that effectiveness increases up 

to a certain ns value, after this (saturation) point, the retrieval effectiveness remains the same 

or improves very slowly [Can & Ozkarahan, 1990, Figure 6].  For the INSPEC database, this 

saturation point is observed when ns is about 10% of the clusters and during the related 

experiments about the same percentage of the documents is considered for retrieval.  This 

percentage is typical for (best-match) CBR [Salton, 1975, p. 376].   
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Figure 5. For ds = 10 and query set Qmedium, mean average precision versus ns. 
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In our experiments, for a range of ns values, we retrieved top 10 documents for the query 

set Qmedium and measured the effectiveness in terms of mean average precision (i.e., average 

of the precision values observed when a relevant document is retrieved) [Baeza-Yates, 

Ribeiro-Neto, p. 80].  The results depicted in Figure 5 also confirm the above observation 

regarding INSPEC, where the effectiveness increases up to 164 clusters (10% of the cluster 

number nc) and then no major change occurs.  Therefore, we use 10% of nc (ns= 164 clusters) 

as the number of clusters to be used in the retrieval experiments.  
 
 

No. (%) of   
Selected Clusters 

Avg. No. (%) of   
Selected Documents 

32   (1.95) 3 857.08   (1.84) 
64   (3.90) 8 608.14   (4.10) 
96   (5.85) 12 041.18   (5.73) 

128   (7.81) 15 701.94   (7.47) 
164   (10.0) 19 107.12   (9.09) 
820  (50.0) 102 016.14   (48.54) 

1 640   (100.00) 210 158.00   (100.00) 
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Figure 6.  Relationship between number of selected clusters and  

number of documents in the selected clusters. 
 

In Figure 6, we report the total number of documents in the clusters for each value of ns.  

Both figures show that, for example, if we select the first best matching 164 clusters (10% of 

the existing clusters) we need to match 9.09% of the documents with the queries, since this 

much documents exists in the selected clusters (the numbers are averages for all queries).  

The observations show that there is a linear relationship between the percentage of clusters 

selected and the percentage of the database covered by them.     

Determining the centroid terms is also an issue, since they may influence the effectiveness 

and efficiency of CBR. In this paper, the most frequent terms in clusters are chosen as 

centroid terms. The weight of a centroid term tj is computed by term frequency x IDF formula, 

where term frequency is set to 1 and IDF is ln (number of centroids / number of centroids 

including the term j) + 1. In Sections 4.3 and 4.4, we use the ad-hoc centroid length value of 

250 terms for both overlapping and non-overlapping cases. In Section 4.5, we further 

investigate the impact of various centroid length and term weighting strategies on the 

efficiency and effectiveness of query processing. 

 
4.3 Effectiveness Experiments 
 
To evaluate the effectiveness of three IR strategies, we retrieved the top 10, 20, and 100 

documents for each of the query sets –namely, Qshort, Qmedium and Qlong–.  The 
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experiments are conducted over both overlapping and non-overlapping clustering structures.  

The effectiveness results are presented by using both a TREC-like interpolated 11-point 

precision-recall graph [Baeza-Yates, Ribeiro-Neto, pp. 76-77] and a single mean average 

precision value (defined in the previos section) for each of the experiments. For the sake of 

saving space, we provide only top 10 effectiveness results for the experiments of the non-

overlapping and overlapping clustering.  For top 20 and 100 documents we have similar 

results. 
Table IV. Mean average precision values for retrieval strategies (ns = 164, ds =10) 

Query 
Set 

 
FS 

CBR 
(non-overlap.) 

CBR 
(overlap.) 

Qshort 0.307 0.296 0.268 
Qmedium 0.314 0.326 0.348 

Qlong 0.383 0.354 0.350 
 

Table IV provides the mean average precision values for the retrieval strategies.  For short 

queries, FS gives the best performance and it is followed by non-overlapping cases.  In the 

case of medium size queries, CBR outperforms FS.  For long queries, the reverse is true.  For 

a more detailed comparison consider Figure 7.  They illustrate that the effectiveness of FS and 

CBR are quite close to each other for different sets of queries with varying lengths.  The 

effectiveness achieved over the overlapping cluster structure can be comparable or sometimes 

better than non-overlapping CBR and FS. For instance, Table IV shows that for Qmedium, 

non-overlapping CBR is better than FS, and overlapping CBR is even better than the non-

overlapping case.   

