CS425: Algorithms for Web Scale Data
Lecture 4: Similarity Modeling Applications

Distance Metrics

Distance Measure

\square A distance measure $\mathrm{d}(\mathrm{x}, \mathrm{y})$ must have the following properties:

1. $\mathrm{d}(\mathrm{x}, \mathrm{y}) \geq 0$
2. $d(x, y)=0$ iff $x=y$
3. $d(x, y)=d(y, x)$
4. $d(x, y) \leq d(x, z)+d(z, y)$

Euclidean Distance

\square Consider two items x and y with n numeric attributes
\square Euclidean distance in n-dimensions:

$$
d\left(\left[x_{1}, x_{2}, \ldots, x_{n}\right],\left[y_{1}, y_{2}, \ldots, y_{n}\right]\right)=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}
$$

\square Useful when you want to penalize larger differences more than smaller ones

L_{r} - Norm

\square Definition of L_{r}-norm:

$$
d\left(\left[x_{1}, x_{2}, \ldots, x_{n}\right],\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right]=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{r}\right)^{1 / r}
$$

\square Special cases:

- L_{1}-norm: Manhattan distance

■ Useful when you want to penalize differences in a linear way (e.g. a difference of 10 for one attribute is equivalent to difference of 1 for 10 attributes)

- \mathbf{L}_{2}-norm: Euclidean distance
- \mathbf{L}_{∞}-norm: Maximum distance among all attributes

■ Useful when you want to penalize the largest difference in an attribute

Jaccard Distance

\square Given two sets x and y :

$$
d(x, y)=1-\frac{|x \cap y|}{|x \cup y|}
$$

\square Useful for set representations

- i.e. An element either exists or does not exist
\square What if the attributes are weighted?
- e.g. Term frequency in a document

Cosine Distance

\square Consider x and y represented as vectors in an n -dimensional space

\square The cosine distance is defined as the θ value

- Or, cosine similarity is defined as $\cos (\theta)$
\square Only direction of vectors considered, not the magnitudes
\square Useful when we are dealing with vector spaces

Cosine Distance: Example

$$
\begin{aligned}
& \stackrel{\sim}{x}=[0.1,0.2,-0.1] \begin{aligned}
\cos (\theta) & =\frac{x . y}{||x|| \cdot| | y| |}=\frac{0.0,1.0,1.0]}{\sqrt{0.01+0.04+0.01} \cdot \sqrt{4+1+1}} \\
& =\frac{0.3}{\sqrt{0.36}}=0.5 \rightarrow \theta=60^{\circ}
\end{aligned}
\end{aligned}
$$

Note: The distance is independent of vector magnitudes

Edit Distance

\square What happens if you search for "Blkent" in Google?
口 "Showing results for Bilkent."
\square Edit distance between x and y : Smallest number of insertions, deletions, or mutations needed to go from x to y.
\square What is the edit distance between "BILKENT" and "BLANKET"?

$\operatorname{dist}(\mathrm{BILKENT}, \mathrm{BLANKET})=4$

- Efficient dynamic-programming algorithms exist to compute edit distance (CS473)

Distance Metrics Summary

\square Important to choose the right distance metric for your application
\square Set representation?
\square Vector space?

- Strings?
\square Distance metric chosen also affects complexity of algorithms
\square Sometimes more efficient to optimize L_{1} norm than L_{2} norm.
\square Computing edit distance for long sequences may be expensive
\square Many other distance metrics exist.

Applications of LSH

Entity Resolution

Entity Resolution

\square Many records exist for the same person with slight variations

- Name: "Robert W. Carson" vs. "Bob Carson Jr."
- Date of birth: "Jan 15,1957 " vs. " 1957 " vs none
- Address: Old vs. new, incomplete, typo, etc.
- Phone number: Cell vs. home vs. work, with or without country code, area code
\square Objective: Match the same people in different databases

Locality Sensitive Hashing (LSH)

\square Simple implementation of LSH:

- Hash each field separately
- If two people hash to the same bucket for any field, add them as a candidate pair

Candidate Pair Evaluation

\square Define a scoring metric and evaluate candidate pairs
\square Example:

- Assign a score of 100 for each field. Perfect match gets 100 , no match gets 0 .
- Which distance metric for names?
- Edit distance, but with quadratic penalty
- How to evaluate phone numbers?

■ Only exact matches allowed, but need to take care of missing area codes.

