CS425: Algorithms for Web Scale Data Lecture 8: Recommender Systems: Content-Based Systems & Collaborative Filtering

Most of the slides are from the Mining of Massive Datasets book. These slides have been modified for CS425. The original slides can be accessed at: <u>www.mmds.org</u>

Example: Recommender Systems

Customer X

- Buys Metallica CD
- Buys Megadeth CD

Customer Y

- Does search on Metallica
- Recommender system suggests Megadeth from data collected about customer X

Recommendations

From Scarcity to Abundance

- Shelf space is a scarce commodity for traditional retailers
 - Also: TV networks, movie theaters,...
- Web enables near-zero-cost dissemination of information about products
 - From scarcity to abundance
- More choice necessitates better filters
 - Recommendation engines
 - How Into Thin Air made Touching the Void a bestseller: <u>http://www.wired.com/wired/archive/12.10/tail.html</u>

Sidenote: The Long Tail

Sources: Erik Brynjolfsson and Jeffrey Hu, MIT, and Michael Smith, Carnegie Mellon; Barnes & Noble; Netflix; RealNetworks Source: Chris Anderson (2004)

Physical vs. Online

Read <u>http://www.wired.com/wired/archive/12.10/tail.html</u> to learn more!

Types of Recommendations

Editorial and hand curated

- List of favorites
- Lists of "essential" items

Simple aggregates

Top 10, Most Popular, Recent Uploads

Tailored to individual users

Amazon, Netflix, ...

Formal Model

- X = set of Customers
- S = set of Items
- Utility function $u: X \times S \rightarrow R$
 - **R** = set of ratings
 - **R** is a totally ordered set
 - e.g., **0-5** stars, real number in **[0,1]**

Utility Matrix

	Avatar	LOTR	Matrix	Pirates	
Alice	1		0.2		
Bob		0.5		0.3	
Carol	0.2		1		
David				0.4	

Key Problems

• (1) Gathering "known" ratings for matrix

- How to collect the data in the utility matrix
- (2) Extrapolate unknown ratings from the known ones
 - Mainly interested in high unknown ratings
 - We are not interested in knowing what you don't like but what you like

(3) Evaluating extrapolation methods

 How to measure success/performance of recommendation methods

(1) Gathering Ratings

Explicit

- Ask people to rate items
- Doesn't work well in practice people can't be bothered

Implicit

- Learn ratings from user actions
 - E.g., purchase implies high rating
- What about low ratings?

(2) Extrapolating Utilities

- Key problem: Utility matrix U is sparse
 - Most people have not rated most items
 - Cold start:
 - New items have no ratings
 - New users have no history

Three approaches to recommender systems:

- 1) Content-based
 2) Collaborative
- 3) Latent factor based

Content-based Recommender Systems

Content-based Recommendations

Main idea: Recommend items to customer x similar to previous items rated highly by x

Example:

Movie recommendations

 Recommend movies with same actor(s), director, genre, ...

Websites, blogs, news

Recommend other sites with "similar" content

Plan of Action

- For each item, create an item profile
- Profile is a set (vector) of features
 - Movies: author, title, actor, director,...
 - Text: Set of "important" words in document
- How to pick important features?
 - Usual heuristic from text mining is TF-IDF (Term frequency * Inverse Doc Frequency)
 - Term ... Feature
 - Document ... Item

 $f_{ij} = \text{frequency of term (feature) } i \text{ in doc (item) } j$ $TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}}$ Note: we normalize TF to discount for "longer" documents

- **n**_i = number of docs that mention term **i**
- **N** = total number of docs

$$IDF_i = \log \frac{N}{n_i}$$

TF-IDF score: $w_{ij} = TF_{ij} \times IDF_i$

Doc profile = set of words with highest **TF-IDF** scores, together with their scores

Two Types of Document Similarity

In the LSH lecture: Lexical similarity

Large identical sequences of characters

□ For recommendation systems: Content similarity

- Occurrences of common important words
- TF-IDF score: If an uncommon word appears more frequently in two documents, it contributes to similarity.

