

Efficiency and Effectiveness of
Query Processing in Cluster-Based Retrieval

FAZLI CAN1
İSMAİL SENGÖR ALTINGÖVDE
ENGİN DEMİR
(canf, ismaila, endemir)@cs.bilkent.edu.tr
Computer Engineering Department, Bilkent University
Bilkent, Ankara, 06533, Turkey; August 9, 2002

Abstract
Our research shows that for large databases, without considerable additional storage overhead, cluster-
based retrieval (CBR) can compete with the time efficiency and effectiveness of the inverted index-
based full search (FS). The proposed CBR method employs a storage structure that blends the cluster
membership information into the inverted file posting lists. This approach significantly reduces the
cost of similarity calculations for document ranking during query processing and improves efficiency.
For example, in terms of in-memory computations, our new approach can reduce query processing time
to 39% of FS. The experiments confirm that the approach is scalable and system performance
improves with increasing database size. In the experiments, we use the Cover Coefficient-based
Clustering Methodology (C3M), and the Financial Times database of TREC-4 containing 210,158
documents of size 564 MB defined by 229,748 terms with total of 29,545,234 inverted index elements.
This study provides CBR efficiency and effectiveness experiments using the largest corpus in an
environment that employs no user interaction or user behavior assumption for clustering.

Keywords: Clustering, cluster-based retrieval, information retrieval, performance, query processing.

1. Introduction

The well-known clustering hypothesis states that "closely associated documents tend to be

relevant to the same request." It is this hypothesis that motivates clustering of documents in a

database [van Rijsbergen, 1979]. In the IR research, clustering has been originally introduced

with the expectation of increasing the efficiency and effectiveness of the retrieval process

[Jardine, van Rijsbergen, 1971; Salton, 1975].

In best-match cluster-based retrieval (CBR), it is assumed that there is a flat (one-level)

clustering structure. In this environment, the queries are first compared with the clusters, or

more accurately with the cluster representatives called centroids. Detailed query by document

comparison is performed only within the selected clusters. In hierarchical (multi-level)

clustering structures, it is possible to implement top-down or bottom-up cluster-based search

strategies [Salton, McGill, 1983; Salton 1989; van Rijsbergen, 1979].

1 Corresponding author, on sabbatical leave from Computer Science and Systems Analysis Department,
Miami University, Oxford, OH 45056, USA. Present mail information, e-mail: canf@cs.bilkent.edu.tr,
voice: +90 (312) 290-2613, fax: +90 (312) 266-4047. Permanent mail information, e-mail:
canf@muohio.edu, voice: +1 (513) 529-5950, fax: +1 (513) 529-1524.

F. Can, İ. S. Altıngövde, E. Demir: Efficiency and effectiveness of query processing p. 2

As with any such algorithm, the efficiency of CBR is important. In addition to being

efficient, CBR should be effective in the sense of meeting user needs. Users may employ the

clustering structure in exploring the document space to locate items close to some known

documents. This is called browsing. Documents within a cluster can also be stored in close

proximity to each other within a disk medium to minimize I/O delays [Salton, McGill, 1983,

pp. 222-227]. However, it is shown that the operational effectiveness of many clustering

algorithms is low [Shaw et al., 1997]. It is also observed that the efficiency of CBR is less

than the efficiency of full search, FS, i.e., inverted index search of all documents [Can, 1994;

Salton, 1989; Voorhees, 1986a, 1986b].

In this paper we study the efficiency and effectiveness of query processing in large

clustered document collections using the best-match strategy. In the experiments we use the

Cover Coefficient-based Clustering Methodology, C3M, which we have introduced in our

previous work. It is known that C3M has superior performance with respect to other

algorithms of the literature [Can, Ozkarahan, 1990] and can be used in dynamic environments

in an incremental manner for cluster maintenance [Can, 1993]. The contributions of this

study are the following.

• It shows that for large databases it is possible to perform CBR with an efficiency and

effectiveness level, which is comparable with that of FS without considerable additional

storage overhead. The CBR method proposed in this paper employs a simple and novel

storage structure that blends the cluster membership information with the inverted file

posting lists. As will be shown this approach significantly reduces the cost of similarity

calculations during query processing. Our new storage structure is generic and clearly

applicable with other clustering algorithms.

• It provides CBR experiments using the largest corpus in an environment with no user

interaction or user behavior assumption. In the experiments we use the Financial Times

database of the TREC-4 containing 210,158 documents of text size 564 MB defined by

229,748 terms with total of 29,545,234 inverted index elements. For example, the

studies reported in [Hearst, Pedersen, 1996; Silverstein, Pedersen, 1997] provide

experiments with larger corpora; however, in their evaluations they assume that the user

picks the optimal cluster or try to generate refined clusters with user interaction from an

existing global clustering structure. In our work, all decisions are made automatically

using similarity measures based on a global clustering structure with no user

interaction.

There are various optimization techniques used for inverted index searches [Buckley,

Lewit, 1985; Persin, 1994; Brown 1995; Moffat, Zobel, 1996]. They aim to use only the most

informative parts of inverted list and try to increase efficiency of query processing without

F. Can, İ. S. Altıngövde, E. Demir: Efficiency and effectiveness of query processing p. 3

deteriorating retrieval effectiveness. Such techniques can be employed during query

processing to further improve the query optimization provided by CBR; however, search

optimization (or pruning) with techniques other than clustering is beyond the scope of this

study.

The rest of the paper is organized as follows. Section 2 explains our clustering algorithm

C3M and the file structures that can be used for the implementation of CBR including our

new approach. Section 3 describes the experimental environment in terms of document

database and queries. Section 4 covers the experimental results and their discussion. Section

5 reviews the previous and related work. The conclusions and pointers for future research are

given in Section 6. A list of frequently used symbols and acronyms is provided in Table I.

Table I. Expanded form and meaning of frequently used acronyms and symbols

Acronym Expanded Form Symbol Meaning

C3M

Cover Coefficient-based Clustering
Methodology

dc

Average no. of documents per
cluster

CBR

Cluster Based Retrieval

ds

No. of documents selected
during information retrieval

CVDV* Centroid Vector Document Vector m No. of documents
CVIIS* Centroid Vector Inv. Index Search n No. of terms
ICDV* Inverted Centroid Document Vector nc No. of clusters

ICIIS*

Inverted Centroid Inverted Index Search

ns

No. of selected best matching
clusters

ICsIIS*

Inverted Centroid skip Inv. Index Search

nt

Average no. of target clusters
per query

FS

Full Search

ntr

Average no. of target clusters
per query in random clustering

FT

Financial Times database of TREC-4

tg

Term generality (avg. no. of
documents per term)

FTs
FTm

FT small and
FT medium size versions

xd

Depth of indexing (avg. no. of
terms per document)

 * CBR implementation method.

2. Clustering Algorithm and File Structures for CBR Implementation

In this section we briefly explain our clustering algorithm, the file structures that can be used

for CBR, and our new CBR file structure that blends the clustering information with the

traditional inverted file.

2.1 Clustering Algorithm: C3M

As we indicated earlier in the experiments we use the C3M algorithm, which is known to

have good information retrieval performance. The C3M algorithm assumes that the

operational environment is based on the vector space model. Using this model, a document

collection can be abstracted by a document, D, matrix of size m by n whose individual entries,

dij (1 < i < m, 1 < j < n), indicate the number of occurrences of term j (tj) in document i (di).

F. Can, İ. S. Altıngövde, E. Demir: Efficiency and effectiveness of query processing p. 4

Determining the number of clusters in a collection is a difficult problem [Jain, Dubes,

1988]. In other clustering algorithms, if it is required, the number of clusters, nc, is usually a

user specified parameter; in C3M it is determined by using the cover-coefficient (CC) concept

[Can, Ozkarahan, 1990; Yu, Meng, 1998]. In C3M some of the documents are selected as

cluster seeds and non-seed documents are assigned to one of the clusters initiated by the seed

documents. According to CC, for an m by n document matrix the value range of nc and the

average cluster size (dc) are as follows.