- Pick a score threshold empirically and accept the ones above that
- Depends on the application and importance of false positives vs. negatives
- Typically need cross validation

Fingerprint Matching

Fingerprint Matching

\square Many-to-many matching: Find out all pairs with the same fingerprints

- Example: You want to find out if the same person appeared in multiple crime scenes
\square One-to-many matching: Find out whose fingerprint is on the gun
- Too expensive to compare even one fingerprint with the whole database
- Need to use LSH even for one-to-many problem
\square Preprocessing:
\square Different sizes, different orientations, different lighting, etc.
- Need some normalization in preprocessing (not our focus here)

Fingerprint Features
\square Minutia: Major features of a fingerprint

Bifurcation

Short ridge

Image Source: Wikimedia Commons

Fingerprint Grid Representation

\square Overlay a grid and identify points with minutia

	X					X	
			X				
			X		X		
							X
	X	X					

Special Hash Function

- Choose 3 grid points
- If a fingerprint has minutia in all 3 points, add it to the bucket
- Otherwise, ignore the fingerprint.

Locality Sensitive Hashing

Define 1024 hash functions\square i.e. Each hash function is defined as 3 grid points
\square Add fingerprints to the buckets hash functions
\square If multiple fingerprints are in the same bucket, add them as a candidate pair.

Example

\square Assume:

- Probability of finding a minutia at a random grid point $=20 \%$
- If two fingerprints belong to the same finger:
- Probability of finding a minutia at the same grid point $=80 \%$
\square For two different fingerprints:
- Probability that they have minutia at point (x, y) ?
$0.2 * 0.2=0.04$
- Probability that they hash to the same bucket for a given hash function?

$$
0.04^{3}=0.000064
$$

\square For two fingerprints from the same finger:

- Probability that they have minutia at point (x, y) ?

$$
0.2 * 0.8=0.16
$$

- Probability that they hash to the same bucket for a given hash function?

$$
0.16^{3}=0.004096
$$

Example (cont'd)

\square For two different fingerprints and 1024 hash functions:

- Probability that they hash to the same bucket at least once?

$$
1-\left(1-0.04^{3}\right)^{1024}=0.063
$$

\square For two fingerprints from the same finger and 1024 hash functions:

- Probability that they hash to the same bucket at least once?

$$
1-\left(1-0.16^{3}\right)^{1024}=0.985
$$

\square False positive rate?
6.3\%
\square False negative rate?
1.5%

Example (cont'd)

\square How to reduce the false positive rate?
\square Try: Increase the number grid points from 3 to 6
\square For two different fingerprints and 1024 hash functions:

- Probability that they hash to the same bucket at least once?

$$
1-\left(1-0.04^{6}\right)^{1024}=0.0000042
$$

\square For two fingerprints from the same finger and 1024 hash functions:

- Probability that they hash to the same bucket at least once?

$$
1-\left(1-0.16^{6}\right)^{1024}=0.017
$$

\square False negative rate increased to 98.3% !

Example (cont'd)

\square Second try: Add another AND function to the original setting

1. Define 2048 hash functions

Each hash function is based on 3 grid points as before
2. Define two groups each with 1024 hash functions
3. For each group, apply LSH as before

Find fingerprints that share a bucket for at least one hash function
4. If two fingerprints share at least one bucket in both groups, add them as a candidate pair

Example (cont'd)

\square Reminder:

- Probability that two fingerprints hash to the same bucket at least once for 1024 hash functions:
- If two different fingerprints: $1-\left(1-0.04^{3}\right)^{1024}=0.063$
- If from the same finger: $1-\left(1-0.16^{3}\right)^{1024}=0.985$
\square With the AND function at the end:
- Probability that two fingerprints are chosen as candidate pair:
- If two different fingerprints:

$$
0.063 \times 0.063=0.004
$$

- If from the same finger:

$$
0.985 \times 0.985=0.97
$$

\square Reduced false positives to 0.4%, but increased false negatives to 3%
\square What if we add another OR function at the end?

Similar News Articles

Similar News Articles

\square Typically, news articles come from an agency and distributed to multiple newspapers
\square A newspaper can modify the article a little, shorten it, add its own name, add advertisement, etc.
\square How to identify the same news articles?

- Shingling + Min-Hashing + LSH
\square Potential problem: What if $\sim 40 \%$ of the page is advertisement? How to distinguish the real article?
- Special shingling

Shingling for News Articles

\square Observation: Articles use stop words (the, a, and, for, ...) much for frequently than ads.
\square Shingle definition: Two words followed by a stop word.Example:

- Advertisement: "Buy XYZ"
- No shingles
- Article: "A spokesperson for the XYZ Corporation revealed today that studies have shown it is good for people to buy XYZ products."
■ Shingles: "A spokesperson for", "for the XYZ", "the XYZ Corporation", "that studies have", "have shown it", "it is good", "is good for", "for people to", "to buy XYZ".
\square The content from the real article represented much more in the shingles.

Identifying Similar News Articles

\square High level methodology:

1. Special shingling for news articles
2. Min-hashing (as before)
3. Locality sensitive hashing (as before)