□ Similar techniques (e.g. MinHashing and LSH) are still applicable.

Representing Item Profiles

□ A vector entry for each feature

Boolean features

e.g. One bool feature for every actor, director, genre, etc.

Numeric features

e.g. Budget of a movie, TF-IDF for a document, etc.

We may need weighting terms for normalization of features

	Spielberg	Scorsese	Tarantino	Lynch	Budget
Jurassic Park	1	0	0	0	63M
Departed	0	1	0	0	90M
Eraserhead	0	0	0	1	20K
Twin Peaks	0	0	0	1	10M

User Profiles – Option 1

<u>Option 1</u>: Weighted average of rated item profiles Utility matrix (ratings 1-5)

	Jurassic Park	Minority Report	Schindler's List	Departed	Aviator	Eraser head	Twin Peaks
User 1	4		5			1	1
User 2	2	3			1	5	4
User 3		5	4	5	5		3

User profile(ratings 1-5)

	Spielberg	Scorcese	Lynch	[
User 1	4.5	0	1	Missing scores
User 2	2.5	1	4.5	bad scores
User 3	4.5	5	3	

User Profiles – Option 2 (Better)

<u>Option 2</u>: Subtract average values from ratings first Utility matrix (ratings 1-5)

	Jurassic Park	Minority Report	Schindler's List	Departed	Aviator	Eraser head	Twin Peaks	Avg
User 1	4		5	0		1	1	2.75
User 2	2	3			1	5	4	3
User 3		5	4	5	5		3	4.4

User Profiles – Option 2 (Better)

<u>Option 2</u>: Subtract average values from ratings first Utility matrix (ratings 1-5)

	Jurassic Park	Minority Report	Schindler's List	Departed	Aviator	Eraser head	Twin Peaks	Avg
User 1	1.25		2.25			-1.75	-1.75	2.75
User 2	-1	0			-2	3	1	3
User 3		0.6	-0.4	0.6	0.6		-1.4	4.4

User profile

	Spielberg	Scorcese	Lynch
User 1	1.75	0	-1.75
User 2	-0.5	-2	2
User 3	-0.1	0.6	-1.4

Prediction Heuristic

Given:

- A feature vector for user U
- A feature vector for movie M
- Predict user U's rating for movie M
- Which distance metric to use?
- Cosine distance is a good candidate
 - Works on weighted vectors
 - Only directions are important, not the magnitude
 - The magnitudes of vectors may be very different in movies and users

Reminder: Cosine Distance

Y

Consider x and y represented as vectors in an n-dimensional space

$$\theta^{\theta} \cos(\theta) = \frac{x \cdot y}{||x|| \cdot ||y|}$$

The cosine distance is defined as the θ value
 Or, cosine similarity is defined as cos(θ)

Only direction of vectors considered, not the magnitudes
 Useful when we are dealing with vector spaces

Reminder: Cosine Distance - Example

$$y = [2.0, 1.0, 1.0]$$

 $x = [0.1, 0.2, -0.1]$

$$\cos(\theta) = \frac{x \cdot y}{||x|| \cdot ||y||} = \frac{0.2 + 0.2 - 0.1}{\sqrt{0.01 + 0.04 + 0.01} \cdot \sqrt{4 + 1 + 1}}$$
$$= \frac{0.3}{\sqrt{0.36}} = 0.5 \Rightarrow \theta = 60^{0}$$

Note: The distance is independent of vector magnitudes

Predict the rating of user U for movies 1, 2, and 3

	Actor 1	Actor 2	Actor 3	Actor 4
User U	-0.6	0.6	-1.5	2.0
Movie 1	1	1	0	0
Movie 2	1	0	1	0
Movie 3	0	1	0	1

