CS425: Algorithms for Web Scale Data Lecture 7: Web Advertising

Most of the slides are from the Mining of Massive Datasets book. These slides have been modified for CS425. The original slides can be accessed at: <u>www.mmds.org</u>

Online Algorithms

Classic model of algorithms

- You get to see the entire input, then compute some function of it
- In this context, "offline algorithm"

Online Algorithms

 You get to see the input one piece at a time, and need to make irrevocable decisions along the way

Online Bipartite Matching

Bipartite Graphs

□ Bipartite graph:

- Two sets of nodes: A and B
- There are no edges between nodes that belong to the same set.
- Edges are only between nodes in different sets.

Bipartite Matching

 \square Maximum Bipartite Matching: Choose a subset of edges E_M such that:

- 1. Each vertex is connected to at most one edge in E_M
- 2. The size of E_M is as large as possible
- □ Example: Matching projects to groups

M = {(1,a),(2,b),(3,d)} is a matching Cardinality of matching = |M| = 3

Bipartite Matching

 \square Maximum Bipartite Matching: Choose a subset of edges E_M such that:

- 1. Each vertex is connected to at most one edge in E_M
- 2. The size of E_M is as large as possible
- □ Example: Matching projects to groups

Example: Bipartite Matching

M = {(1,c),(2,b),(3,d),(4,a)} is a perfect matching

Perfect matching ... all vertices of the graph are matched **Maximum matching** ... a matching that contains the largest possible number of matches

Matching Algorithm

Problem: Find a maximum matching for a given bipartite graph

- A perfect one if it exists
- There is a polynomial-time offline algorithm based on augmenting paths (Hopcroft & Karp 1973, see <u>http://en.wikipedia.org/wiki/Hopcroft-Karp_algorithm</u>)

But what if we do not know the entire graph upfront?

Online Bipartite Matching Problem

- □ Initially, we are given the set of projects
- □ The TA receives an email indicating the preferences of one group.
- The TA must decide at that point to either: assign a prefered project to this group, or

not assign any projects to this group

□ Objective is to maximize the number of preferred assignments

Note: This is not how your projects were assigned O

Greedy Online Bipartite Matching

□ <u>Greedy algorithm</u>

For each group gLet P_g be the set of projects group g prefers if there is a $p \in P_g$ that is not already assigned to another group assign project p to group gelse

do not assign any project to g

Greedy Online Graph Matching: Example

Competitive Ratio

 For input *I*, suppose greedy produces matching *M_{greedy}* while an optimal matching is *M_{opt}*

Competitive ratio =

min_{all possible inputs I} (|M_{greedy}|/|M_{opt}|)

(what is greedy's worst performance over all possible inputs /)

Analysis of the Greedy Algorithm

<u>Step 1</u>: Find a lower bound for the competitive ratio

Definitions:

M_o: The optimal matching M_g: The greedy matching L: The set of vertices from A that are in M_o, but not in M_g R: The set of vertices from B that are connected to at least one vertex in L Analysis of the Greedy Algorithm (cont'd)

 \Box <u>*Claim*</u>: All vertices in **R** must be in **M**_g

Proof:

- By contradiction, assume there is a vertex $v \in R$ that is not in M_g .
- There must be another vertex $u \in L$ that is connected to v.
- **By definition u** is not in M_g either.
- When the greedy algorithm processed edge (u, v), both vertices u and v were available, but it matched none of them. This is a contradiction!
- $\Box \underline{Fact}: |\mathbf{M}_{o}| \leq |\mathbf{M}_{g}| + |\mathbf{L}|$

Adding the missing elements to Mg will make its size to be at least the size of the optimal matching.

