CS425: Algorithms for Web Scale Data
 Lecture 7: Web Advertising

Most of the slides are from the Mining of Massive Datasets book.
These slides have been modified for CS425. The original slides can be accessed at: www.mmds.org

Online Algorithms

- Classic model of algorithms
- You get to see the entire input, then compute some function of it
- In this context, "offline algorithm"
- Online Algorithms
- You get to see the input one piece at a time, and need to make irrevocable decisions along the way

Online Bipartite Matching

Bipartite Graphs

\square Bipartite graph:

- Two sets of nodes: A and B
- There are no edges between nodes that belong to the same set.
\square Edges are only between nodes in different sets.

Bipartite Matching

\square Maximum Bipartite Matching: Choose a subset of edges E_{M} such that:

1. Each vertex is connected to at most one edge in E_{M}
2. The size of E_{M} is as large as possible
\square Example: Matching projects to groups

$M=\{(1, a),(2, b),(3, d)\}$ is a matching Cardinality of matching $=|M|=3$

Bipartite Matching

\square Maximum Bipartite Matching: Choose a subset of edges E_{M} such that:

1. Each vertex is connected to at most one edge in E_{M}
2. The size of E_{M} is as large as possible
\square Example: Matching projects to groups

$$
\begin{aligned}
M= & \{(1, c),(2, b),(3, d),(4, a)\} \text { is a } \\
& \text { maximum matching }
\end{aligned}
$$

Cardinality of matching $=|\mathrm{M}|=4$

Example: Bipartite Matching

$M=\{(1, c),(2, b),(3, d),(4, a)\}$ is a perfect matching

Perfect matching ... all vertices of the graph are matched
Maximum matching ... a matching that contains the largest possible number of matches

Matching Algorithm

- Problem: Find a maximum matching for a given bipartite graph
- A perfect one if it exists
- There is a polynomial-time offline algorithm based on augmenting paths (Hopcroft \& Karp 1973, see http://en.wikipedia.org/wiki/Hopcroft-Karp algorithm)
- But what if we do not know the entire graph upfront?

Online Bipartite Matching Problem

\square Initially, we are given the set of projects
\square The TA receives an email indicating the preferences of one group.
\square The TA must decide at that point to either:
assign a prefered project to this group, or not assign any projects to this group
\square Objective is to maximize the number of preferred assignments

Note: This is not how your projects were assigned \odot

Greedy Online Bipartite Matching

\square Greedy algorithm
For each group g
Let P_{g} be the set of projects group g prefers
if there is a $p \in P_{g}$ that is not already assigned to another group assign project p to group g
else
do not assign any project to g

Greedy Online Graph Matching: Example

(1,a)
(2,b)
(3,d)

Competitive Ratio

- For input I, suppose greedy produces matching $\boldsymbol{M}_{\text {greedy }}$ while an optimal matching is $\boldsymbol{M}_{\text {opt }}$

Competitive ratio $=$

$\min _{\text {all possible inputs I }}\left(\left|M_{\text {greedy }}\right| /\left|M_{\text {opt }}\right|\right)$
(what is greedy's worst performance over all possible inputs I)

Analysis of the Greedy Algorithm

Step 1: Find a lower bound for the competitive ratio

Definitions:

$\mathbf{M}_{\mathbf{o}}$: The optimal matching
$\mathbf{M}_{\mathbf{g}}$: The greedy matching
L: The set of vertices from A that are in M_{0}, but not in M_{g} \mathbf{R} : The set of vertices from B that are connected to at least one vertex in L

Analysis of the Greedy Algorithm (cont'd)

\square Claim: All vertices in R must be in M_{g}
Proof:

- By contradiction, assume there is a vertex $v \in R$ that is not in M_{g}.

■ There must be another vertex $u \in L$ that is connected to v.
$■$ By definition u is not in M_{g} either.
$■$ When the greedy algorithm processed edge (u, v), both vertices u and v were available, but it matched none of them. This is a contradiction!
$\square \underline{\text { Fact: }}\left|\mathrm{M}_{\mathrm{o}}\right| \leq\left|\mathrm{M}_{\mathrm{g}}\right|+|\mathrm{L}|$
Adding the missing elements to Mg will make its size to be at least the size of the optimal matching.
\square Fact: $|\mathrm{L}| \leq|\mathrm{R}|$
Each vertex in L was matched to another vertex in M_{o}

Analysis of the Greedy Algorithm (cont'd)