User and movie feature vectors

	Actor 1	Actor 2	Actor 3	Actor 4	Vector Magn.
User U	-0.6	0.6	-1.5	2.0	2.6
Movie 1	1	1	0	0	1.4
Movie 2	1	0	1	0	1.4
Movie 3	0	1	0	1	1.4

	Actor 1	Actor 2	Actor 3	Actor 4	Vector Magn.	Cosine Sim
User U	-0.6	0.6	-1.5	2.0	2.6	
Movie 1	1	1	0	0	1.4	0
Movie 2	1	0	1	0	1.4	-0.6
Movie 3	0	1	0	1	1.4	0.7

	Actor 1	Actor 2	Actor 3	Actor 4	Vector Magn.	Cosine Sim	Cosine Dist
User U	-0.6	0.6	-1.5	2.0	2.6		
Movie 1	1	1	0	0	1.4	0	90 ⁰
Movie 2	1	0	1	0	1.4	-0.6	124 ⁰
Movie 3	0	1	0	1	1.4	0.7	46 ⁰

	Actor 1	Actor 2	Actor 3	Actor 4	Vector Magn.	Cosine Sim	Cosine Dist	Interpretation
User U	-0.6	0.6	-1.5	2.0	2.6			
Movie 1	1	1	0	0	1.4	0	90 ⁰	Neither likes nor dislikes
Movie 2	1	0	1	0	1.4	-0.6	124 ⁰	Dislikes
Movie 3	0	1	0	1	1.4	0.7	46 ⁰	Likes

Content-Based Approach: True or False?

Need data on other users

False

Can handle users with unique tastes

Likes Metallica, Sinatra and Bieber

True – no need to have similarity with other users

Can handle new items easily

True – well-defined features for items

Can handle new users easily

False – how to construct user-profiles?

Can provide explanations for the predicted recommendations
 True – know which features contributed to the ratings

Pros: Content-based Approach

- +: No need for data on other users
 - No cold-start or sparsity problems
- +: Able to recommend to users with unique tastes
- +: Able to recommend new & unpopular items
 - No first-rater problem
- +: Able to provide explanations
 - Can provide explanations of recommended items by listing content-features that caused an item to be recommended

Cons: Content-based Approach

Finding the appropriate features is hard

- E.g., images, movies, music
- Recommendations for new users
 - How to build a user profile?
- -: Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users
 - e.g. Users who like director X also like director Y
 User U rated X, but doesn't know about Y

Collaborative Filtering

Harnessing quality judgments of other users

Collaborative Filtering

 Estimate x's ratings based on ratings of users in N

database

Finding "Similar" Users $r_x = [", -, -, r_y]$

 $r_x, r_y \text{ as sets:}$ $r_x = \{1, 4, 5\}$

 $r_v = \{1, 3, 4\}$

avg.

- Let r_x be the vector of user x's ratings
 Jaccard similarity measure
- Problem: Ignores the value of the rating
 Cosine similarity measure

$$sim(x, y) = cos(r_x, r_y) = \frac{r_x \cdot r_y}{||r_x|| \cdot ||r_y||} \qquad r_x, r_y \text{ as points:} \\ r_x = \{1, 0, 0, 1, 3\} \\ r_y = \{1, 0, 2, 2, 0\} \end{cases}$$

Problem: Treats missing ratings as "negative"
 Pearson correlation coefficient

•
$$S_{xy}$$
 = items rated by both users x and y
 $sim(x, y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x}) (r_{ys} - \overline{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x})^2} \sqrt{\sum_{s \in S_{xy}} (r_{ys} - \overline{r_y})^2}} \overline{r_x, \overline{r_y} \dots}$
rating of

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Similarity Metric

Cosine sim: sim(x, y)

	HP1	HP2	HP3	\mathbf{TW}	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

- Intuitively we want: sim(A, B) > sim(A, C)
- Jaccard similarity: 1/5 < 2/4</p>
- Cosine similarity: 0.386 > 0.322
 - Considers missing ratings as "negative"