1 < nc < min (m, n); max (1, m/n) < dc < m
In C3M, the document matrix D is mapped into an m by m cover-coefficient (C) matrix

using a double-stage probability experiment. This asymmetric C matrix shows the

relationships among the documents of a database. Note, however, that the implementation of

C3M does not require the complete C matrix. The diagonal entries of C are used to find the

number of clusters, nc, and the selection of cluster seeds. During the construction of clusters,

the relationships between a non-seed document (di) and a seed document (dj) is determined

by calculating the cij entry of C, where cij indicates the extent with which di is covered by dj.

Therefore, the whole clustering process implies the calculation of (m + (m - nc) x nc) entries

of the total m2 entries of C. This is a small fraction of m2, since nc << m (for some database

examples please refer to Table II in Section 3.1). A thorough discussion and complexity

analysis of C3M are available in [Can, Ozkarahan, 1990].

The CC concept reveals the relationships between indexing and clustering [Can,

Ozkarahan, 1990]. The CC-based indexing-clustering relationships are formulated as follows.

nc= t / (xd x tg) = (m x n) / t = m / tg = n / xd, and dc = m / nc = tg

In these formulas, the meanings of the variables not used in the text so far are as follows.

dc: m/nc, average number of documents per cluster,

t: total number of non-zero entries in D matrix,

tg: t/n, average number of different documents a term appears (term generality),

xd: t/m, average number of distinct terms per document (depth of indexing).

These relationships can be used to predict the clustering structure of the algorithm.

It is shown that the algorithm can be used in a dynamic environment in an incremental

fashion and such an approach saves clustering time and generates a clustering structure

comparable to that of cluster regeneration by C3M [Can, 1993; Can et al., 1995].

C3M is a non-overlapping (partitioning) type clustering algorithm. In this paper, we

introduce a new version of C3M that creates overlapping clusters to test the effects of

overlapping on efficiency and effectiveness of CBR. In the overlapping version a document

F. Can, İ. S. Altıngövde, E. Demir: Efficiency and effectiveness of query processing p. 5

can be assigned to more than one cluster. For this purpose we slightly modified C3M: Let cij

be the CC value used to cluster di, i.e., let us assume that di joins to the cluster initiated by dj

since dj provides the highest coverage of di among all cluster seeds. In the overlapping

version we define a tolerance threshold h (1 > h > 0) and assign di also to the cluster initiated

by seed document dk if cik > h x cij. Furthermore, non-seed documents can be assigned to a

preset maximum number of clusters at the most. We intuitively set the tolerance threshold to

0.9 and the maximum to five clusters.

2.2 File Structures for the Implementation of CBR

2.2.1 Previous File Structures for the Implementation of CBR

The (best-match) CBR search strategy has two components (a) selection of ns number of best

matching clusters using centroids, (b) selection of ds number of best matching documents of

the selected best matching clusters. For item (a) we have two file structure possibilities: CV

(centroid vectors), and IC (inverted index of centroids). For item (b) we again have two

possibilities: DV (document vectors), and IIS (inverted index of all documents). One

remaining possibility for (b), a separate inverted index for the members of each cluster, is

ignored due to its excessive cost in terms of disk accesses (for a query with k number of terms

it would involve k disk accesses for each selected cluster). Hence, possible combinations of

(a) and (b) define the following CBR implementation policies: CVDV, ICDV, CVIIS, ICIIS.

CVDV Use Centroid Vectors for cluster selection and
 Document Vectors for document selection.
ICDV Use Inverted index of Centroids for cluster selection and
 Document Vectors for document selection.
CVIIS Use Centroid Vectors for cluster selection and
 Inverted Index Search for document selection.
ICIIS Use Inverted index of Centroids for cluster selection and
 Inverted Index Search for document selection.

Figure 1. Summary of possible file structure strategies for CBR
implementation (adapted from [Can, 1994]).

As summarized in Figure 1, CVDV means that for cluster match use centroid vectors as

they are and for document selection from the selected clusters use the document vectors of the

member documents. In ICIIS the documents of the best-matching clusters are selected using

the results of FS, which is implemented by IIS. Notice that ICIIS is somewhat counter

intuitive to the concept of CBR, since CBR considers only a subset of the database for

retrieval purposes, but the IIS component of ICIIS will be performed on the complete

database. However, ICIIS still has the potential of being efficient, since query vectors may

contain a limited number of terms.

F. Can, İ. S. Altıngövde, E. Demir: Efficiency and effectiveness of query processing p. 6

In [Can, 1994] the efficiency of these methods are measured in terms of CPU time, disk

accesses, and storage requirements in a simulated environment defined in [Voorhees, 1986b].

The implementations from best to worst efficiency performance are ordered in the following

way: ICIIS, ICDV, CVIIS, CVDV. It is observed that the ICIIS strategy is significantly better

than the others. It is also shown that ICIIS is significantly better (5.42 times faster) than a

hierarchical cluster search technique, which is based on a complete link hierarchy [Can,

1994]. However, this earlier study has further revealed that ICIIS is inferior to FS (1.5 times

slower) in terms of efficiency. In this study our aim is to introduce a CBR implementation

strategy that would outperform ICIIS and achieve comparable efficiency and effectiveness

with FS, and measure its performance in a large document collection.

2.2.2 The new CBR Implementation Using Skips

If we could generate a separate inverted index for the members of individual clusters, this

would provide the most efficient computational environment for CBR. However, for a query

with k terms if we select ns best clusters this file structure implies (k x ns) number of disk

accesses, which is large since ns would be large. To keep both the number of computations

and number of disk accesses at its minimum, we have introduced a new CBR implementation

structure that we call ICsIIS (IC skip IIS). In this structure IC has its usual structure;

however, the IIS component stores not only the traditional posting list information but also

the cluster membership information. In this organization posting list information associated

with the members of a cluster are stored next to each other, and this is followed by those of

the next cluster’s. At the same time we keep a pointer from the beginning of one cluster sub-

posting list to the next one. During query processing we use these pointers to skip the

clusters, which are not selected as a best matching cluster. Another skips idea for efficient

decompression of inverted indexes can be seen in [Moffat, Zobel, 1996].

An example file structure is provided in Figure 2 for a D matrix, which is clustered using

C3M. In this figure each posting list header contains the associated term, the number of

posting list elements associated with that term, and the posting list pointer (disk address). The

posting list elements are of two types, “cluster number – position of the next cluster,” and

“document number – term frequency” for the preceding cluster.

F. Can, İ. S. Altıngövde, E. Demir: Efficiency and effectiveness of query processing p. 7

7

6

5

4

3

2

1
654321

110100
410000
510000
007100
123000
001131
100111

d
d
d
d
d
d
d

tttttt

D





























=
},,{

},{
},{

765

43

21

C3
C2
C1

ddd
dd
dd

=
=
=

t1

t3

3t2

3

t5

5t4

7

6

8t6

C1 1d21d1

C1 3d21d1

C1 1d21d1 C2 C31d4 1d7

C1 C21d2 d3 3 7d4

C2 C32d3 d5 1 1d71d6

d1 1 1d3C2 C3 4d55d4 1d6C1

Figure 2. Example inverted file structure with skips.

Our skip structure is simple yet novel. In the previous CBR research a similar approach

has not been used. For example, Salton and McGill’s classical textbook [Salton, McGill,

1983, pp. 223-224] defines three cluster search strategies. Two of them are related to

hierarchical cluster search and their concern is the storage organization of the cluster

centroids. In the third CBR strategy, documents (not their inverted lists) are stored in cluster

order, that is, one access to the “document file” retrieves a cluster of related documents. Our

skip idea provides a completely new way of implementing CBR by clustering the individual

posting lists elements. This is certainly different than accessing the “documents” in cluster

order.

Salton wrote [Salton, 1989, p. 344]:

“In general, the efficiencies of inverted-file search techniques are difficult to

match with any other file-search system because the only documents directly

handled in the inverted-list approach are those included in certain inverted lists

that are known in advance to have at least one term in common with the

queries. In a clustered organization, on the other hand, many cluster centroids,

and ultimately many documents, must be compared with query formulations

that may have little in common with the queries.”