$\square \underline{\text { Fact: }}|\mathrm{R}| \leq\left|\mathrm{M}_{\mathrm{g}}\right|$
All vertices in R are in M_{g}
\square Summary:

$$
\begin{aligned}
& \left|\mathrm{M}_{\mathrm{o}}\right| \leq\left|\mathrm{M}_{\mathrm{g}}\right|+|\mathrm{L}| \\
& |\mathrm{L}| \leq|\mathrm{R}| \\
& |\mathrm{R}| \leq\left|\mathrm{M}_{\mathrm{g}}\right|
\end{aligned}
$$

Lower-bound for competitive ratio:

$$
\frac{\left|M_{g}\right|}{\left|M_{o}\right|} \geq \frac{1}{2}
$$

\square Combine:

$$
\begin{aligned}
\left|\mathrm{M}_{\mathrm{o}}\right| & \leq\left|\mathrm{M}_{\mathrm{g}}\right|+|\mathrm{L}| \\
& \leq\left|\mathrm{M}_{\mathrm{g}}\right|+|\mathrm{R}| \\
& \leq 2\left|\mathrm{M}_{\mathrm{g}}\right|
\end{aligned}
$$

Analysis of the Greedy Algorithm (cont'd)

\square We have shown that the competitive ratio is at least $1 / 2$. However, can it be better than $1 / 2$?
\square Step 2: Find an upper bound for competitive ratio:
Typical approach: Find an example.
If there is at least one example that has competitive ratio of r,
it must mean that competitive ratio cannot be greater than r .

Greedy matching: $(1, a),(2, b)$
The optimal matching is: $(4, a),(3, b),(1, c),(2, d)$ Competitive ratio $=1 / 2$ for this example So, competitive ratio <=1/2

Greedy Matching Algorithm

\square We have shown that competitive ratio for the greedy algorithm is $1 / 2$.
\square We proved that both lower bound and upper bound is $1 / 2$
\square Conclusion: The online greedy algorithm can result in a matching solution that has half the size of an optimal offline algorithm in the worst case.

Web Advertising

History of Web Advertising

- Banner ads (1995-2001)
- Initial form of web advertising
- Popular websites charged
$x \$$ for every 1,000
"impressions" of the ad
- Called "CPM" rate
(Cost per thousand impressions)

CPM...cost per mille
Mille...thousand in Latin

- Modeled similar to TV, magazine ads
- From untargeted to demographically targeted
- Low click-through rates
- Low ROI for advertisers

Performance-based Advertising

- Introduced by Overture around 2000
- Advertisers bid on search keywords
- When someone searches for that keyword, the highest bidder's ad is shown
- Advertiser is charged only if the ad is clicked on
- Similar model adopted by Google with some changes around 2002
- Called Adwords

Ads vs. Search Results

Web

GEICO Car insurance. Get an auto insurance quote and save today...

GEICO auto insurance, online car insurance quote, motorcycle insurance quote, online insurance sales and service from a leading insurance company.
wWw.geico.com/-21k-Sep 22, 2005 - Cached - Similar pages
Auto Insurance - Buy Auto Insurance
Contact Us - Make a Payment
More results from waw. geico.com *

Geico, Google Settle Trademark Dispute

The case was resolved out of court, so advertisers are still left without legal guidance on use of trademarks within ads or as keywords.
wow.clickz.com/news/article.php/3547356-44k - Cached - Similar pages

Google and GEICO settle AdWords dispute | The Register

Google and car insurance firm GEICO have settled a trade mark dispute over ... Car insurance firm GEICO sued both Google and Yahoo! subsidiary Overture in ...
Whw. theregister.co.uk/2005/09/09/google_geico_settlement/ - 21 k - Cached - Similar pages

Sponsored Links

Great Car Insurance Rates

Simplify Buying Insurance at Safeco See Your Rate with an Instant Quote whw. Safeco.com

Free Insurance Quotes
Fill out one simple form to get multiple quotes from local agents. waw. HometownQuotes com

5 Free Quotes. 1 Form.

Get 5 Free Quotes In Minutes! You Have Nothing To Lose. It's Free sayyessoftware.com/lnsurance Missouri

GEICO v. Google
... involving a lawsuit filed by Government Employees Insurance Company (GEICO). GEICO has filed suit against two major Internet search engine operators, ...
wow consumeraffairs com/news04/geico_google.html - 19k - Cached - Similar pages

Web 2.0

- Performance-based advertising works!
- Multi-billion-dollar industry
- Interesting problem:

What ads to show for a given query?

