CS425: Algorithms for Web Scale Data

Lecture 3: Similarity Modeling

Most of the slides are from the Mining of Massive Datasets book.

These slides have been modified for CS425. The original slides can be accessed at: www.mmds.org

10 nearest neighbors from a collection of 20,000 images

10 nearest neighbors from a collection of 2 million images

A Common Metaphor

- Many problems can be expressed as finding "similar" sets:
 - Find near-neighbors in <u>high-dimensional</u> space
- Examples:
 - Pages with similar words
 - For duplicate detection, classification by topic
 - Customers who purchased similar products
 - Products with similar customer sets
 - Images with similar features

Problem for Today's Lecture

- Given: High dimensional data points $x_1, x_2, ...$
 - For example: Image is a long vector of pixel colors

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 & 0 & 2 & 1 & 0 & 1 & 0 \end{bmatrix}$$

- And some distance function $d(x_1, x_2)$
 - Which quantifies the "distance" between x_1 and x_2
- Goal: Find all pairs of data points (x_i, x_j) that are within some distance threshold $d(x_i, x_i) \le s$
- **Note:** Naïve solution would take $O(N^2)$ \otimes where N is the number of data points
- **MAGIC:** This can be done in O(N)!! How?

Finding Similar Items

Distance Measures

- Goal: Find near-neighbors in high-dim. space
 - We formally define "near neighbors" as points that are a "small distance" apart
- For each application, we first need to define what "distance" means
- Today: Jaccard distance/similarity
 - The Jaccard similarity of two sets is the size of their intersection divided by the size of their union: $sim(C_1, C_2) = |C_1 \cap C_2|/|C_1 \cup C_2|$
 - Jaccard distance: $d(C_1, C_2) = 1 |C_1 \cap C_2|/|C_1 \cup C_2|$

3 in intersection
8 in union
Jaccard similarity= 3/8
Jaccard distance = 5/8

Task: Finding Similar Documents

- Goal: Given a large number (N in the millions or billions) of documents, find "near duplicate" pairs
- Applications:
 - Mirror websites, or approximate mirrors
 - Don't want to show both in search results
 - Similar news articles at many news sites
 - Cluster articles by "same story"

Problems:

- Many small pieces of one document can appear out of order in another
- Too many documents to compare all pairs
- Documents are so large or so many that they cannot fit in main memory

3 Essential Steps for Similar Docs

- 1. Shingling: Convert documents to sets
- 2. Min-Hashing: Convert large sets to short signatures, while preserving similarity
- 3. Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
 - Candidate pairs!

The Big Picture

Candidate pairs

those pairs of signatures that we need to test for similarity

Shingling

Step 1: Shingling: Convert documents to sets

Define: Shingles

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc
 - Tokens can be characters, words or something else, depending on the application
 - Assume tokens = characters for examples
- **Example:** k=2; document D_1 = abcab Set of 2-shingles: $S(D_1)$ = {ab, bc, ca}
 - Option: Shingles as a bag (multiset), count ab twice: $S'(D_1) = \{ab, bc, ca, ab\}$

Examples

□ Input text:

"The most effective way to represent documents as sets is to construct from the document the set of short strings that appear within it."

□ 5-shingles:

```
"The m", "he mo", "e mos", "most", "ost ", "ost e", "st ef", "t eff", "effe", "effec", "fecti", "ectiv", ...
```

□ 9-shingles:

```
"The most ", "he most e", "e most ef", "most eff", "most effe", "ost effec", "st effect", "t effectiv", "effective", ...
```

Hashing Shingles

- □ Storage of k-shingles: k bytes per shingle
- □ Instead, hash each shingle to a 4-byte integer.

```
E.g. "The most " → 4320
"he most e" → 56456
"e most ef" → 214509
```

- □ Which one is better?
 - 1. Using 4 shingles?
 - 2. Using 9-shingles, and then hashing each to 4 byte integer?
- □ Consider the # of distinct elements represented with 4 bytes

Hashing Shingles

- □ Not all characters are common.
 - e.g. Unlikely to have shingles like "zy%p"
- □ Rule of thumb: # of k-shingles is about 20^k
- □ Using 4-shingles:
 - # of shingles: $20^4 = 160$ K
- □ Using 9-shingles and then hashing to 4-byte values:
 - # of shingles: $20^9 = 512B$
 - # of buckets: $2^{32} = 4.3B$
 - 512B shingles (uniformly) distributed to 4.3B buckets