F. Can, İ. S. Altıngövde, E. Demir: Efficiency and effectiveness of query processing p. 8

The CBR using the skip-based inverted index search technique overcomes the problem

stated by Salton, i.e., it prevents matching many unnecessary documents with the queries. For

example, in the clustering environment of Figure 2, if we assume that the user query contains

the terms {t3, t5} and the best matching clusters for this query are {C1, C3}, using the ICsIIS

approach during query processing after selecting the best matching clusters we only consider

the posting lists associated with t3 and t5. While processing the posting list of t3 we skip the

portion corresponding to C2 (since it is not a best matching cluster). Similarly, while

processing the posting list of t5, we again skip the unnecessary C2 portion of the posting list

and only consider the part corresponding to C3. In other words, by using the skip approach

we only handle the documents that we really need to match with the query.

In the implementation of the skip idea another alternative is to store the cluster number and

skip information at the start of the posting lists. Here we adopt the former approach

illustrated in Figure 2. Practically these two alternatives have no major difference in terms of

posting list I/O time, since in almost all cases query term posting lists are read in their entirety

because a term usually appears in enough number of different clusters that would require

inputting its whole posting list. In query processing a significant portion of the time cost

comes from similarity calculations for ranking, and skipping information helps us in

considerably decreasing the cost of these calculations.

3. Experimental Environment

3.1 Document Database

In the experiments, Financial Times documents (FT database) of TREC-4 collection are used.

The document database includes 210,158 newspaper articles published between 1991 and

1994. During the indexing stage, we eliminated English stop-words and numbers, and

indexed the remaining words, and no stemming is used. The resulting lexicon contains

229,748 terms. The D matrix contains 29,545,234 non-zero elements. The average number

of distinct terms per document, or depth of indexing xd, is 140.6, and the longest and shortest

documents contain 3220 and 4 distinct terms, respectively. On the average each term appears

in 128.6 different documents. This is the average number of distinct documents per term or

term generality, tg.

For easy reference statistical characteristics of the FT (TREC-4) collection are provided in

Table II along with some other databases to give some sense of sizes of the important

variables in traditional (INSPEC, NPL), and OPAC (BLISS, MARIAN) [Can et al., 1995;

Kocberber et al., 1999] collections. In this table the number of clusters, nc, is obtained by

using C3M. The numbers show that databases, more specifically their vector spaces, show

various degrees of sparsity as indicated by the number of clusters. For example, FT (TREC-

F. Can, İ. S. Altıngövde, E. Demir: Efficiency and effectiveness of query processing p. 9

4) is quite cohesive and the number of clusters is not that high. On the other hand, OPAC

(library), BLISS-1 and MARIAN, vector spaces are sparse and contain relatively large

number of clusters, since they cover documents in many different subject areas. The content

cohesiveness of a database may be uniformly distributed and clusters may contain

approximately the same number of documents or it can be skewed and it may contain a few

number of large clusters containing relatively high number of related documents. We will

revisit this issue later in Section 4.1 from our database’s point of view.

Table II. Characteristics of the FT (TREC-4) and some Other Databases

 Database

 m
 No. of
 Documents

 n
 No. of
 Terms

 xd
 Avg. No. of Dis-
 tinct Terms/Doc.

 nc
 No. of
 Clusters

 dc
 Avg. No. of
 Docs./Clust.

 BLISS-1* 152,850 166,216 25.7 6,468 25
 MARIAN 42,815 59,536 11.2 5,218 8

INSPEC 12,684 14,573 32.5 475 27
 NPL 11,429 7,491 20.0 359 32
 FT(TREC-4) 210,158 229,748 140.6 1,640 128
* Approximate nc value is calculated using the cover-coefficient-based formula: nc= n/x

d
.

3.2 Queries and Query Matching

We used the TREC-7 query topics corresponding to the TREC-4 collection (queries 351-400)

along with their relevance judgments; on the average there are 38.1 relevant documents per

query. In the experiments we used four different types of query sets first two of which are

created from the TREC queries.

1. Qshort (short queries) created from the title field of the TREC queries, i.e., these are

title-only queries.

2. Qmedium (medium length queries) created from the title and description fields

(combined) of the TREC queries.

3. Qlong, created from the top retrieved document of each Qmedium query. We assume

that, the relevance judgments of the original query also apply to them.

4. Qgiant created by combining a number of random documents from the original data

set, and is used for the purpose of evaluating efficiency in its theoretical limits. For

this single query we do not measure effectiveness since we have no relevance

information for it.

Table III provides query sets summary information.

There are several query matching functions that depend on the term weighting used for

document and query terms [Salton, Buckley, 1988]. In this study, the document term weights

are assigned using the term frequency x inverse document frequency (IDF) formulation.

While computing the weight of term tj in document di, term frequency is computed as the

number of occurrences of tj in di, and IDF is ln(number of all documents/number of

F. Can, İ. S. Altıngövde, E. Demir: Efficiency and effectiveness of query processing p. 10

documents containing tj)+1. Once the term weights are obtained, document vector is

normalized using cosine normalization [Salton, Buckley, 1988].

Table III. Query sets summary information
(last three columns indicate no. of terms)

Query Set Source Average Min Max
Qshort TREC Query Titles 2.38 1 3

Qmedium

TREC Query Titles and
Descriptions

8.16

2

19

Qlong Top Relevant Document 190.04 13 612
Qgiant Random Documents 2175.00 2175 2175

The term weights for query terms are calculated in a similar fashion to document term

weights. In this case, for computing term frequency component, we use augmented

normalized frequency formula defined as (0.5 + 0.5 x tf / max-tf). Here max-tf denotes the

maximum number of times any term appears in the query vector. IDF component is obtained

in exactly the same manner with the document terms. No normalization is done for query

terms since it does not affect document ranking.

After obtaining weighted document (d) and query (q) vectors in an n dimensional vector

space the query-document matching is performed using the following formula.

∑
=

=
n

j
djqj wwdqsimilarity

1
),(

The members of the best matching clusters (note that in CBR a subset of the entire

collection is under consideration) are ranked according to their similarity to the query, and for

the top 10 (20, 100) documents the effectiveness measures precision and recall are calculated.

Precision is defined as the ratio of retrieved relevant documents to the number of retrieved

documents, and recall is defined as the ratio of retrieved relevant documents to total number

relevant documents in the collection.

4. Experimental Results

In this section, we present various experiments to compare the efficiency and effectiveness of

three retrieval strategies: Full Search (FS), cluster based retrieval combined with a full

inverted index (ICISS), and cluster based retrieval incorporating the skipping concept

(ICsIIS). As stated before, it has been shown that ICISS is more efficient than some other

CBR techniques in terms of paging and CPU time, but inferior to FS [Can, 1994]. In the

following set of experiments, we first investigate the validity of C3M clustering for the FT

database, and then examine the effectiveness and efficiency of the three retrieval strategies

(namely, FS, ICIIS, and ICsIIS) as we vary several environment parameters. Actually, ICIIS

F. Can, İ. S. Altıngövde, E. Demir: Efficiency and effectiveness of query processing p. 11

and ICsIIS are the same in terms of their effectiveness since they are two different

implementations of the same CBR operation; therefore, for these two we can only compare

their efficiency. We also study the scalability of our results. In the rest of the paper, we use

CBR interchangeably with ICIIS and ICsIIS when it is appropriate.

The experiments are performed on dual processor Pentium III 866 PC with 1 GB main

memory and 20 GB SCSI HDD. The operating system installed on this PC is Windows NT

4.0. The source code for the prototype implementation is available at

http://www.cs.bilkent.edu.tr/~ismaila/ircode.htm.

4.1 Clustering Structure: Generation, Characteristics and Validation

4.1.1 Cluster generation and characteristics of the generated clustering structure

Our experiments yield 1640 clusters (in both non-overlapping and overlapping cases) for the

FT (TREC-4) collection. In the non-overlapping case the average cluster size is 128 (vs. 176

in overlapping), and the average number of distinct terms in a cluster is 4700 (vs. 5560).

Note that, in the overlapping case the total number of documents in the clusters is 288,685

(vs. 210,158), which means 33% document duplication.