- (This lecture)
- If I am an advertiser, which search terms should I bid on and how much should I bid?
- (Not focus of this lecture)

Adwords Problem

- Given:
- 1. A set of bids by advertisers for search queries
- 2. A click-through rate for each advertiser-query pair
- 3. A budget for each advertiser (say for 1 month)
- 4. A limit on the number of ads to be displayed with each search query
- Respond to each search query with a set of advertisers such that:
- 1. The size of the set is no larger than the limit on the number of ads per query
- 2. Each advertiser has bid on the search query
- 3. Each advertiser has enough budget left to pay for the ad if it is clicked upon

Adwords Problem

- A stream of queries arrives at the search engine: $\boldsymbol{q}_{\mathbf{1}}, \boldsymbol{q}_{\mathbf{2}}, \ldots$
- Several advertisers bid on each query
- When query $\boldsymbol{q}_{\boldsymbol{i}}$ arrives, search engine must pick a subset of advertisers whose ads are shown
- Goal: Maximize search engine's revenues
- Simplification: Instead of raw bids, use the "expected revenue per click" (i.e., Bid*CTR)
- Clearly we need an online algorithm!

The Adwords Innovation

Advertiser	Bid	CTR	Bid * CTR
A	$\$ 1.00$	1%	1 cent
B	$\$ 0.75$	2%	1.5 cents
C	$\$ 0.50$	2.5%	1.125 cents
	Click through rate	Expected revenue	

The Adwords Innovation

Advertiser	Bid	CTR	Bid * CTR
B	$\$ 0.75$	2%	1.5 cents
C	$\$ 0.50$	2.5%	1.125 cents
A	$\$ 1.00$	1%	1 cent

Complications: Budget

- Two complications:
- Budget
- CTR of an ad is unknown
- Each advertiser has a limited budget
- Search engine guarantees that the advertiser will not be charged more than their daily budget

Complications: CTR

- CTR: Each ad has a different likelihood of being clicked
- Advertiser 1 bids \$2, click probability = 0.1
- Advertiser 2 bids \$1, click probability = 0.5
- Clickthrough rate (CTR) is measured historically
- Very hard problem: Exploration vs. exploitation Exploit: Should we keep showing an ad for which we have good estimates of click-through rate or
Explore: Shall we show a brand new ad to get a better sense of its click-through rate

Simplified Problem

\square We will start with the following simple version of Adwords:

- One ad shown for each query
- All advertisers have the same budget B
- All bids are \$1
\square All ads are equally likely to be clicked and CTR = 1
\square We will generalize it later.

Greedy Algorithm

\square Simple greedy algorithm:
For the current query q, pick any advertiser who:

1. has bid 1 on q
2. has remaining budget
\square What is the competitive ratio of this greedy algorithm?
\square Can we model this problem as bipartite matching?

Bipartite Matching Model

Online algorithm:

For each new query q assign a bid if available

Equivalent to the online greedy bipartitite matching algorithm, which had competitive ratio $=1 / 2$.

So, the competitive ratio of this algorithm is also $1 / 2$.

Example: Bad Scenario for Greedy

- Two advertisers A and B
- \boldsymbol{A} bids on query $\boldsymbol{x}, \boldsymbol{B}$ bids on \boldsymbol{x} and \boldsymbol{y}
- Both have budgets of \$4
- Query stream: xxxxyyy
- Worst case greedy choice: B B B B _ _ _
- Optimal: A A A A B B B B
- Competitive ratio = $1 / 2$
- This is the worst case!
- Note: Greedy algorithm is deterministic - it always resolves draws in the same way

BALANCE Algorithm [MSVV]

- BALANCE Algorithm by Mehta, Saberi, Vazirani, and Vazirani
- For each query, pick the advertiser with the largest unspent budget
- Break ties arbitrarily (but in a deterministic way)

Example: BALANCE

- Two advertisers A and B
- A bids on query $\boldsymbol{x}, \mathbf{B}$ bids on \boldsymbol{x} and \boldsymbol{y}
- Both have budgets of \$4
- Query stream: xxxxyyy
- BALANCE choice: A B A B B _ _
- Optimal: A A A A B B B B
- Competitive ratio $\leq 3 / 4$

Analyzing BALANCE: Simple Case

\square Try to prove a lower bound for the competitive ratio

- i.e. Consider the worst-case behavior of BALANCE algorithm
\square Start with the simple case:
- 2 advertisers A_{1} and A_{2} with equal budgets B
- Optimal solution exhausts both budgets
- All queries assigned to at least one advertiser in the optimal solution
$■$ Remove the queries that are not assigned by the optimal algorithm
\square This only makes things worse for BALANCE

\square Queries allocated to $\boldsymbol{A}_{\boldsymbol{1}}$ in the optimal solution
\square Queries allocated to $\boldsymbol{A}_{\boldsymbol{2}}$ in the optimal solution

Analysis of BALANCE: Simple Case

\square Claim: BALANCE must exhaust the budget of at least one advertiser

- Proof by contradiction: Assume both advertisers have left over budgets

■ Consider query q that is assigned in the optimal solution, but not in BALANCE.