 
Table V. Effectiveness comparison of FS and CBR (ICIIS and ICsIIS), for non-overlapping  clusters 

Query Set CBR = FS CBR > FS CBR < FS 
Qshort 76% 6% 18% 

Qmedium 70% 10% 20% 
Qlong 88% 4% 8% 

 
In Table V, for the same query sets and top 10 documents, we provide the effectiveness 

comparisons of individual queries during FS and CBR in non-overlapping case. For instance, 

CBR achieves better than FS in 6% of the Qshort queries.  These results further indicate that 

there is no single best approach for IR, and either one of CBR or FS can perform better for 

different queries.  Note that, our CBR approaches that blend inverted indexes with cluster 

based retrieval lead to new opportunities for combining the best results of both strategies, in a 

way that has not been done before.  For example, during query processing we can handle 

query terms as in FS or CBR like a mixture depending on the query term properties. 
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Figure 7. Interpolated PR graph for all query sets using top 10 (ds= 10) documents. 
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4.4  Efficiency Experiments  
 
4.4.1 Results in terms of processing requirements  
 
We measure the efficiency of each retrieval strategy for top 10, 20 and 100 documents for all 

query sets.  We evaluate the efficiency by using two different measures: (i) number of 

processed (accessed) posting list elements, and (ii) actual query processing time. In the 

following we provide the results for only non-overlapping case. For the overlapping case 

although the processing requirements are higher (due to the longer posting lists), the relative 

efficiency performance of compared algorithms does not exhibit a significant difference. 

 
Table VI. Average number of document posting list elements processed by each retrieval strategy 

for each query set and percentage savings provided by ICsIIS 
 

Query Set 
 

FS and ICIIS 
 

ICsIIS 
% ICsISS savings wrt 

FS and ICIIS 
Qshort           9,791        4,238 57 

Qmedium        49,415      16,342 67 
Qlong   1,813,734    784,005 57 
Qgiant 12,398,355 6,637,800 47 

 
In Table VI, we present the average number of document posting list elements processed 

for each query set while ranking documents using the query matching function.  The posting 

lists brought to memory for ICsISS are longer than those for FS and ICIIS, as the skipping 

inverted index elements of ICsIIS include cluster information.  On the other hand, in all cases, 

during the similarity calculations the ICsIIS strategy visits much less posting list elements 

than IIS and ICISS, since most of the posting list elements of ICsIIS are skipped due to our 

(skipping) storage structure.  The last column shows the percentage savings provided by 

ICsIIS with respect to FS and ICIIS in posting list processing (the entries of this column are 

obtained from those of the second and third columns).  The savings in terms of realistic query 

cases (Qshort to Qlong) savings range between 57% and 67%. 

 
Table VII. Average in-memory processing time (sec.) per query for each retrieval strategy and  

relative performance of ICsIIS with respect to FS 
Query Set FS ICISS ICsIIS ICsIIS/FS 

Qshort 0.051 0.052 0.038 0.75 
Qmedium 0.141 0.143 0.055 0.39 

Qlong 1.090 1.107 0.442 0.41 
Qgiant 4.319 4.385 2.418 0.56 

 
The average in-memory processing time per query is reported in Table VII.  The results 

reveal that the savings indicated in Table VI are proportionally reflected to the actual 

execution times.  In all cases, ICsIIS performs faster than its competitors as the candidate 

result set to be considered is significantly reduced by the skipping technique proposed in this 

paper.  Also note that, in our database the average posting list length (or term generality tg) is 
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short, 129 elements.  Our heuristics save more time for longer posting lists; therefore, we 

anticipate that efficiency results would be even better in databases with longer lists. This also 

explains why the savings for Qshort is relatively less than it may be expected. 