The generated clustering structure of the non-overlapping case follows the indexing-

clustering relationships implied by the CC concept. For example, the indexing-clustering

relationships nc= (m x n)/t= m/tg= n/xd, and dc= tg are all observed in the experiments (for easy

reference the values of these variables are repeated here, m= 210,158, n= 229,748, t=

29,545,234, xd= 140.6, tg= 128.6 and the values obtained for nc and dc after clustering are

1640 and 128). For example, nc was implied as 1634 by the relationships, which shows only

a %0.4 percent deviation from the real value obtained by actual clustering. Similarly, the dc

(128) value is almost identical with tg. As shown in our related previous work [Can, 1990,

1993; Can et al., 1994] for a given D matrix the clustering structure to be generated by C3M

is predictable from the indexing characteristics of a database.

The size distribution of the clusters for the non-overlapping case is presented in Figure 3.

In Figure 3.a the x-axis (in logarithmic scale) shows the cluster size in terms of documents

and y-axis shows the number of clusters for the corresponding size. The figure shows that

cluster sizes show variety, there are a few large clusters (largest one containing 26,076

documents) and some small clusters, and there are many clusters close to the average cluster

size. Figure 3.b shows that majority of the documents (about 73% of them) are stored in

clusters with a size 1 to 3,000. Please note that for only 10% of the queries top ten results

include documents from the largest cluster, which means that our results are not significantly

biased by the existence of a large cluster.

http://www.cs.bilkent.edu.tr/~ismaila/ircode.htm

F. Can, İ. S. Altıngövde, E. Demir: Efficiency and effectiveness of query processing p. 12

0

5

10

15

20

25

30

35

1 10 100 1000 10000 100000

Size of clusters

N
um

be
r o

f c
lu

st
er

s

0.73

0.02
0.07 0.05

0.12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0-3 3-6 6-9 9-12 12-15 15-18 18-21 21-24 24-27

Size of clusters (thousands)

D
at

ab
as

e
co

ve
ra

ge

a. Cluster distributions in terms of no. of clusters b. Ratio of total no. of documents observed
 per cluster size (logarithmic scale). in various cluster size windows.

Figure 3. Cluster size distribution information.

4.1.2 Validation of the generated clustering structure

Before using a clustering structure for IR we must show that it is significantly different from,

or better than, random clustering in terms of reflecting the intrinsic nature of the data. Such a

clustering structure is called valid. Two other cluster validity issues, clustering tendency and

validity of individual clusters, are beyond the scope of this study [Jain, Dubes, 1988].

Our cluster validation approach is based on the users’ judgment on the relevance of

documents to queries and follows the methodology defined in [Can, Ozkarahan, 1990].

Given a query, a cluster is said to be a target cluster if it contains at least one relevant

document to the query. Let nt denote the average number of target clusters for a set of

queries. Next, let’s preserve the clustering structure and distribute all documents randomly to

these clusters. The average number of target clusters for this case is shown by ntr and its value

can be calculated without creating random clusters by the modified form [Can, Ozkarahan,

1990] of Yao’s formula [Yao, 1977]; however, for the validity decision we need the

distribution of the ntr values. The case nt > ntr suggests that the tested clustering structure is

invalid, since it is unsuccessful in placing the documents relevant to the same query into a

fewer number of clusters than that of the average random case. The case, nt < ntr, is an

indication of the validity of the clustering structure; however, to decide validity one must

show that nt is significantly less than ntr.

According to our validity criterion, we must know the probability density function of ntr.

For this purpose, we perform a Monte Carlo experiment and randomly distribute the

documents to the cluster structure for 1000 times and for each experiment compute the

average number of target clusters. The minimum, maximum, and average ntr values are

observed as 27.78, 29.02 and 28.41 (see Figure 4 for the probability density function of the ntr

values). Then, we compute the nt value, and it is 20.1. Clearly, nt is significantly different

F. Can, İ. S. Altıngövde, E. Demir: Efficiency and effectiveness of query processing p. 13

than the random distributions ntr, since it is less than all of the observed random ntr values.

These observations show that the clustering structure used in the retrieval experiments is not

an artifact of the C3M algorithm, on the contrary, significantly better than random and valid.

0

5

10

15

20

25

27.6 27.8 28 28.2 28.4 28.6 28.8 29 29.2

ntr

R
el

at
iv

e
Fr

eq
ue

nc
y

Figure 4. Histogram of ntr values for the FT (TREC-4) database (nt= 20.1).

4.2 Determining Number of Best Matching Clusters for CBR

The experiments show that selecting more clusters increases effectiveness since as we

increase ns (i.e., the number of selected clusters) more relevant documents would be covered

[Salton, 1975, p. 376]. In our previous research, it is observed that effectiveness increases up

to a certain ns value, after this (saturation) point, the retrieval effectiveness remains the same

or improves very slowly [Can & Ozkarahan, 1990, Figure 6]. For the INSPEC database, this

saturation point is observed when ns is about 10% of the clusters and during the related

experiments about the same percentage of the documents is considered for retrieval. This

percentage is typical for (best-match) CBR [Salton, 1975, p. 376].

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

0 250 500 750 1000 1250 1500

Number of best clusters

Pr
ec

is
io

n

FS CBR

Figure 5. For ds = 10 and query set Qmedium, mean average precision versus ns.

F. Can, İ. S. Altıngövde, E. Demir: Efficiency and effectiveness of query processing p. 14

In our experiments, for a range of ns values, we retrieved top 10 documents for the query

set Qmedium and measured the effectiveness in terms of mean average precision (i.e., average

of the precision values observed when a relevant document is retrieved) [Baeza-Yates,

Ribeiro-Neto, p. 80]. The results depicted in Figure 5 also confirm the above observation

regarding INSPEC, where the effectiveness increases up to 164 clusters (10% of the cluster

number nc) and then no major change occurs. Therefore, we use 10% of nc (ns= 164 clusters)

as the number of clusters to be used in the retrieval experiments.

No. (%) of
Selected Clusters

Avg. No. (%) of
Selected Documents

32 (1.95) 3 857.08 (1.84)
64 (3.90) 8 608.14 (4.10)
96 (5.85) 12 041.18 (5.73)

128 (7.81) 15 701.94 (7.47)
164 (10.0) 19 107.12 (9.09)
820 (50.0) 102 016.14 (48.54)

1 640 (100.00) 210 158.00 (100.00)

0

10

20

30

40

50

60

0 10 20 30 40 50 60
% of Selected Documents vs. % of Selected Clusters

Figure 6. Relationship between number of selected clusters and

number of documents in the selected clusters.

In Figure 6, we report the total number of documents in the clusters for each value of ns.

Both figures show that, for example, if we select the first best matching 164 clusters (10% of

the existing clusters) we need to match 9.09% of the documents with the queries, since this

much documents exists in the selected clusters (the numbers are averages for all queries).

The observations show that there is a linear relationship between the percentage of clusters

selected and the percentage of the database covered by them.

Determining the centroid terms is also an issue, since they may influence the effectiveness

and efficiency of CBR. In this paper, the most frequent terms in clusters are chosen as

centroid terms. The weight of a centroid term tj is computed by term frequency x IDF formula,

where term frequency is set to 1 and IDF is ln (number of centroids / number of centroids

including the term j) + 1. In Sections 4.3 and 4.4, we use the ad-hoc centroid length value of

250 terms for both overlapping and non-overlapping cases. In Section 4.5, we further

investigate the impact of various centroid length and term weighting strategies on the

efficiency and effectiveness of query processing.

4.3 Effectiveness Experiments

To evaluate the effectiveness of three IR strategies, we retrieved the top 10, 20, and 100

documents for each of the query sets –namely, Qshort, Qmedium and Qlong–. The

F. Can, İ. S. Altıngövde, E. Demir: Efficiency and effectiveness of query processing p. 15

experiments are conducted over both overlapping and non-overlapping clustering structures.

The effectiveness results are presented by using both a TREC-like interpolated 11-point

precision-recall graph [Baeza-Yates, Ribeiro-Neto, pp. 76-77] and a single mean average

precision value (defined in the previos section) for each of the experiments. For the sake of

saving space, we provide only top 10 effectiveness results for the experiments of the non-

overlapping and overlapping clustering. For top 20 and 100 documents we have similar

results.
Table IV. Mean average precision values for retrieval strategies (ns = 164, ds =10)

Query
Set

FS

CBR
(non-overlap.)