 $\Box \underline{Fact}: |\mathbf{L}| \leq |\mathbf{R}|$

Each vertex in L was matched to another vertex in M_{o}

Analysis of the Greedy Algorithm (cont'd)

 $\Box \underline{Fact}: |\mathbf{R}| \leq |\mathbf{M}_{g}|$ All vertices in R are in M_g <u>Summary</u>: $|\mathbf{M}_{\mathrm{o}}| \leq |\mathbf{M}_{\mathrm{g}}| + |\mathbf{L}|$ $|L| \leq |R|$ $|\mathbf{R}| \leq |\mathbf{M}_{g}|$ □ <u>Combine</u>: $|M_{o}| \leq |M_{g}| + |L|$ $\leq |M_{\rm g}| + |R|$ $\leq 2 |M_g|$

Lower-bound for competitive ratio:

$$\frac{|M_g|}{|M_o|} \ge \frac{1}{2}$$

Analysis of the Greedy Algorithm (cont'd)

- □ We have shown that the competitive ratio is at least 1/2. However, can it be better than 1/2?
- □ *<u>Step 2</u>*: Find an upper bound for competitive ratio:

Typical approach: Find an example.

If there is at least one example that has competitive ratio of r,

it must mean that competitive ratio cannot be greater than r.

Greedy matching: (1,a), (2,b)

The optimal matching is: (4, a), (3,b), (1,c), (2, d)

Competitive ratio = $\frac{1}{2}$ for this example

So, competitive ratio $<= \frac{1}{2}$

Greedy Matching Algorithm

We have shown that competitive ratio for the greedy algorithm is 1/2.
We proved that both lower bound and upper bound is 1/2

Conclusion: The online greedy algorithm can result in a matching solution that has half the size of an optimal offline algorithm in the worst case.

Web Advertising

History of Web Advertising

Banner ads (1995-2001)

- Initial form of web advertising
- Popular websites charged
 X\$ for every 1,000
 "impressions" of the ad
 - Called "CPM" rate (Cost per thousand impressions)

CPM...cost per *mille Mille...thousand in Latin*

- Modeled similar to TV, magazine ads
- From untargeted to demographically targeted

Low click-through rates

Low ROI for advertisers

Performance-based Advertising

- Introduced by Overture around 2000
 - Advertisers bid on search keywords
 - When someone searches for that keyword, the highest bidder's ad is shown
 - Advertiser is charged only if the ad is clicked on
- Similar model adopted by Google with some changes around 2002
 - Called Adwords

Ads vs. Search Results

Web

GEICO Car Insurance. Get an auto insurance quote and save today ...

GEICO auto insurance, online car insurance quote, motorcycle insurance quote, online insurance sales and service from a leading insurance company. www.geico.com/ - 21k - Sep 22, 2005 - Cached - Similar pages

Auto Insurance - Buy Auto Insurance Contact Us - Make a Payment More results from www.geico.com »

Geico, Google Settle Trademark Dispute

The case was resolved out of court, so advertisers are still left without legal guidance on use of trademarks within ads or as keywords. www.clickz.com/news/article.php/3547356 - 44k - <u>Cached</u> - <u>Similar pages</u>

Google and GEICO settle AdWords dispute | The Register

Google and car insurance firm **GEICO** have settled a trade mark dispute over ... Car insurance firm **GEICO** sued both Google and Yahoo! subsidiary Overture in ... www.theregister.co.uk/2005/09/09/google_geico_settlement/ - 21k - <u>Cached</u> - <u>Similar pages</u>

GEICO v. Google

... involving a lawsuit filed by Government Employees Insurance Company (GEICO). GEICO has filed suit against two major Internet search engine operators, ... www.consumeraffairs.com/news04/geico_google.html - 19k - Cached - Similar pages

Results 1 - 10 of about 2,230,000 for geico. (0.04 seco

Sponsored Links

<u>Great Car Insurance Rates</u> Simplify Buying Insurance at Safeco See Your Rate with an Instant Quote www.Safeco.com

Free Insurance Quotes Fill out one simple form to get multiple quotes from local agents. www.HometownQuotes.com

5 Free Quotes. 1 Form. Get 5 Free Quotes In Minutes! You Have Nothing To Lose. It's Free sayyessoftware.com/Insurance Missouri

Performance-based advertising works!