Please note that, our skipping optimization is in-memory, whereas both ICIIS and ICsIIS 

have an extra cost of disk access for inverted centroid index entries.  So, from a theoretical 

point of view CBR approaches discussed here suffer from this extra I/O cost. However, in 

practice, we observed that the extra I/O operations associated with accessing inverted centroid 

index entries are mostly compensated with today’s file caching capabilities. In particular, the 

size of the inverted centroid index is only 1.5% of IIS (see Table IX of Section 4.4.2) and it 

can be effectively buffered or even totally stored in main memory. For instance, the average 

overall query processing times (in-memory computations + I/O overhead) for Qmedium is 

measured as 0.265, 0.301 and 0.240 seconds per query for FS, ICIIS and ICsIIS, respectively. 

In this case, all index structures are kept in the disk medium and extra I/O cost is reduced by 

OS buffering mechanism.  Thus, we claim that ICsIIS is a worthwhile retrieval strategy also 

in terms of efficiency considerations.   
 
4.4.2 Results in terms of storage requirements 
 
As it is mentioned before, the ICsIIS strategy proposed in this paper incorporates cluster 

membership information into the inverted index posting lists.  In Table VIII, we present 

statistics about the inverted index files stored on the disk for FS and the non-overlapping and 

overlapping clustering cases.  It may be seen that the storage requirement for cluster-skipping 

inverted index is modestly higher than the ordinary inverted index file.  The index creation 

time is 182 minutes for all structures (i.e., IIS, skip IIS non-overlapping, and skip IIS 

overlapping – the effect of skips on indexing time is negligible–).  (Centroid generation time 

for both non-overlapping and overlapping structures is about 20 minutes.) 
Table VIII. Storage requirements (size in MB) and  

posting list (PL) information for inverted index files 
 

Inverted Index File 
 

Size 
Avg. Posting List 

Length (Docs/Term) 
Max No. of 
Docs./PL 

Min No. of 
Docs./PL 

IIS 338 129 93,693 1 
Skip ISS  

(non-overlapping) 
426 

(26% > FS) 162 95,329 2 

Skip IIS  
(overlapping) 

560 
(65% > FS) 215 132,328 2 

 
The storage requirements of FS (using IIS) is simply equal to “the total number of 

elements in the posting lists” (t) times “the size of an elements in the posting list.”  A posting 

list element consists of a 4 byte (integer) document number and 8 byte (double) term weight.  

There are 29,545,234 inverted index elements where each costs 12 bytes, leading to a total of 

338MB.   
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In ICsIIS, posting lists include extra elements consisting of cluster number and the skip 

pointer.  These additional elements also take 12 bytes to conform to the ordinary posting list 

elements (including document number and term weight).  The average number of terms per 

cluster (avg. terms/cluster) is equal to 4700 and 5560, respectively, for the non-overlapping 

and overlapping clustering cases.  This means that in the non-overlapping case the cluster 

number and the skip pointer address is included in 4700 different posting lists.  This makes an 

additional cost of 88MB (4700 x 1640 (total number of clusters) x 12 bytes), i.e., total of 426 

MB.   

In the ICsIIS overlapping case the extra cost with respect to FS increases, avg. 

terms/cluster is equal to 5560; therefore, the cost due skip information is 104MB (5560 x 

1640 x 12).  Furthermore, in the overlapping case we have an additional 78,527 (overlapping) 

documents (288,625 - 210,158).  For projection purposes if we assume that each overlapping 

document is an average document containing 141 terms, then the cost these additional 

documents will introduce to IIS is 127MB (78,527 x 141 (average number of terms per 

document) x 12), thus both (104 MB + 127MB) make a total of 231MB.  In Table VIII, the 

difference between (actual) overlapping ICsIIS and FS is slightly less than this number and is 

equal to 222MB  (about 4% less than our projection.). 

It is possible to decrease the storage cost of inverted file structures by almost 50% by 

replacing the term weight information (8 bytes) by term document frequency (2 bytes) 

[Moffat, Zobel, 1996].  If we do that relative retrieval performances are expected to remain 

the same and the cost of individual posting list elements drops from 12 (4 + 8) bytes to 6 (4 + 

2) bytes. 

The detailed disk storage requirements for the important file structures of each strategy are 

shown in Table IX.  The last two rows of the table show the storage overhead of storing the 

indexing terms to find the posting lists of the query terms.   