CBR
(overlap.)

Qshort 0.307 0.296 0.268
Qmedium 0.314 0.326 0.348

Qlong 0.383 0.354 0.350

Table IV provides the mean average precision values for the retrieval strategies. For short

queries, FS gives the best performance and it is followed by non-overlapping cases. In the

case of medium size queries, CBR outperforms FS. For long queries, the reverse is true. For

a more detailed comparison consider Figure 7. They illustrate that the effectiveness of FS and

CBR are quite close to each other for different sets of queries with varying lengths. The

effectiveness achieved over the overlapping cluster structure can be comparable or sometimes

better than non-overlapping CBR and FS. For instance, Table IV shows that for Qmedium,

non-overlapping CBR is better than FS, and overlapping CBR is even better than the non-

overlapping case.

Table V. Effectiveness comparison of FS and CBR (ICIIS and ICsIIS), for non-overlapping clusters

Query Set CBR = FS CBR > FS CBR < FS
Qshort 76% 6% 18%

Qmedium 70% 10% 20%
Qlong 88% 4% 8%

In Table V, for the same query sets and top 10 documents, we provide the effectiveness

comparisons of individual queries during FS and CBR in non-overlapping case. For instance,

CBR achieves better than FS in 6% of the Qshort queries. These results further indicate that

there is no single best approach for IR, and either one of CBR or FS can perform better for

different queries. Note that, our CBR approaches that blend inverted indexes with cluster

based retrieval lead to new opportunities for combining the best results of both strategies, in a

way that has not been done before. For example, during query processing we can handle

query terms as in FS or CBR like a mixture depending on the query term properties.

F. Can, İ. S. Altıngövde, E. Demir: Efficiency and effectiveness of query processing p. 16

PR Graph (top 10, Qlong)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

Pr
ec

is
io

n

FS- 10 CBR -10 CBR 10 - overlap

PR Graph (top 10, Qshort)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

Pr
ec

is
io

n

FS CBR CBR (overlap)

PR Graph (top 10, Qmedium)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

Pr
ec

is
io

n

FS CBR CBR (overlap)

Figure 7. Interpolated PR graph for all query sets using top 10 (ds= 10) documents.

F. Can, İ. S. Altıngövde, E. Demir: Efficiency and effectiveness of query processing p. 17

4.4 Efficiency Experiments

4.4.1 Results in terms of processing requirements

We measure the efficiency of each retrieval strategy for top 10, 20 and 100 documents for all

query sets. We evaluate the efficiency by using two different measures: (i) number of

processed (accessed) posting list elements, and (ii) actual query processing time. In the

following we provide the results for only non-overlapping case. For the overlapping case

although the processing requirements are higher (due to the longer posting lists), the relative

efficiency performance of compared algorithms does not exhibit a significant difference.

Table VI. Average number of document posting list elements processed by each retrieval strategy

for each query set and percentage savings provided by ICsIIS

Query Set

FS and ICIIS

ICsIIS
% ICsISS savings wrt

FS and ICIIS
Qshort 9,791 4,238 57

Qmedium 49,415 16,342 67
Qlong 1,813,734 784,005 57
Qgiant 12,398,355 6,637,800 47

In Table VI, we present the average number of document posting list elements processed

for each query set while ranking documents using the query matching function. The posting

lists brought to memory for ICsISS are longer than those for FS and ICIIS, as the skipping

inverted index elements of ICsIIS include cluster information. On the other hand, in all cases,

during the similarity calculations the ICsIIS strategy visits much less posting list elements

than IIS and ICISS, since most of the posting list elements of ICsIIS are skipped due to our

(skipping) storage structure. The last column shows the percentage savings provided by

ICsIIS with respect to FS and ICIIS in posting list processing (the entries of this column are

obtained from those of the second and third columns). The savings in terms of realistic query

cases (Qshort to Qlong) savings range between 57% and 67%.

Table VII. Average in-memory processing time (sec.) per query for each retrieval strategy and

relative performance of ICsIIS with respect to FS
Query Set FS ICISS ICsIIS ICsIIS/FS

Qshort 0.051 0.052 0.038 0.75
Qmedium 0.141 0.143 0.055 0.39

Qlong 1.090 1.107 0.442 0.41
Qgiant 4.319 4.385 2.418 0.56

The average in-memory processing time per query is reported in Table VII. The results

reveal that the savings indicated in Table VI are proportionally reflected to the actual

execution times. In all cases, ICsIIS performs faster than its competitors as the candidate

result set to be considered is significantly reduced by the skipping technique proposed in this

paper. Also note that, in our database the average posting list length (or term generality tg) is

F. Can, İ. S. Altıngövde, E. Demir: Efficiency and effectiveness of query processing p. 18

short, 129 elements. Our heuristics save more time for longer posting lists; therefore, we

anticipate that efficiency results would be even better in databases with longer lists. This also

explains why the savings for Qshort is relatively less than it may be expected.

Please note that, our skipping optimization is in-memory, whereas both ICIIS and ICsIIS

have an extra cost of disk access for inverted centroid index entries. So, from a theoretical

point of view CBR approaches discussed here suffer from this extra I/O cost. However, in

practice, we observed that the extra I/O operations associated with accessing inverted centroid

index entries are mostly compensated with today’s file caching capabilities. In particular, the

size of the inverted centroid index is only 1.5% of IIS (see Table IX of Section 4.4.2) and it

can be effectively buffered or even totally stored in main memory. For instance, the average

overall query processing times (in-memory computations + I/O overhead) for Qmedium is

measured as 0.265, 0.301 and 0.240 seconds per query for FS, ICIIS and ICsIIS, respectively.

In this case, all index structures are kept in the disk medium and extra I/O cost is reduced by

OS buffering mechanism. Thus, we claim that ICsIIS is a worthwhile retrieval strategy also

in terms of efficiency considerations.

4.4.2 Results in terms of storage requirements

As it is mentioned before, the ICsIIS strategy proposed in this paper incorporates cluster

membership information into the inverted index posting lists. In Table VIII, we present

statistics about the inverted index files stored on the disk for FS and the non-overlapping and

overlapping clustering cases. It may be seen that the storage requirement for cluster-skipping

inverted index is modestly higher than the ordinary inverted index file. The index creation

time is 182 minutes for all structures (i.e., IIS, skip IIS non-overlapping, and skip IIS

overlapping – the effect of skips on indexing time is negligible–). (Centroid generation time

for both non-overlapping and overlapping structures is about 20 minutes.)
Table VIII. Storage requirements (size in MB) and

posting list (PL) information for inverted index files

Inverted Index File

Size
Avg. Posting List

Length (Docs/Term)
Max No. of
Docs./PL

Min No. of
Docs./PL

IIS 338 129 93,693 1
Skip ISS

(non-overlapping)
426

(26% > FS) 162 95,329 2

Skip IIS
(overlapping)

560
(65% > FS) 215 132,328 2

The storage requirements of FS (using IIS) is simply equal to “the total number of

elements in the posting lists” (t) times “the size of an elements in the posting list.” A posting

list element consists of a 4 byte (integer) document number and 8 byte (double) term weight.

There are 29,545,234 inverted index elements where each costs 12 bytes, leading to a total of

338MB.

F. Can, İ. S. Altıngövde, E. Demir: Efficiency and effectiveness of query processing p. 19

In ICsIIS, posting lists include extra elements consisting of cluster number and the skip

pointer. These additional elements also take 12 bytes to conform to the ordinary posting list

elements (including document number and term weight). The average number of terms per

cluster (avg. terms/cluster) is equal to 4700 and 5560, respectively, for the non-overlapping

and overlapping clustering cases. This means that in the non-overlapping case the cluster

number and the skip pointer address is included in 4700 different posting lists. This makes an

additional cost of 88MB (4700 x 1640 (total number of clusters) x 12 bytes), i.e., total of 426

MB.