- Contradiction: q should have been assigned to at least the same advertiser because both advertisers have available budget.

Goal: Find a lower bound for: $\frac{\left|S_{\text {balance }}\right|}{\left|S_{\text {optimal }}\right|}$

Analysis of BALANCE: Simple Case

\square Without loss of generality, assume the whole budget of A_{2} is exhausted.
\square Claim: All blue queries (the ones assigned to A_{1} in the optimal solution) must be assigned to A_{1} and/or A_{2} in the BALANCE solution.
\square Proof by contradiction: Assume a blue query q not assigned to either A_{1} or A_{2}. Since budget of A_{1} is not exhausted, it should have been assigned to A_{1}.

Analysis of BALANCE: Simple Case

\square Some of the green queries (the ones assigned to A_{2} in the optimal solution) are not assigned to either A_{1} or A_{2}. Let x be the \# of such queries.
\square Prove an upper bound for x

- Worst case for the BALANCE algorithm.

Analysis of BALANCE: Simple Case

\square Consider two cases for z :
$\square \underline{\text { Case 1 }: ~} \mathrm{z} \geq \mathrm{B} / 2$

$$
\begin{aligned}
& \operatorname{size}\left(A_{1}\right)=y+z \geq B / 2 \\
& \operatorname{size}\left(A_{1}+A_{2}\right)=B+y+z \geq 3 B / 2
\end{aligned}
$$

Analysis of BALANCE: Simple Case

\square Case 2: z < B/2
\square Consider the time when last
blue query was assigned to A_{2} :

A_{2} has remaining budget of $\leq B / 2$
For A_{2} to be chosen, A_{1} must also have remaining budget of $\leq B / 2$

Analysis of BALANCE: Simple Case

Optimal solution

\square Case 2: z < B/2

$$
\begin{aligned}
& \operatorname{size}\left(A_{1}\right) \geq B / 2 \\
& \operatorname{size}\left(A_{1}+A_{2}\right)=B+\operatorname{size}\left(A_{1}\right) \geq 3 B / 2
\end{aligned}
$$

Analysis of BALANCE: Simple Case

\square Conclusion:

$$
\frac{\left|S_{\text {balance }}\right|}{\left|S_{\text {optimal }}\right|} \geq \frac{\frac{3 B}{2}}{2 B}=\frac{3}{4}
$$

Assumption: Both advertisers have the same budget B

Can we generalize this result to any 2-advertiser problem?

- The textbook claims we can.
- Exercise: Find a counter-example to disprove textbook's claim.
- Hint: Consider two advertisers with budgets B and B/2.

BALANCE: Multiple Advertisers

- For multiple advertisers, worst competitive ratio of BALANCE is $1-1 / \mathrm{e}=$ approx. 0.63
- Interestingly, no online algorithm has a better competitive ratio!
- See textbook for the worst-case analysis.

General Version of the Problem

- Arbitrary bids and arbitrary budgets!
- In a general setting BALANCE can be terrible
- Consider two advertisers $\boldsymbol{A}_{\mathbf{1}}$ and $\boldsymbol{A}_{\mathbf{2}}$
- $A_{1}: x_{1}=1, b_{1}=110$
- $A_{2}: x_{2}=10, b_{2}=100$
- Assume we see 10 instances of \mathbf{q}
- BALANCE always selects \boldsymbol{A}_{1} and earns 10
- Optimal earns 100

Generalized BALANCE

- Arbitrary bids: consider query \boldsymbol{q}, bidder \boldsymbol{i}
- Bid $=\boldsymbol{x}_{\boldsymbol{i}}$
- Budget $=\boldsymbol{b}_{\boldsymbol{i}}$
- Amount spent so far $=\boldsymbol{m}_{\boldsymbol{i}}$
- Fraction of budget left over $f_{i}=1-m_{i} / b_{i}$
- Define $\psi_{i}(q)=x_{i}\left(1-e^{-f_{i}}\right)$
- Allocate query \boldsymbol{q} to bidder \boldsymbol{i} with largest value of $\psi_{i}(q)$
- Same competitive ratio (1-1/e)

Conclusions

\square Web Advertising: Try to maximize ad revenue from a stream of queries
\square Online algorithms: Make decisions without seeing the whole input set
\square Approximation algorithms: Theoretically prove upper and lower bounds w.r.t. the optimal solutions.