Similarity Metric for Shingles

- Document D₁ is a set of its k-shingles C₁=S(D₁)
- Equivalently, each document is a
 0/1 vector in the space of k-shingles
 - Each unique shingle is a dimension
 - Vectors are very sparse
- A natural similarity measure is the Jaccard similarity:

$$sim(D_1, D_2) = |C_1 \cap C_2| / |C_1 \cup C_2|$$

Working Assumption

- Documents that have lots of shingles in common have similar text, even if the text appears in different order
- Caveat: You must pick k large enough, or most documents will have most shingles
 - $\mathbf{k} = 5$ is OK for short documents
 - k = 10 is better for long documents

Motivation for Minhash/LSH

- Suppose we need to find near-duplicate documents among N = 1 million documents
- Naïvely, we would have to compute pairwise
 Jaccard similarities for every pair of docs
 - $N(N-1)/2 \approx 5*10^{11}$ comparisons
 - At 10⁵ secs/day and 10⁶ comparisons/sec, it would take 5 days
- For N = 10 million, it takes more than a year...

MinHashing

Step 2: *Minhashing:* Convert large sets to short signatures, while preserving similarity

Encoding Sets as Bit Vectors

 Many similarity problems can be formalized as finding subsets that have significant intersection

- Encode sets using 0/1 (bit, boolean) vectors
 - One dimension per element in the universal set
- Interpret set intersection as bitwise AND, and set union as bitwise OR
- **Example:** $C_1 = 10111$; $C_2 = 10011$
 - Size of intersection = 3; size of union = 4,
 - Jaccard similarity (not distance) = 3/4
 - Distance: $d(C_1,C_2) = 1 (Jaccard similarity) = 1/4$

From Sets to Boolean Matrices

- Rows = elements (shingles)
- Columns = sets (documents)
 - 1 in row e and column s if and only if e is a member of s
 - Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
 - Typical matrix is sparse!
- Each document is a column:
 - Example: $sim(C_1, C_2) = ?$
 - Size of intersection = 3; size of union = 6, Jaccard similarity (not distance) = 3/6
 - $d(C_1,C_2) = 1 (Jaccard similarity) = 3/6$

Documents

	1	1	1	0
	1	1	0	1
S	0	1	0	1
Shingles	0	0	0	1
צ	1	0	0	1
	1	1	1	0
	1	0	1	0

Outline: Finding Similar Columns

- So far:
 - Documents → Sets of shingles
 - Represent sets as boolean vectors in a matrix
- Next goal: Find similar columns while computing small signatures
 - Similarity of columns == similarity of signatures

Hashing Columns (Signatures)

- Key idea: "hash" each column C to a small signature h(C), such that:
 - (1) h(C) is small enough that the signature fits in RAM
 - (2) $sim(C_1, C_2)$ is the same as the "similarity" of signatures $h(C_1)$ and $h(C_2)$
- Goal: Find a hash function h(·) such that:
 - If $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
 - If $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$
- Hash docs into buckets. Expect that "most" pairs of near duplicate docs hash into the same bucket!

Min-Hashing

- Goal: Find a hash function h(·) such that:
 - if $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
 - if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$
- Clearly, the hash function depends on the similarity metric:
 - Not all similarity metrics have a suitable hash function
- There is a suitable hash function for the Jaccard similarity: It is called Min-Hashing

Min-Hashing

- Imagine the rows of the boolean matrix permuted under random permutation π
- Define a "hash" function $h_{\pi}(C)$ = the index of the **first** (in the permuted order π) row in which column C has value $\mathbf{1}$:

$$h_{\pi}(\mathbf{C}) = \min_{\pi} \pi(\mathbf{C})$$

 Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column

Min-Hashing Example

Min-Hashing Example

The Min-Hash Property

- □ Choose a random permutation π
- $\Box \quad \underline{\mathbf{Claim:}} \ \mathbf{Pr}[h_{\pi}(\mathbf{C_i}) = h_{\pi}(\mathbf{C_j})] = sim(\mathbf{C_i}, \mathbf{C_j})$
- □ Proof:
 - Consider 3 types of rows:

type X: C_i and C_i both have 1s

type Y: only one of C_i and C_i has 1

type Z: C_i and C_j both have 0s

■ After random permutation π , what if the first X-type row is before the first Y-type row?