Solution: subtract the (row) mean								
	HP1	HP2	HP3	\mathbf{TW}	SW1	SW2	SW3	
Α	2/3			5/3	-7/3			
B	1/3	1/3	-2/3					
C				-5/3	1/3	4/3		
D		0					0	

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

sim A,B vs. A,C: 0.092 > -0.559

Notice cosine sim. is correlation when data is centered at 0

Rating Predictions

From similarity metric to recommendations:

- Let r_x be the vector of user x's ratings
- Let N be the set of k users most similar to x who have rated item i
- Prediction for item i of user x:

•
$$r_{xi} = \frac{1}{k} \sum_{y \in N} r_{yi}$$

• $r_{xi} = \frac{\sum_{y \in N} s_{xy} \cdot r_{yi}}{\sum_{y \in N} s_{xy}}$

Shorthand: $s_{xy} = sim(x, y)$

- Other options?
- Many other tricks possible...

Rating Predictions

Predict the rating of A for HP2:

Prediction based on the top 2 neighbors who have also rated HP2

Option 1:
$$r_{xi} = \frac{1}{k} \sum_{y \in N} r_{yi}$$

$$r_{A,HP2} = (5+3) / 2 = 4$$

Rating Predictions

Predict the rating of A for HP2:

Prediction based on the top 2 neighbors who have also rated HP2

Option 2:
$$r_{xi} = \frac{\sum_{y \in N} s_{xy} \cdot r_{yi}}{\sum_{y \in N} s_{xy}}$$

 $r_{A,HP2} = (5 \times 0.09 + 3 \times 0) / 0.09 = 5$

Item-Item Collaborative Filtering

So far: User-user collaborative filtering

Another view: Item-item

- For item *i*, find other similar items
- Estimate rating for item *i* based on ratings for similar items
- Can use same similarity metrics and prediction functions as in user-user model

 $\sum_{i \in N(i;x)} s_{ij} s_{ij}$ xi

s_{ij}... similarity of items *i* and *j*r_{xj}...rating of user *u* on item *j N*(*i*;*x*)... set items rated by *x* similar to *i*

- unknown rating

users

- rating between 1 to 5

users

- estimate rating of movie 1 by user 5

users

Neighbor selection: Identify movies similar to movie 1, rated by user 5

Here we use Pearson correlation as similarity:
1) Subtract mean rating *m_i* from each movie *i m₁* = (1+3+5+5+4)/5 = 3.6 row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]

2) Compute cosine similarities between rows

users

Neighbor selection: Identify movies similar to movie 1, rated by user 5 Here we use Pearson correlation as similarity: 1) Subtract mean rating m_i from each movie i $m_1 = (1+3+5+5+4)/5 = 3.6$

- *row 1:* [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]
- 2) Compute cosine similarities between rows

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Compute similarity weights:

s_{1,3}=0.41, s_{1,6}=0.59

movies

2.6 <u>3</u> <u>6</u>

users

Predict by taking weighted average:

 $r_{1.5} = (0.41^{*}2 + 0.59^{*}3) / (0.41 + 0.59) = 2.6$

 $r_{ix} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}$

CF: Common Practice

- Define similarity s_{ii} of items i and j
- Select k nearest neighbors N(i; x)
 - Items most similar to *i*, that were rated by *x*
- Estimate rating r_{xi} as the weighted average:

Example

The global movie rating is μ = 2.8

i.e. average of all ratings of all users is 2.8

The average rating of user x is μ_x = 3.5
Rating deviation of user x is b_x = μ_x - μ = 0.7

i.e. this user's avg rating is 0.7 larger than global avg

The average rating for movie i is μ_i = 2.6
Rating deviation of movie i is b_i = μ_i - μ = -0.2

i.e. this movie's avg rating is 0.2 less than global avg

□ Baseline estimate for user x and movie i is $b_{xi} = \mu + b_x + b_i = 2.8 + 0.7 - 0.2 = 3.3$