 
Table IX. Storage requirements (in MB) for individual components 

Storage Component Size FS ICISS ICsISS 
IIS  (inverted index for docs.) 338 * *  
IIS with skip information 426   * 
IC (Centroid length 250) 5  * * 
CM  (Cluster Membership) 3  *  
Wordlist 5 * * * 
Centroid word list (cent. size 250) 5  * * 

* Means that corresponding component is required. 
 

The in-memory requirements of ICsIIS are similar to that of ICIIS.  However, ICsIIS 

does not require cluster membership information to be kept in the memory, since it is blended 

into the posting lists, whereas ICISS does. Accordingly, the most demanding internal storage 

requirement for ICsIIS is for the so-called accumulator array, which is used to store the 

similarity of documents to the processed query.  This requirement is clearly the same for all 
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three strategies described in this paper. From these discussions, we can conclude that ICsIIS 

is feasible in terms of memory and disk storage costs. 

 
4.5 Effects of Centroid Generation Strategies 
 
In the experiments, we investigated the impact of centroid length and centroid term weighting 

schemes on the effectiveness and efficiency of cluster based retrieval by using the Qmedium 

case as a representative.  All the experiments are performed over clusters generated by both 

non-overlapping and overlapping versions of the C3M algorithm.  We generated four sets of 

centroids with fixed lengths 250, 500, 1000 and 2500.  In an additional experiment, we set the 

centroid length of each cluster to the 10% of its unique terms.  For each of these lengths, we 

applied three different centroid term weighting schemes: CW1, CW2, and CW3, where the 

weight of a centroid term is computed by the formula term frequency x IDF.  In CW1, term 

frequency is taken as 1, in CW2 and CW3 it is taken as the number of occurrence of the term 

in the cluster.  In CW1 and CW2, IDF is taken as ln(number of clusters/number of centroids 

including the term) + 1, in CW3, it is taken as ln(sum of occurrence numbers in the 

centroids/number of occurrence in the cluster) + 1.  All weights are normalized once they are 

assigned. 

For all of these experiments, the effectiveness of CBR remains almost the same; whereas 

the efficiency slightly degrades as accessing inverted index elements for centroids requires 

more time with increasing centroid length.  However, in all experiments, ICsIIS still 

outperforms ICISS in terms of query processing time.  Also, in most of the experiments, 

ICsIIS achieved comparably well as FS, which is not influenced from the change of centroids.  

 
4.6 Scalability Experiments 
 
The scalability of C3M, especially from an incremental clustering point of view, has been 

thoroughly studied in our previous work [Can, 1993; Can et al. 1995].  In this section we 

consider the scalability of our skip-based CBR strategy in terms of its efficiency, 

effectiveness, and storage structures.  For obtaining the clusters, we use a naive 

implementation of C3M based on ASCII files.  In a PC environment, this unrefined 

implementation clusters the FT database in approximately 114 minutes.    

For the scalability experiments we obtained two smaller versions of the FT database 

containing approximately one third and two thirds of the original collection.  We refer to them 

as FT small (FTs) and FT medium (FTm).  The characteristics of all FT databases are given in 

Table X (for easy reference the original FT database is also repeated in the same table).  FTs 

and FTm, respectively, contain the first 69,507 and 138,669 documents of the original FT 

database.  It may be noted in passing that the indexing clustering relationships are again 
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observed.  For example, the clustering indexing relationship nc = n / xd implies 989 and 1345 

documents, respectively, for the FTs and FTm databases.  The difference between actual 

numbers and projected numbers is less than 4% as in the case of FT (see Section 4.1.1).   

Table X.  Characteristics of the FT Databases 
  
 
 Database 

 m 
 No. of 
 Documents 

 n 
 No. of 
 Terms 

 xd 
 Avg. No. of Dis- 
 tinct Terms/Doc. 

 nc 
 No. of 
 Clusters 

 dc 
 Avg. No. of 
 Docs./Clust. 

FTs 69,507 144,080 145.7 955 73 
FTm 138,669 191,112 142.1 1319 105 
FT   210,158 229,748 140.6 1,640 128 

 
In the scalability experiments, as a representative case, we only consider the non-

overlapping clustering structure and use the Qmedium query set, which is the mid-way in 

terms of the query sizes we used.  In the experiments we retrieve 10% of the clusters (ns= 0.1 

x nc), examine the top 10 documents (ds= 10) for performance measurement, and use 

centroids with 250 terms as in the previous experiments.   