$$h_{\pi}(\mathbf{C_i}) = h_{\pi}(\mathbf{C_j})$$

	Ci	C _j	
X	1	1	
Υ	1	0	
Z	0	0	
Z	0	0	
Z	0	0	
X	1	1	
Υ	1	0	

Input Matrix

The Min-Hash Property

 \square What is the probability that the first not-Z row is of type X?

$$\frac{|X|}{|X|+|Y|}$$

$$\Box \mathbf{Pr}[h_{\pi}(\mathbf{C_i}) = h_{\pi}(\mathbf{C_j})] = \frac{|X|}{|X| + |Y|}$$

□ Conclusion: $Pr[h_{\pi}(C_i) = h_{\pi}(C_j)] = sim(C_i, C_j)$

Similarity for Signatures

- We know: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions
- The similarity of two signatures is the fraction of the hash functions in which they agree
- Note: Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures

Min-Hashing Example

Permutation π

Input matrix (Shingles x Documents)

	,		_
	/ı	ш	2

3	2	4

7	1	7

6

3 2	3		2
------	---	--	---

6		6
	Ш	

5	/	_
4	5	5

1	О	1	О
1	О	O	1
0	1	О	1
0	1	О	1
О	1	О	1
1	О	1	О
1	О	1	О

Signature matrix *M*

2	1	2	1
2	1	4	1
1	2	1	2

Similarities:

Col/Col Sig/Sig

	1-3	2-4	1-2	3-4
	0.75	0.75	0	0
J	0.67	1.00	0	0

Similarity of Signatures

□ What is the expected value of Jaccard similarity of two signatures sig₁ and sig₂? Assume there are s min-hash values in each signature.

$$E[sim(sig_{1}, sig_{2})] = E\left[\frac{\# \ of \ \pi \ s. \ t. \ h_{\pi}(C_{1}) = h_{\pi}(C_{2})}{s}\right]$$

$$= \frac{1}{s} \sum_{s=1}^{s} \Pr[h_{\pi}(C_{1}) = h_{\pi}(C_{2})]$$

$$= sim(C_{1}, C_{2})$$

Law of large numbers: Average of the results obtained from a large number of trials should be close to the expected value, and will tend to become closer as more trials are performed.

Min-Hash Signatures

- Pick K=100 random permutations of the rows
- Think of sig(C) as a column vector
- sig(C)[i] = according to the i-th permutation, the index of the first row that has a 1 in column C

$$sig(C)[i] = min(\pi_i(C))$$

- Note: The sketch (signature) of document C is small ~ 400 bytes!
- We achieved our goal! We "compressed" long bit vectors into short signatures

Implementation Trick

- Permuting rows even once is prohibitive
- Row hashing!
 - Pick K = 100 hash functions k_i
 - Ordering under k_i gives a random row (almost) permutation!

Hach func 1 Hach func 2

					nasii iulic. I	<u>nasii iuiic. Z</u>
Row	D ₁	D_2	D_3	D ₄	(r+1) % 5	(3r+1) % 5
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

How to pick a random hash function h(x)? Universal hashing:

 $h_{a,b}(x)=((a\cdot x+b) \mod p) \mod N$ where:

a,b ... random integers p ... prime number (p > N)

Implementation Trick

One-pass implementation

- For each column C and hash-func. k_i keep a "slot" for the min-hash value
- Initialize all $sig(C)[i] = \infty$
- Scan rows looking for 1s
 - Suppose row j has 1 in column C
 - Then for each k_i :
 - If $k_i(j) < sig(C)[i]$, then $sig(C)[i] \leftarrow k_i(j)$

Hash func. 1 Hash func. 2

Row	D ₁	D_2	D_3	$ D_4 $	(r+1) % 5	(3r+1) % 5
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

D ₁	D ₂	D_3	D ₄
∞	∞	∞	∞
∞	∞	∞	8

Hash f	unc. 1	Hash	func. 2
			

Row	D ₁	D_2	D_3	$ D_4 $	(r+1) % 5	(3r+1) % 5
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