In the ICsIIS overlapping case the extra cost with respect to FS increases, avg.

terms/cluster is equal to 5560; therefore, the cost due skip information is 104MB (5560 x

1640 x 12). Furthermore, in the overlapping case we have an additional 78,527 (overlapping)

documents (288,625 - 210,158). For projection purposes if we assume that each overlapping

document is an average document containing 141 terms, then the cost these additional

documents will introduce to IIS is 127MB (78,527 x 141 (average number of terms per

document) x 12), thus both (104 MB + 127MB) make a total of 231MB. In Table VIII, the

difference between (actual) overlapping ICsIIS and FS is slightly less than this number and is

equal to 222MB (about 4% less than our projection.).

It is possible to decrease the storage cost of inverted file structures by almost 50% by

replacing the term weight information (8 bytes) by term document frequency (2 bytes)

[Moffat, Zobel, 1996]. If we do that relative retrieval performances are expected to remain

the same and the cost of individual posting list elements drops from 12 (4 + 8) bytes to 6 (4 +

2) bytes.

The detailed disk storage requirements for the important file structures of each strategy are

shown in Table IX. The last two rows of the table show the storage overhead of storing the

indexing terms to find the posting lists of the query terms.

Table IX. Storage requirements (in MB) for individual components

Storage Component Size FS ICISS ICsISS
IIS (inverted index for docs.) 338 * *
IIS with skip information 426 *
IC (Centroid length 250) 5 * *
CM (Cluster Membership) 3 *
Wordlist 5 * * *
Centroid word list (cent. size 250) 5 * *

* Means that corresponding component is required.

The in-memory requirements of ICsIIS are similar to that of ICIIS. However, ICsIIS

does not require cluster membership information to be kept in the memory, since it is blended

into the posting lists, whereas ICISS does. Accordingly, the most demanding internal storage

requirement for ICsIIS is for the so-called accumulator array, which is used to store the

similarity of documents to the processed query. This requirement is clearly the same for all

F. Can, İ. S. Altıngövde, E. Demir: Efficiency and effectiveness of query processing p. 20

three strategies described in this paper. From these discussions, we can conclude that ICsIIS

is feasible in terms of memory and disk storage costs.

4.5 Effects of Centroid Generation Strategies

In the experiments, we investigated the impact of centroid length and centroid term weighting

schemes on the effectiveness and efficiency of cluster based retrieval by using the Qmedium

case as a representative. All the experiments are performed over clusters generated by both

non-overlapping and overlapping versions of the C3M algorithm. We generated four sets of

centroids with fixed lengths 250, 500, 1000 and 2500. In an additional experiment, we set the

centroid length of each cluster to the 10% of its unique terms. For each of these lengths, we

applied three different centroid term weighting schemes: CW1, CW2, and CW3, where the

weight of a centroid term is computed by the formula term frequency x IDF. In CW1, term

frequency is taken as 1, in CW2 and CW3 it is taken as the number of occurrence of the term

in the cluster. In CW1 and CW2, IDF is taken as ln(number of clusters/number of centroids

including the term) + 1, in CW3, it is taken as ln(sum of occurrence numbers in the

centroids/number of occurrence in the cluster) + 1. All weights are normalized once they are

assigned.

For all of these experiments, the effectiveness of CBR remains almost the same; whereas

the efficiency slightly degrades as accessing inverted index elements for centroids requires

more time with increasing centroid length. However, in all experiments, ICsIIS still

outperforms ICISS in terms of query processing time. Also, in most of the experiments,

ICsIIS achieved comparably well as FS, which is not influenced from the change of centroids.

4.6 Scalability Experiments

The scalability of C3M, especially from an incremental clustering point of view, has been

thoroughly studied in our previous work [Can, 1993; Can et al. 1995]. In this section we

consider the scalability of our skip-based CBR strategy in terms of its efficiency,

effectiveness, and storage structures. For obtaining the clusters, we use a naive

implementation of C3M based on ASCII files. In a PC environment, this unrefined

implementation clusters the FT database in approximately 114 minutes.

For the scalability experiments we obtained two smaller versions of the FT database

containing approximately one third and two thirds of the original collection. We refer to them

as FT small (FTs) and FT medium (FTm). The characteristics of all FT databases are given in

Table X (for easy reference the original FT database is also repeated in the same table). FTs

and FTm, respectively, contain the first 69,507 and 138,669 documents of the original FT

database. It may be noted in passing that the indexing clustering relationships are again

F. Can, İ. S. Altıngövde, E. Demir: Efficiency and effectiveness of query processing p. 21

observed. For example, the clustering indexing relationship nc = n / xd implies 989 and 1345

documents, respectively, for the FTs and FTm databases. The difference between actual

numbers and projected numbers is less than 4% as in the case of FT (see Section 4.1.1).

Table X. Characteristics of the FT Databases

 Database

 m
 No. of
 Documents

 n
 No. of
 Terms

 xd
 Avg. No. of Dis-
 tinct Terms/Doc.

 nc
 No. of
 Clusters

 dc
 Avg. No. of
 Docs./Clust.

FTs 69,507 144,080 145.7 955 73
FTm 138,669 191,112 142.1 1319 105
FT 210,158 229,748 140.6 1,640 128

In the scalability experiments, as a representative case, we only consider the non-

overlapping clustering structure and use the Qmedium query set, which is the mid-way in

terms of the query sizes we used. In the experiments we retrieve 10% of the clusters (ns= 0.1

x nc), examine the top 10 documents (ds= 10) for performance measurement, and use

centroids with 250 terms as in the previous experiments.

Scalability of Effectiveness

The experimental results in terms of single mean average precision value are reported

here. Table XI shows that when we use the small database, FTs, the CBR effectiveness is

about 16% lower than that of FS. In the case of FTm the performance of CBR in terms of

effectiveness improves and it lags behind FS by only 1%. Finally, with the full and largest

database, CBR outperforms FS by 4%. These observations confirm that our CBR

methodology scales well with the database size and has the tendency of showing slightly

better performance than that of FS with larger databases. This improvement of CBR

effectiveness can be attributed to the refinement of cluster structures with increasing database

size.
Table XI. Mean average precision values for retrieval strategies FS and CBR with

different databases (ns = 10% of nc, ds =10) and performance of CBR wrt FS
Database FS CBR CBR / FS

FTs 0.285 0.238 0.84
FTm 0.335 0.332 0.99
FT 0.314 0.326 1.04

Scalability of Efficiency

Table XII provides the average number of posting list elements processed for a query with

each database. The values of the ICsIIS column show that this approach is much more

efficient than the other two approaches. The last column of the table shows the savings

provided by ICsIIS with respect to FS and ICIIS in terms of the posting list elements

processed. For FTs, it provides 46% savings and savings increase with the increase of the

database size and finally for FT the savings provided by ICsIIS are a substantial 67%. As

shown in Table XIII, these savings translate themselves to in-memory processing time

F. Can, İ. S. Altıngövde, E. Demir: Efficiency and effectiveness of query processing p. 22

savings. The last column of the table shows that the efficiency of ICsIIS becomes more

prevalent with increasing database size. This again shows that ICsIIS scales well with

increasing database sizes. Note that, comparable efficiency results for overall query

processing times (with I/O) are also observed in our experimental environment.

Table XII. Average number of “document” posting list elements processed by each retrieval strategy

for each database and percentage savings provided by ICsIIS

Database

FS and ICIIS

ICsIIS
% ICsISS savings wrt

FS and ICIIS
FTs 16,875 9,214 46
FTm 32,916 14,161 57
FT 49,415 16,342 67

Table XIII. Average in-memory processing time (sec.) per query for each retrieval strategy with each

database and relative performance of ICsIIS with respect to FS
Database FS ICISS ICsIIS ICsIIS/FS

FTs 0.043 0.044 0.022 0.51
FTm 0.092 0.091 0.045 0.49
FT 0.141 0.143 0.055 0.39

Scalability of Storage and Indexing Structures

For the experimental databases FTs, FTm, and FT the requirements of the individual storage

components are shown in Table XIV. As the numbers show, the overhead of the secondary

storage structures (namely inverted index for centroids –IC–, cluster membership information

–CM–, and the word lists used to find the posting lists associated with the query terms -the

last two rows-) is negligible. For example, the storage cost of IC with respect to IIS is 2.6%,

1.8%, and 1.5% for the databases FTs, FTm, and FT, respectively. As the size of the database

increases, the relative cost of IC decreases, since the rate of increase in number of clusters is

lower than that of documents. The size of the IC storage structure also indicates that in query

processing the cost of selecting the best matching clusters is a small fraction of the query

processing time. In terms of storage requirements, numbers are basically proportional to the

sizes of the document vectors used for the creation of the index structures. As we increase the

size of the database, the cost of skip-based IIS slightly decreases (from 0.30 to 0.26) with

respect to IIS. This is again due to the fact that the rate of increse in number of clusters is

smaller than that of documents.