Example (cont'd)

$$r_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$$

Items k and m: The most similar items to i that are also rated by x
 Assume both have similarity values of 0.4

□ Assume:

$$r_{xk} = 2$$
 and $b_{xk} = 3.2$ \rightarrow deviation of -1.2 $r_{xm} = 3$ and $b_{xk} = 3.8$ \rightarrow deviation of -0.8

Example (cont'd)

$$r_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$$

Rating r_{xi} is the baseline rating plus the weighted avg of deviations of the most similar items' ratings:

$$r_{xi} = 3.3 + \frac{0.4 \times (-1.2) + 0.4 \times (-0.8)}{0.4 + 0.4} = 2.3$$

Item-Item vs. User-User

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.8	
Bob		0.5		0.3
Carol	0.9		1	0.8
David			1	0.4

- In practice, it has been observed that <u>item-item</u> often works better than user-user
- Why? Items are simpler, users have multiple tastes

Collaborating Filtering: True or False?

Need data on other users True Effective for users with unique tastes and esoteric items False – relies on similarity between users or items Can handle new items easily False – cold start problems Can handle new users easily False – cold start problems Can provide explanations for the predicted recommendations User-user: False – "because users X, Y, Z also liked it" Item-item: True – "because you also liked items i, j, k"

Pros/Cons of Collaborative Filtering

+ Works for any kind of item

No feature selection needed

- Cold Start:

Need enough users in the system to find a match

- Sparsity:

- The user/ratings matrix is sparse
- Hard to find users that have rated the same items

- First rater:

- Cannot recommend an item that has not been previously rated
- New items, Esoteric items
- Popularity bias:
 - Cannot recommend items to someone with unique taste
 - Tends to recommend popular items

Hybrid Methods

- Implement two or more different recommenders and combine predictions
 - Perhaps using a linear model
- Add content-based methods to collaborative filtering
 - Item profiles for new item problem
 - Demographics to deal with new user problem

Item/User Clustering to Reduce Sparsity

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

Mustafa Ozdal, Bilkent University

Remarks & Practical Tips

- Evaluation
- Error metrics
- Complexity / Speed

Evaluation

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Evaluation

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Evaluating Predictions

- Compare predictions with known ratings
 - Root-mean-square error (RMSE)

$$\sqrt{\sum_{xi} (r_{xi} - r_{xi}^*)^2}$$

where r_{xi} is predicted, r_{xi}^* is the true rating of x on i

Another approach: 0/1 model

Coverage:

Number of items/users for which system can make predictions

Precision:

- Accuracy of predictions
- Receiver operating characteristic (ROC)
 - Tradeoff curve between true positives and false positives

Problems with Error Measures

- Narrow focus on accuracy sometimes misses the point
 - Prediction Context
 - Prediction Diversity

Prediction Diversity Problem

Werckmeister Harmonies Damnation We of the few genuinely visionary timenaters the few few genuinely visionary timenaters (5)

Problems with Error Measures

- In practice, we care only to predict high ratings:
 - RMSE might penalize a method that does well for high ratings and badly for others
 - Alternative: Precision at top k

Collaborative Filtering: Complexity

- Expensive step is finding k most similar customers: O(|X|)
- Too expensive to do at runtime
 - Could pre-compute
- Naïve pre-computation takes time O(k · |X|)

• X ... set of customers

We already know how to do this!

- Near-neighbor search in high dimensions (LSH)
- Clustering
- Dimensionality reduction

Tip: Add Data

Leverage all the data

- Don't try to reduce data size in an effort to make fancy algorithms work
- Simple methods on large data do best

Add more data

e.g., add IMDB data on genres

More data beats better algorithms

http://anand.typepad.com/datawocky/2008/03/more-data-usual.html