D ₁	D ₂	D_3	D ₄
1	∞	∞	1
1	∞	∞	1

Row	D ₁	D ₂	D_3	D_4	(r+1) % 5	(3r+1) % 5
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

D ₁	D ₂	D_3	D ₄
1	∞	2	1
1	∞	4	1

Hash f	unc. 1	Hash	func. 2
			

Row	D ₁	D_2	D_3	$ D_4 $	(r+1) % 5	(3r+1) % 5
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

D ₁	D ₂	D_3	D ₄
1	3	2	1
1	2	4	1

Hash f	unc. 1	Hash	func. 2

Row	D ₁	D_2	D_3	D_4	(r+1) % 5	(3r+1) % 5
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

D ₁	D ₂	D_3	D ₄
1	3	2	1
0	2	0	0

Hash f	unc. 1	Hash	func. 2
			

Row	D ₁	D_2	D_3	D_4	(r+1) % 5	(3r+1) % 5
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

D ₁	D ₂	D_3	D ₄
1	3	0	1
0	2	0	0

Hash f	unc. 1	Hash	func. 2
			

Row	D ₁	D_2	D_3	D_4	(r+1) % 5	(3r+1) % 5
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Final signatures

D ₁	D ₂	D_3	D ₄
1	3	0	1
0	2	0	0

Locality Sensitive Hashing

Step 3: Locality-Sensitive Hashing:
Focus on pairs of signatures likely to be from similar documents

LSH: First Cut

2	1	4	1	
1	2	1	2	
2	1	2	1	

- Goal: Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., s=0.8)
- LSH General idea: Use a function f(x,y) that tells whether x and y is a candidate pair: a pair of elements whose similarity must be evaluated
- For Min-Hash matrices:
 - Hash columns of signature matrix M to many buckets
 - Each pair of documents that hashes into the same bucket is a candidate pair

LSH for Min-Hash

2	1	4	1
1	2	1	2
2	1	2	1

- Big idea: Hash columns of signature matrix M several times
- Arrange that (only) similar columns are likely to hash to the same bucket, with high probability
- Candidate pairs are those that hash to the same bucket

Partition M into b Bands

2 1 4 1
1 2 1 2
2 1 2 1

Signature matrix *M*

Partition M into Bands

- Divide matrix M into b bands of r rows
- For each band, hash its portion of each column to a hash table with k buckets
 - Make k as large as possible
- Candidate column pairs are those that hash to the same bucket for ≥ 1 band
- Tune b and r to catch most similar pairs, but few non-similar pairs

Hashing Bands

Signature Matrix

1 3 0	2	1	2	2	4 3 0	2	3	
4	3	4	3	5	2 4 3	4	3	
5	3	2	1	2	2 0 1	2		

Buckets

Candidate pairs: {(2,4);

Candidate pairs: {(2,4);

Candidate pairs: {(2,4); (1,6)

Buckets

Signature Matrix

								1
1 3 0	0 2 1	0 1 3	0 2 1	2 2 1	4 3 0	2 2 5	4 3 5	
2 4 3	2 3 1	1 4 2	2 3 1	5 5 0	2 4 3	5 4 0	5 3 0	
2 5 1	1 3 2	0 2 5	1 1 2	0 2 0	2 0 1	1 2 0	0 2 5	

True positive

Buckets

Signature Matrix

								•
1 3 0	0 2 1	0 1 3	0 2 1	2 2 1	4 3 0	2 2 5	4 3 5	
2 4 3	2 3 1	1 4 2	2 3 1	5 5 0	2 4 3	5 4 0	5 3 0	
2 5 1	1 3 2	0 2 5	1 1 2	0 2 0	2 0 1	1 2 0	0 2 5	

True positive

Buckets

Signature Matrix

								_	
1	0	0	0	2	4	2	4		
3	2	1	2	2	3	2	3		
0	1	3	1	1	0	5	5		
2	2	1	2	5	2	5	5		
4	3	4	3	5	4	4	3		
3	1	2	1	0	3	0	0		
2	1	0	1	0	2	1	0		
5	3	2	1	2	0	2	2		
1	2	5	2	0	1	0	5		

False positive?