In terms of centroid (and IIS) generation, we have the following time observations

respectively for FTs, FTm, and FT: 5(46), 11(109), and 20(182) minutes. The time

requirements of generating IIS and skip-based IIS are almost the same. Since these are one-

time costs and our concern was the scalability of efficiency and effectiveness, we did not try

to optimize our implementations for the generation of these storage structures.

F. Can, İ. S. Altıngövde, E. Demir: Efficiency and effectiveness of query processing p. 23

Table XIV. Storage requirements (in MB) for individual components
Storage Component FTs FTm FT
IIS (inverted index for docs.) 116 226 338
IIS with skip information
(extra overhead wrt IIS)

151
(0.30)

286
(0.27)

426
(0.26)

IC (centroid length 250) 3 4 5
CM (Cluster Membership) 1 2 3
Wordlist 3 4 5
Centroid word list (cent. size 250) 3 4 5

4.7 Discussion of Results

From the experiments, we draw the following conclusions:

• In the non-overlapping clustering experiments, all three retrieval strategies of FS, ICISS

and ICsIIS achieve similar effectiveness values. In the efficiency experiments, the ICsIIS

strategy incorporated with a skip-based inverted index outperforms the other strategies in

terms of in-memory operations and performs comparably well in terms of overall query

processing times, i.e., including I/O, with effective OS file caching for centroid index.

• In the overlapping clustering experiments; the effectiveness values of ICISS and ICsIIS

are slightly improved in particular experiments, but the efficiency results are not as good

as the non-overlapping case due to the increasing access costs for both CBR strategies.

• The results are independent of the centroid lengths and weighting schemes, as the

variations over these parameters do not significantly affect the presented results.

• Storage requirements in the disk and memory for ICIIS and ICsIIS are moderately higher

than FS, and current compression techniques may further reduce these requirements. In

ICsIIS, such a reduction has the potential of further improving the processing time, since

by using our skipping approach the decompression time can be reduced significantly.

• The experiments show that our results are scalable: Effectiveness of CBR slightly

increases and efficiency of ICsIIS can improve significantly with increasing database

sizes.

5. Previous and Related Work

A good survey of clustering in information retrieval is provided in [Willett, 1988]. This work

comes with an impressive reference list. The books by Salton [Salton, 1975, 1989], Salton

and McGill [Salton, McGill, 1983] and van Rijsbergen [van Rijsbergen, 1979] also cover

previous work on clustering in information retrieval. A new survey of clustering in various

application areas can be found in [Jain et al., 1999]. A good discussion of algorithms for

clustering data and cluster validation approaches is available in a beautiful concise book by

Jain and Dubes [Jain, Dubes, 1988].

F. Can, İ. S. Altıngövde, E. Demir: Efficiency and effectiveness of query processing p. 24

Our previous work on C3M includes its concepts and effectiveness analysis [Can,

Ozkarahan, 1990], and how it works in dynamic databases [Can, 1993; Can et al., 1995]. The

CBR effectiveness in terms of precision for the INSPEC database is reported in [Can &

Ozkarahan, 1990]. The study shows that C3M is 15.1 to 63.5 (with an average of 47.5)

percent better than four other clustering algorithms [El-Hamdouchi, Willett, 1989] in CBR.

The same study also shows that the IR effectiveness of the algorithm is comparable with a

demanding (in terms of CPU time and main memory) complete link clustering method that is

known to have good retrieval performance [Voorhees, 1986a; Voorhees, 1986b]. The

experiments also show that the CBR using C3M is slightly less effective (1.0 percent to 6.9

percent) than FS. The experimental observations reported in [Can et al., 1995] show that the

incremental version of C3M is cost effective and can be used for many increments of various

sizes.

C3M and its concepts have also attracted the attention of other researchers in various

application areas, such as chemical information systems [Willett, et al., 1986], clustering

tendency testing [Elhamdouchi, Willet, 1987], automatic hypertext structure generation

[Kellogg, Madhan, 1996], and search output clustering [Kural et al., 2001].

Most clustering research in IR is related to cluster search effectiveness [Griffiths et al.,

1986; Willett, 1988; Burgin 1995; Shaw et al. 1997; Schütze, Craig 1997]. The research on

efficiency aspects of cluster searches is limited. For example, the works presented in [Can,

1994, Voorhees, 1986b] considers storage, CPU, and I/O efficiency in the same simulated

environment. The Salton-McGill book [Salton, McGill, 1983] approaches to the efficiency

problem in terms of page faults during information retrieval.

The studies reported in [Hearst, Pedersen, 1996; Silverstein, Pedersen, 1997] provide

experiments using databases larger than our collection; however, in their evaluations they

assume that user picks the optimal cluster or try to generate refined cluster via scatter/gather

browsing paradigm based on an existing global clustering structure. In contrast to these

approaches, in our work all decisions are made automatically using similarity measures based

on a pre-existing clustering structure with no user interaction or any other assumption.

In FS only query term posting lists are accessed from the disk medium. As a result, the

efficiency of FS decreases with increasing query length, since for each query term another

posting list must be processed. It is possible to employ a partial evaluation (or pruning)

strategy that skips some of the query terms to improve search efficiency with similar search

effectiveness [Buckley, Lewit, 1985; Brown, 1995; Persin, 1994; Moffat, Zobel, 1996].

However, as it is stated before such an approach is beyond the scope of this study and

inverted index search optimization in CBR (i.e., in ICIIS and ICsIIS) is an interesting research

possibility by itself, which can be further incorporated to our work.

F. Can, İ. S. Altıngövde, E. Demir: Efficiency and effectiveness of query processing p. 25

6. Conclusions and Future Work

Our CBR implementation method employs a storage structure that blends in the cluster

membership information with the inverted file posting lists using the concept of skips. In the

skip approach, posting lists contain the cluster membership information in addition to

traditional term weighting information. During CBR, skip pointers embedded in posting lists

provide the information to skip unnecessary (non-best matching) cluster members. The

indexing structure of the skip approach can be used both for FS and CBR. Our skip-based

CBR significantly improves the efficiency of query processing and this improvement is

especially due to in memory similarity calculations. As web search engines often need to

traverse very long posting lists in memory, our skip-based CBR would improve the efficiency

of web search engines that may employ clustering. Our results are significant in the sense

that the efficiency and effectiveness of CBR have been analyzed at this level for the first time

for an existing global clustering structure (note that the clustering structure is static at the time

of query processing; however it can be updated in an incremental manner at other times [Can

1993; Can et al. 1995]).

We show that for large databases CBR can achieve a time efficiency and effectiveness

comparable with FS. The storage requirement for CBR is modestly higher than the ordinary

inverted index file. The experiments show that our results are scalable: Effectiveness of CBR

slightly increases and efficiency of ICsIIS can improve significantly with increasing database

sizes.

There are several promising future research directions:

1. In the experiments it is observed that CBR and FS do not always return exactly the

same set of relevant documents even when they achieve the same precision levels;

therefore, our results are also important in terms of data fusion or mixing the results of

FS and CBR [Griffiths et al. 1986; Lee, 1997]. Our skip-based storage structure is

especially suitable for an unusual fusion method, which is a hybrid of FS and CBR.

For instance, for important query terms with relatively high weights, we may turn-off

skipping, to retrieve some of the documents that are not in the best matching clusters

but still qualify to be in the top 10 (20) documents. We are currently studying other

possible heuristics that may allow combining the best possible results from FS and

CBR, with the least additional overhead.

2. It would be interesting to study the update of the skip-based inverted index structures

in a dynamic retrieval environment with new and deleted old documents.