 
Scalability of Effectiveness 

The experimental results in terms of single mean average precision value are reported 

here.  Table XI shows that when we use the small database, FTs, the CBR effectiveness is 

about 16% lower than that of FS.  In the case of FTm the performance of CBR in terms of 

effectiveness improves and it lags behind FS by only 1%.  Finally, with the full and largest 

database, CBR outperforms FS by 4%.  These observations confirm that our CBR 

methodology scales well with the database size and has the tendency of showing slightly 

better performance than that of FS with larger databases.  This improvement of CBR 

effectiveness can be attributed to the refinement of cluster structures with increasing database 

size. 
Table XI. Mean average  precision values for retrieval strategies FS and CBR with  

different databases (ns = 10% of nc, ds =10) and performance of CBR wrt FS 
Database FS CBR CBR / FS 

FTs 0.285 0.238 0.84 
FTm 0.335 0.332 0.99 
FT 0.314 0.326 1.04 

 
Scalability of Efficiency 

Table XII provides the average number of posting list elements processed for a query with 

each database.  The values of the ICsIIS column show that this approach is much more 

efficient than the other two approaches.  The last column of the table shows the savings 

provided by ICsIIS with respect to FS and ICIIS in terms of the posting list elements 

processed.  For FTs, it provides 46% savings and savings increase with the increase of the 

database size and finally for FT the savings provided by ICsIIS are a substantial 67%.  As 

shown in Table XIII, these savings translate themselves to in-memory processing time 
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savings.  The last column of the table shows that the efficiency of ICsIIS becomes more 

prevalent with increasing database size.  This again shows that ICsIIS scales well with 

increasing database sizes.  Note that, comparable efficiency results for overall query 

processing times (with I/O) are also observed in our experimental environment. 

 
Table XII. Average number of “document” posting list elements processed by each retrieval strategy 

for each database and percentage savings provided by ICsIIS 
 

Database 
 

FS and ICIIS 
 

ICsIIS 
% ICsISS savings wrt 

FS and ICIIS 
FTs 16,875    9,214 46 
FTm 32,916 14,161 57 
FT 49,415 16,342 67 

 
Table XIII. Average in-memory processing time (sec.) per query for each retrieval strategy with each 

database and relative performance of ICsIIS with respect to FS 
Database FS ICISS ICsIIS ICsIIS/FS 

FTs 0.043 0.044 0.022 0.51 
FTm 0.092 0.091 0.045 0.49 
FT 0.141 0.143 0.055 0.39 

 
 
Scalability of Storage and Indexing Structures 

For the experimental databases FTs, FTm, and FT the requirements of the individual storage 

components are shown in Table XIV.  As the numbers show, the overhead of the secondary 

storage structures (namely inverted index for centroids –IC–, cluster membership information 

–CM–, and the word lists used to find the posting lists associated with the query terms -the 

last two rows-) is negligible.  For example, the storage cost of IC with respect to IIS is 2.6%, 

1.8%, and 1.5% for the databases FTs, FTm, and FT, respectively.  As the size of the database 

increases, the relative cost of IC decreases, since the rate of increase in number of clusters is 

lower than that of documents.  The size of the IC storage structure also indicates that in query 

processing the cost of selecting the best matching clusters is a small fraction of the query 

processing time.  In terms of storage requirements, numbers are basically proportional to the 

sizes of the document vectors used for the creation of the index structures.  As we increase the 

size of the database, the cost of skip-based IIS slightly decreases (from 0.30 to 0.26) with 

respect to IIS.  This is again due to the fact that the rate of increse in number of clusters is 

smaller than that of documents. 