Multi-billion-dollar industry

- Interesting problem: What ads to show for a given query?
 - (This lecture)
- If I am an advertiser, which search terms should I bid on and how much should I bid?
 - (Not focus of this lecture)

Adwords Problem

Given:

- 1. A set of bids by advertisers for search queries
- **2.** A click-through rate for each advertiser-query pair
- **3.** A budget for each advertiser (say for 1 month)
- 4. A limit on the number of ads to be displayed with each search query
- Respond to each search query with a set of advertisers such that:
 - 1. The size of the set is no larger than the limit on the number of ads per query
 - 2. Each advertiser has bid on the search query
 - 3. Each advertiser has enough budget left to pay for the ad if it is clicked upon

Adwords Problem

- A stream of queries arrives at the search engine: q₁, q₂, ...
- Several advertisers bid on each query
- When query q_i arrives, search engine must pick a subset of advertisers whose ads are shown
- Goal: Maximize search engine's revenues
- Simplification: Instead of raw bids, use the "expected revenue per click" (i.e., Bid*CTR)
 Clearly we need an online algorithm!

The Adwords Innovation

Advertiser	Bid	CTR	Bid * CTR
Α	\$1.00	1%	1 cent
В	\$0.75	2%	1.5 cents
С	\$0.50	2.5%	1.125 cents
		Click through rate	Expected revenue

The Adwords Innovation

Advertiser	Bid	CTR	Bid * CTR
В	\$0.75	2%	1.5 cents
С	\$0.50	2.5%	1.125 cents
Α	\$1.00	1%	1 cent

Complications: Budget

- Two complications:
 - Budget
 - CTR of an ad is unknown

Each advertiser has a limited budget

 Search engine guarantees that the advertiser will not be charged more than their daily budget

Complications: CTR

- CTR: Each ad has a different likelihood of being clicked
 - Advertiser 1 bids \$2, click probability = 0.1
 - Advertiser 2 bids \$1, click probability = 0.5
 - Clickthrough rate (CTR) is measured historically
 - Very hard problem: Exploration vs. exploitation
 Exploit: Should we keep showing an ad for which we have good estimates of click-through rate

or

Explore: Shall we show a brand new ad to get a better sense of its click-through rate

Simplified Problem

□ We will start with the following simple version of Adwords:

- One ad shown for each query
- All advertisers have the same budget B
- All bids are \$1
- All ads are equally likely to be clicked and CTR = 1
- □ We will generalize it later.

Greedy Algorithm

□ *Simple greedy algorithm:*

For the current query **q**, pick any advertiser who:

- 1. has bid 1 on q
- 2. has remaining budget

□ What is the competitive ratio of this greedy algorithm?

□ Can we model this problem as bipartite matching?

Bipartite Matching Model

Online algorithm.

For each new query q assign a bid if available

Equivalent to the online greedy bipartitite matching algorithm, which had competitive ratio = 1/2.

So, the competitive ratio of this algorithm is also $\frac{1}{2}$.

Example: Bad Scenario for Greedy

Two advertisers A and B

- A bids on query x, B bids on x and y
- Both have budgets of \$4

Query stream: x x x y y y y

- Worst case greedy choice: B B B B _ _
- Optimal: **AAAABBBB**
- Competitive ratio = ½
- This is the worst case!
 - Note: Greedy algorithm is deterministic it always resolves draws in the same way

BALANCE Algorithm [MSVV]

- BALANCE Algorithm by Mehta, Saberi, Vazirani, and Vazirani
 - For each query, pick the advertiser with the largest unspent budget
 - Break ties arbitrarily (but in a deterministic way)

Example: BALANCE

Two advertisers A and B

- A bids on query x, B bids on x and y
- Both have budgets of \$4
- Query stream: x x x y y y y
- BALANCE choice: A B A B B B _ _
 Optimal: A A A A B B B B
- Competitive ratio ≤ ¾