3. Compression of the posting lists and its effect on the system efficiency both in terms

of retrieval time and disk space is another promising research direction. There is

every reason to expect that compression will have positive effects on performance,

F. Can, İ. S. Altıngövde, E. Demir: Efficiency and effectiveness of query processing p. 26

since with compression a similar skip approach gives good results [Moffat, Zobel,

1996].

4. Another research direction is definition of document vectors with different levels of

indexing exhaustivity [Burgin, 1995] or by latent semantic indexing (LSI) and

measuring the system performance [Lee, 1997; Schütze, Silverstein, 1997].

5. Indexing of documents at a lower level, such as paragraphs or sentences, looks

promising from CBR’s point of view. Since in such an environment FS inverted

indexes could be extremely long, our optimization with skip concept combined with

CBR may provide an important efficiency leap during query processing.

6. For the calculation of the similarity values instead of an accumulator array dynamic

data structures can be used for memory efficiency [Witten, 1994]. A partial query

evaluation or pruning strategy and its effectiveness and efficiency should also be

investigated [Brown, 1995; Moffat, Zobel, 1996; Persin 1994]. Our scalability

experiments (Table XIII) and the results reported in [Moffat, Zobel, 1996] imply that

when our ICsIIS approach is combined with the restricted accumulators (quit and

continue methods of Moffat and Zobel), it can further improve the efficiency

performance.

References

R. Baeza-Yates, R. Riberio-Neto, Modern Information Retrieval, Addison Wesley, Reading, MA,

1999.

E. W. Brown, Fast evaluation of structured queries for information retrieval, In Proceedings of the 18th
Annual International ACM-SIGIR Conference, ACM, New York, 1995, pp. 30-38.

R. Burgin, The retrieval effectiveness of five clustering algorithm as a function of indexing
exhaustivity, Journal of the American Society for Information Science 40 (1995) 562-572.

C. Buckley, A. F. Lewit, Optimization of inverted vector searches, In Proceedings of the 8th Annual
International ACM-SIGIR Conference, ACM, New York, 1985, pp. 97-110.

F. Can, On the efficiency of best-match cluster searches, Information Processing and Management 30
(1994) 343-361.

F. Can, Incremental clustering for dynamic information processing, ACM Transactions on Information
Systems 11 (1993) 143-164.

F. Can, E. A. Fox, C. D. Snavely, R. K. France, Incremental clustering for very large document
databases: initial Marian experience, Information Sciences 84 (1995) 101-114.

F. Can, E. A. Ozkarahan, Concepts and effectiveness of the cover-coefficient-based clustering
methodology for text databases, ACM Transactions on Database Systems 15 (1990) 483-517.

F. Can, E. A. Ozkarahan, Two partitioning type clustering algorithms, Journal of the American Society
for Information Science 35 (1984) 268-276.

A. Griffiths, H. C. Luckhurst, P. Willet, Using interdocument similarity information in document
retrieval systems, Journal of the American Society for Information Science 37 (1986) 3-11.

A. El-Hamdouchi, P. Willett, Techniques for the measurement of clustering tendency in document
retrieval systems Journal of Information Science. 13 (1987) 361-365.

M. A. Hearst, J. O. Pedersen, Reexamining the cluster hypothesis: Scatter/gather on retrieval results,
In Proceedings of the 19th ACM-SIGIR Conference, ACM Press, 1996, pp. 74-81.

F. Can, İ. S. Altıngövde, E. Demir: Efficiency and effectiveness of query processing p. 27

A. K. Jain, R. C. Dubes, Algorithms for Clustering Data, Prentice Hall, Upper Saddle River, NJ, 1988.

A. K. Jain, M. N. Murty, P. J. Flynn, Clustering algorithms: A review, ACM Computing Survey 31
(1999) 264-323.

N. Jardine, C. J. van Rijsbergen, The use of hierarchical clustering in in information retrieval,
Information Storage and Retrieval 7 (1971) 217-240.

R. B. Kellogg, M. Subhas, Text to hypertext: Can clustering solve the problem in digital libraries, In
Proceedings of the 1st ACM International conference on Digital Libraries, ACM, New York,
1996, pp. 144-150.

S. Kocberber, F. Can, J. M. Patton, Optimization of signature file parameters for databases with
varying record lengths, The Computer Journal 42 (1999) 11-23.

Y. Kural, S. Robertson, S. Jones, Deciphering cluster representations, Information Processing and
Management 37 (2001) 593-601.

J. H. Lee, Analyses of multiple evidence combination. In Proceedings of the 20th ACM-SIGIR
Conference, ACM Press, 1997, pp. 267-276.

A. Moffat, J. Zobel, Self-indexing inverted files for fast text retrieval, ACM Transactions on
Information Systems 14 (1996) 349-379.

M. Persin, Document filtering for fast ranking. In Proceedings of the 17th ACM-SIGIR Conference,
ACM Press, 1994, pp. 339-348.

G. Salton, Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by
Computer, Addison Wesley, Reading, MA, 1989.

G. Salton, M. J.. Introduction to Modern Information Retrieval, McGraw Hill, New York, NY, 1983.

G. Salton, Dynamic Information and Library Processing, Prentice Hall, Englewood Cliffs NJ, 1975.

G. Salton, C. Buckley, Term-weighting approaches in automatic text retrieval, Information Processing
and Management 24 (1988) 513-523.

H. Schütze, C. Silverstein, Projections for efficient document clustering, In Proceedings of the 20th
ACM-SIGIR Conference, ACM Press, 1997, pp. 74-81.

W. M. Shaw Jr., R. Burgin, P. Howell, Performance standards and evaluations in IR test collections:
Cluster-based retrieval models, Information Processing and Management 33 (1997) 1-14.

C. Silverstein, J. O. Pedersen, Almost-constant-time clustering of arbitrary corpus subsets, In
Proceedings of the 20th ACM-SIGIR Conference, ACM Press, 1997, pp. 60-66.

C. J. van Rijsbergen, Information Retrieval, 2nd ed. Butterworths, London, 1979.

E. M. Voorhees, The effectiveness and efficiency of agglomerative hierarchical clustering in document
retrieval. Ph.D. Thesis, Cornell Univ., Ithaca, NY, 1986a.

E. M. Voorhees, The efficiency of inverted index and cluster searches In Proceedings of the 9th
Annual International ACM-SIGIR Conference, ACM, New York, 1986b, pp. 164-174.

P. Willett, Recent trends in hierarchical document clustering: A critical review, Information Processing
and Management 24 (1988) 577-597.

P. Willett, V. Wınterman, D. Bawden, Implementatıon of non-hierarchıcal cluster-analysis methods in
chemical ınformation-systems - selection of compounds for biologıcal testing and clustering of
substructure search output, Journal of Chemical Information And Computer Sciences 26 (1986)
109-118.

I. H. Witten, A. Moffat, T. C. Bell, Managing Gigabytes Compressing and Indexing Documents and
Images. Van Nostrand Reinhold, New York, 1994.

S. B. Yao, Approximating block accesses in database organizations, Comm. of the ACM 20 (1977) 260-
261.

C. T. Yu, W. Meng, Principles of Database Query Processing for Advanced Applications. San
Francisco, CA, Morgan Kaufmann, 1998.

	Efficiency and Effectiveness of
	Query Processing in Cluster-Based Retrieval
	Table III. Query sets summary information
	(last three columns indicate no. of terms)
	Qshort

	Qlong
	Qgiant
	
	Table IV. Mean average precision values for retrieval strategies (ns = 164, ds =10)
	
	
	Qshort
	Table V. Effectiveness comparison of FS and CBR (ICIIS and ICsIIS), for non-overlapping clusters

	Qshort
	Qshort
	
	
	Table VII. Average in-memory processing time (sec.) per query for each retrieval strategy and �relative performance of ICsIIS with respect to FS

	Qshort
	
	
	
	
	
	
	Table IX. Storage requirements (in MB) for individual components

	Size
	FTs
	
	
	Table XIII. Average in-memory processing time (sec.) per query for each retrieval strategy with each database and relative performance of ICsIIS with respect to FS

	FTs
	
	
	
	
	
	
	Table XIV. Storage requirements (in MB) for individual components

	FTs
	FTm
	FT