In terms of centroid (and IIS) generation, we have the following time observations 

respectively for FTs, FTm, and FT: 5(46), 11(109), and 20(182) minutes.  The time 

requirements of generating IIS and skip-based IIS are almost the same.  Since these are one-

time costs and our concern was the scalability of efficiency and effectiveness, we did not try 

to optimize our implementations for the generation of these storage structures.  
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Table XIV. Storage requirements (in MB) for individual components 
Storage Component FTs FTm FT 
IIS  (inverted index for docs.) 116 226 338 
IIS with skip information 
(extra overhead wrt IIS) 

151 
(0.30) 

286 
(0.27) 

426 
(0.26) 

IC (centroid length 250) 3 4 5 
CM  (Cluster Membership) 1 2 3 
Wordlist 3 4 5 
Centroid word list (cent. size 250) 3 4 5 

 
4.7 Discussion of Results 
 
From the experiments, we draw the following conclusions: 

• In the non-overlapping clustering experiments, all three retrieval strategies of FS, ICISS 

and ICsIIS achieve similar effectiveness values. In the efficiency experiments, the ICsIIS 

strategy incorporated with a skip-based inverted index outperforms the other strategies in 

terms of in-memory operations and performs comparably well in terms of overall query 

processing times, i.e., including I/O, with effective OS file caching for centroid index. 

• In the overlapping clustering experiments; the effectiveness values of ICISS and ICsIIS 

are slightly improved in particular experiments, but the efficiency results are not as good 

as the non-overlapping case due to the increasing access costs for both CBR strategies. 

• The results are independent of the centroid lengths and weighting schemes, as the 

variations over these parameters do not significantly affect the presented results. 

• Storage requirements in the disk and memory for ICIIS and ICsIIS are moderately higher 

than FS, and current compression techniques may further reduce these requirements.  In 

ICsIIS, such a reduction has the potential of further improving the processing time, since 

by using our skipping approach the decompression time can be reduced significantly. 

• The experiments show that our results are scalable: Effectiveness of CBR slightly 

increases and efficiency of ICsIIS can improve significantly with increasing database 

sizes. 

 
5.  Previous and Related Work 
 
A good survey of clustering in information retrieval is provided in [Willett, 1988].  This work 

comes with an impressive reference list.  The books by Salton  [Salton, 1975, 1989], Salton 

and McGill [Salton, McGill, 1983] and van Rijsbergen [van Rijsbergen, 1979] also cover 

previous work on clustering in information retrieval.  A new survey of clustering in various 

application areas can be found in [Jain et al., 1999].  A good discussion of algorithms for 

clustering data and cluster validation approaches is available in a beautiful concise book by 

Jain and Dubes [Jain, Dubes, 1988].   
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Our previous work on C3M includes its concepts and effectiveness analysis [Can, 

Ozkarahan, 1990], and how it works in dynamic databases [Can, 1993; Can et al., 1995].  The 

CBR effectiveness in terms of precision for the INSPEC database is reported in [Can & 

Ozkarahan, 1990].  The study shows that C3M is 15.1 to 63.5 (with an average of 47.5) 

percent better than four other clustering algorithms [El-Hamdouchi, Willett, 1989] in CBR.  

The same study also shows that the IR effectiveness of the algorithm is comparable with a 

demanding (in terms of CPU time and main memory) complete link clustering method that is 

known to have good retrieval performance [Voorhees, 1986a; Voorhees, 1986b].  The 

experiments also show that the CBR using C3M is slightly less effective (1.0 percent to 6.9 

percent) than FS.  The experimental observations reported in [Can et al., 1995] show that the 

incremental version of C3M is cost effective and can be used for many increments of various 

sizes.     

C3M and its concepts have also attracted the attention of other researchers in various 

application areas, such as chemical information systems [Willett, et al., 1986], clustering 

tendency testing [Elhamdouchi, Willet, 1987], automatic hypertext structure generation 

[Kellogg, Madhan, 1996], and search output clustering [Kural et al., 2001].  

Most clustering research in IR is related to cluster search effectiveness [Griffiths et al., 

1986; Willett, 1988; Burgin 1995; Shaw et al. 1997; Schütze, Craig 1997]. The research on 

efficiency aspects of cluster searches is limited.  For example, the works presented in [Can, 

1994, Voorhees, 1986b] considers storage, CPU, and I/O efficiency in the same simulated 

environment.  The Salton-McGill book [Salton, McGill, 1983] approaches to the efficiency 

problem in terms of page faults during information retrieval.   

The studies reported in [Hearst, Pedersen, 1996; Silverstein, Pedersen, 1997] provide 

experiments using databases larger than our collection; however, in their evaluations they 

assume that user picks the optimal cluster or try to generate refined cluster via scatter/gather 

browsing paradigm based on an existing global clustering structure.  In contrast to these 

approaches, in our work all decisions are made automatically using similarity measures based 

on a pre-existing clustering structure with no user interaction or any other assumption.   