Analyzing BALANCE: Simple Case

- Try to prove a lower bound for the competitive ratio
 i.e. Consider the worst-case behavior of BALANCE algorithm
- □ Start with the simple case:
 - 2 advertisers A_1 and A_2 with equal budgets B
 - Optimal solution exhausts both budgets
 - All queries assigned to at least one advertiser in the optimal solution
 - Remove the queries that are not assigned by the optimal algorithm
 - This only makes things worse for BALANCE

Queries allocated to A_1 in the optimal solution

Queries allocated to A_2 in the optimal solution

□ <u>Claim</u>: BALANCE must exhaust the budget of at least one advertiser

- *Proof by contradiction*: Assume both advertisers have left over budgets
 - Consider query q that is assigned in the optimal solution, but not in BALANCE.
 - Contradiction: q should have been assigned to at least the same advertiser because both advertisers have available budget.

Goal: Find a lower bound for:

 $\frac{|S_{balance}|}{|S_{optimal}|}$

- \square Without loss of generality, assume the whole budget of A₂ is exhausted.
- □ Claim: All blue queries (the ones assigned to A_1 in the optimal solution) must be assigned to A_1 and/or A_2 in the BALANCE solution.
 - Proof by contradiction: Assume a blue query q not assigned to either A_1 or A_2 . Since budget of A_1 is not exhausted, it should have been assigned to A_1 .

- □ Some of the green queries (the ones assigned to A_2 in the optimal solution) are not assigned to either A_1 or A_2 . Let x be the # of such queries.
- \square Prove an upper bound for x
 - Worst case for the BALANCE algorithm.

- □ Consider two cases for z:
- $\Box \ \underline{Case \ l}: z \ge B/2$

size $(A_1) = y + z \ge B/2$ size $(A_1 + A_2) = B + y + z \ge 3B/2$

$\Box \underline{Case \ 2}: z < B/2$

Consider the time when last
 blue query was assigned to A₂:

$$\geq B/2 \bigwedge_{A_1} A_2 \stackrel{\text{length}}{=} B/2$$

 A_2 has remaining budget of $\leq B/2$

For A_2 to be chosen, A_1 must also have remaining budget of $\leq B/2$

□ *<u>Case 2</u>*: z < B/2

size $(A_1) \ge B/2$ size $(A_1 + A_2) = B + size(A_1) \ge 3B/2$

□ <u>Conclusion:</u>

$$\frac{|S_{balance}|}{|S_{optimal}|} \ge \frac{\frac{3B}{2}}{2B} = \frac{3}{4}$$

Assumption: Both advertisers have the same budget B

□ Can we generalize this result to any 2-advertiser problem?

- The textbook claims we can.
- <u>Exercise</u>: Find a counter-example to disprove textbook's claim.
 - **<u>Hint</u>**: Consider two advertisers with budgets **B** and **B**/2.

BALANCE: Multiple Advertisers

- For multiple advertisers, worst competitive ratio of BALANCE is 1–1/e = approx. 0.63
 - Interestingly, no online algorithm has a better competitive ratio!
- See textbook for the worst-case analysis.

General Version of the Problem

- Arbitrary bids and arbitrary budgets!
- In a general setting BALANCE can be terrible
 - Consider two advertisers A₁ and A₂

•
$$A_1: x_1 = 1, b_1 = 110$$

•
$$A_2: x_2 = 10, b_2 = 100$$

- Assume we see 10 instances of q
- BALANCE always selects A₁ and earns 10
- Optimal earns 100

Generalized BALANCE

- Arbitrary bids: consider query q, bidder i
 - Bid = x_i
 - Budget = b_i
 - Amount spent so far = m_i
 - Fraction of budget left over f_i = 1-m_i/b_i
 - Define \u03c6(q) = x_i(1-e^{-f_i})
- Allocate query **q** to bidder **i** with largest value of $\psi_i(q)$
- Same competitive ratio (1-1/e)

Conclusions

□ Web Advertising: Try to maximize ad revenue from a stream of queries

□ Online algorithms: Make decisions without seeing the whole input set

 Approximation algorithms: Theoretically prove upper and lower bounds w.r.t. the optimal solutions.