Buckets

Signature Matrix

1 3 0	0 2 1	0 1 3	0 2 1	2 2 1	4 3 0	2 2 5	4 3 5	
2 4 3	2 3 1	1 4 2	2 3 1	5 5 0		5	5 3 0	
2 5 1	1 3 2	0 2 5	1 1 2	0 2 0	2 0 1	1 2 0	0 2 5	

False negative?

Buckets

Simplifying Assumption

- There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band
- Hereafter, we assume that "same bucket" means "identical in that band"
- Assumption needed only to simplify analysis, not for correctness of algorithm

Example of Bands

2	1	4	1	
1	2	1	2	
2	1	2	1	

Assume the following case:

- Suppose 100,000 columns of *M* (100k docs)
- Signatures of 100 integers (rows)
- Therefore, signatures take 40Mb
- Choose b = 20 bands of r = 5 integers/band
- **Goal:** Find pairs of documents that are at least s = 0.8 similar

C₁, C₂ are 80% Similar

2	1	4	1
1	2	1	2
2	1	2	1

- Find pairs of ≥ s=0.8 similarity, set b=20, r=5
- **Assume:** $sim(C_1, C_2) = 0.8$
 - Since $sim(C_1, C_2) \ge s$, we want C_1 , C_2 to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)
- Probability C_1 , C_2 identical in one particular band: $(0.8)^5 = 0.328$
- Probability C_1 , C_2 are **different** in all of the 20 bands: $(1-0.328)^{20} = 0.00035$
 - i.e., about 1/3000th of the 80%-similar column pairs are false negatives (we miss them)
 - We would find 99.965% pairs of truly similar documents

C₁, C₂ are 30% Similar

```
2 1 4 1
1 2 1 2
2 1 2 1
```

- Find pairs of \ge s=0.8 similarity, set **b**=20, **r**=5
- **Assume:** $sim(C_1, C_2) = 0.3$
 - Since sim(C₁, C₂) < s we want C₁, C₂ to hash to NO common buckets (all bands should be different)
- Probability C_1 , C_2 identical in one particular band: $(0.3)^5 = 0.00243$
- Probability C_1 , C_2 identical in at least 1 of 20 bands: $1 - (1 - 0.00243)^{20} = 0.0474$
 - In other words, approximately 4.74% pairs of docs with similarity 0.3% end up becoming candidate pairs
 - They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold s

LSH Involves a Tradeoff

2	1	4	1
1	2	1	2
2	1	2	1

Pick:

- The number of Min-Hashes (rows of M)
- The number of bands b, and
- The number of rows r per band
 to balance false positives/negatives
- Example: How would the false positives/negatives change if we had only 15 bands of 5 rows (as opposed to 20 bands of 5 rows)?
 - The number of false positives would go down, but the number of false negatives would go up

Analysis of LSH – What We Want

Similarity $t = sim(C_1, C_2)$ of two sets———

What 1 Band of 1 Row Gives You

Similarity $t = sim(C_1, C_2)$ of two sets ———

b bands, r rows/band

- Columns C₁ and C₂ have similarity t
- Pick any band (r rows)
 - Prob. that all rows in band equal

tr

Prob. that some row in band unequal

$$1 - t^r$$

Prob. that no band identical

$$(1-t^r)^b$$

Prob. that at least 1 band identical

$$1 - (1 - t^r)^b$$

What b Bands of r Rows Gives You

Example: b = 20; r = 5

- Similarity threshold s
- Prob. that at least 1 band is identical:

S	1-(1-s ^r) ^b
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

Picking r and b: The S-curve

- Picking r and b to get the best S-curve
 - 50 hash-functions (r=5, b=10)

Green area: False Positive rate

Blue area: False Negative rate

LSH Summary

- Tune M, b, r to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures
- Check in main memory that candidate pairs really do have similar signatures
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar documents

Summary: 3 Steps

- Shingling: Convert documents to sets
 - We used hashing to assign each shingle an ID
- Min-Hashing: Convert large sets to short signatures, while preserving similarity
 - We used similarity preserving hashing to generate signatures with property $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
 - We used hashing to get around generating random permutations
- Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
 - We used hashing to find **candidate pairs** of similarity \geq **s**