In FS only query term posting lists are accessed from the disk medium. As a result, the 

efficiency of FS decreases with increasing query length, since for each query term another 

posting list must be processed.  It is possible to employ a partial evaluation (or pruning) 

strategy that skips some of the query terms to improve search efficiency with similar search 

effectiveness [Buckley, Lewit, 1985; Brown, 1995; Persin, 1994; Moffat, Zobel, 1996].  

However, as it is stated before such an approach is beyond the scope of this study and 

inverted index search optimization in CBR (i.e., in ICIIS and ICsIIS) is an interesting research 

possibility by itself, which can be further incorporated to our work. 
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6. Conclusions and Future Work 
 
Our CBR implementation method employs a storage structure that blends in the cluster 

membership information with the inverted file posting lists using the concept of skips.  In the 

skip approach, posting lists contain the cluster membership information in addition to 

traditional term weighting information.  During CBR, skip pointers embedded in posting lists 

provide the information to skip unnecessary (non-best matching) cluster members.  The 

indexing structure of the skip approach can be used both for FS and CBR.  Our skip-based 

CBR significantly improves the efficiency of query processing and this improvement is 

especially due to in memory similarity calculations.  As web search engines often need to 

traverse very long posting lists in memory, our skip-based CBR would improve the efficiency 

of web search engines that may employ clustering.  Our results are significant in the sense 

that the efficiency and effectiveness of CBR have been analyzed at this level for the first time 

for an existing global clustering structure (note that the clustering structure is static at the time 

of query processing; however it can be updated in an incremental manner at other times [Can 

1993; Can et al. 1995]). 

We show that for large databases CBR can achieve a time efficiency and effectiveness 

comparable with FS.  The storage requirement for CBR is modestly higher than the ordinary 

inverted index file. The experiments show that our results are scalable: Effectiveness of CBR 

slightly increases and efficiency of ICsIIS can improve significantly with increasing database 

sizes.   

There are several promising future research directions:  

1. In the experiments it is observed that CBR and FS do not always return exactly the 

same set of relevant documents even when they achieve the same precision levels; 

therefore, our results are also important in terms of data fusion or mixing the results of 

FS and CBR [Griffiths et al. 1986; Lee, 1997].  Our skip-based storage structure is 

especially suitable for an unusual fusion method, which is a hybrid of FS and CBR.  

For instance, for important query terms with relatively high weights, we may turn-off 

skipping, to retrieve some of the documents that are not in the best matching clusters 

but still qualify to be in the top 10 (20) documents.  We are currently studying other 

possible heuristics that may allow combining the best possible results from FS and 

CBR, with the least additional overhead.  

2. It would be interesting to study the update of the skip-based inverted index structures 

in a dynamic retrieval environment with new and deleted old documents. 

3. Compression of the posting lists and its effect on the system efficiency both in terms 

of retrieval time and disk space is another promising research direction.  There is 

every reason to expect that compression will have positive effects on performance, 
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since with compression a similar skip approach gives good results [Moffat, Zobel, 

1996]. 

4. Another research direction is definition of document vectors with different levels of 

indexing exhaustivity [Burgin, 1995] or by latent semantic indexing (LSI) and 

measuring the system performance [Lee, 1997; Schütze, Silverstein, 1997].  

5. Indexing of documents at a lower level, such as paragraphs or sentences, looks 

promising from CBR’s point of view. Since in such an environment FS inverted 

indexes could be extremely long, our optimization with skip concept combined with 

CBR may provide an important efficiency leap during query processing.  

6. For the calculation of the similarity values instead of an accumulator array dynamic 

data structures can be used for memory efficiency [Witten, 1994].  A partial query 

evaluation or pruning strategy and its effectiveness and efficiency should also be 

investigated [Brown, 1995; Moffat, Zobel, 1996; Persin 1994].  Our scalability 

experiments (Table XIII) and the results reported in [Moffat, Zobel, 1996] imply that 

when our ICsIIS approach is combined with the restricted accumulators (quit and 

continue methods of Moffat and Zobel), it can further improve the efficiency 

performance.   
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