CS425: Algorithms for Web Scale Data Lecture 9: Recommender Systems: Latent Factor Models & Netflix Challenge

Most of the slides are from the Mining of Massive Datasets book. These slides have been modified for CS425. The original slides can be accessed at: <u>www.mmds.org</u>

The Netflix Prize

Training data

- 100 million ratings, 480,000 users, 17,770 movies
- 6 years of data: 2000-2005

Test data

- Last few ratings of each user (2.8 million)
- Evaluation criterion: Root Mean Square Error (RMSE) =

$$\frac{1}{|R|} \sqrt{\sum_{(i,x)\in R} (\hat{r}_{xi} - r_{xi})^2}$$

Netflix's system RMSE: 0.9514

Competition

- 2,700+ teams
- \$1 million prize for 10% improvement on Netflix

The Netflix Utility Matrix R

480,000 users Matrix R 17,700 movies

Utility Matrix R: Evaluation

BellKor Recommender System

- The winner of the Netflix Challenge!
- Multi-scale modeling of the data: Combine top level, "regional" modeling of the data, with a refined, local view:
 - Global:
 - Overall deviations of users/movies
 - Factorization:
 - Addressing "regional" effects
 - Collaborative filtering:
 - Extract local patterns

Global effects

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Modeling Local & Global Effects

Global:

- Mean movie rating: **3.7 stars**
- The Sixth Sense is **0.5** stars above avg.
- Joe rates 0.2 stars below avg. \Rightarrow Baseline estimation:
- Joe will rate The Sixth Sense 4 stars Local neighborhood (CF/NN):
 - Joe didn't like related movie Signs
 - \Rightarrow Final estimate:
 - Joe will rate The Sixth Sense 3.8 stars

6

Recap: Collaborative Filtering (CF)

- Earliest and most popular collaborative filtering method
- Derive unknown ratings from those of "similar" movies (item-item variant)
- Define similarity measure s_{ii} of items i and j
- Select k-nearest neighbors, compute the rating
 - N(i; x): items most similar to i that were rated by x

$$\hat{r}_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} s_{ij}}$$

s_{ij}... similarity of items i and j
r_{xj}...rating of user x on item j
N(i;x)... set of items similar to
item i that were rated by x

Modeling Local & Global Effects

In practice we get better estimates if we model deviations:

$$\hat{r}_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$$

baseline estimate for *r_{xi}*

$$b_{xi} = \mu + b_x + b_i$$

- μ = overall mean rating
- $\boldsymbol{b}_{\boldsymbol{x}}$ = rating deviation of user \boldsymbol{x}
 - = (avg. rating of user \mathbf{x}) $\boldsymbol{\mu}$
- $\boldsymbol{b}_i = (avg. rating of movie \boldsymbol{i}) \boldsymbol{\mu}$

Problems/Issues:

- 1) Similarity measures are "arbitrary"
- 2) Pairwise similarities neglect
- interdependencies among users
- **3)** Taking a weighted average can be restricting

Solution: Instead of s_{ij} use w_{ij} that we estimate directly from data

Idea: Interpolation Weights w_{ij}

Use a weighted sum rather than weighted avg.:

$$\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj})$$

A few notes:

- N(i; x) ... set of movies rated by user x that are similar to movie i
- w_{ij} is the interpolation weight (some real number)
 - We allow: $\sum_{j \in N(i,x)} w_{ij} \neq 1$
- *w_{ij}* models interaction between pairs of movies (it does not depend on user *x*)

Idea: Interpolation Weights w_{ij}

•
$$\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i,x)} w_{ij} (r_{xj} - b_{xj})$$

• How to set w_{ii} ?

• Remember, error metric is: $\frac{1}{|R|} \sqrt{\sum_{(i,x)\in R} (\hat{r}_{xi} - r_{xi})^2}$ or equivalently SSE: $\sum_{(i,x)\in R} (\hat{r}_{xi} - r_{xi})^2$

- Find w_{ij} that minimize SSE on training data!
 - Models relationships between item *i* and its neighbors *j*
- w_{ij} can be learned/estimated based on x and all other users that rated i

Why is this a good idea?

Recommendations via Optimization

- Goal: Make good recommendations
 - Quantify goodness using RMSE:
 Lower RMSE ⇒ better recommendations
 - Want to make good recommendations on items that user has not yet seen. Can't really do this!
 - Let's set build a system such that it works well on known (user, item) ratings
 And hope the system will also predict well the unknown ratings

Recommendations via Optimization

- Idea: Let's set values w such that they work well on known (user, item) ratings
- How to find such values w?
- Idea: Define an objective function and solve the optimization problem
- Find w_{ij} that minimize SSE on training data!

Detour: Minimizing a function

- A simple way to minimize a function f(x):
 - Compute the derivative ∇f
 - Start at some point y and evaluate $\nabla f(y)$
 - Make a step in the reverse direction of the gradient: $y = y \nabla f(y)$
 - Repeat until converged

f $f(y) + \nabla f(y)$ J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Example: Formulation

Assume we have a dataset with a single user x and items 0, 1, and 2. We are given all ratings, and we want to compute the weights w₀₁, w₀₂, and w₀₃.

$$\Box \text{ Rating estimate: } \widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i,x)} w_{ij} (r_{xj} - b_{xj})$$

Training dataset already has the correct r_{xi} values. We will use the estimation formula to compute the unknown weights w_{01} , w_{02} , and w_{03} .

Optimization problem: Compute w_{ii} values to minimize:

 $\sum_{(i,x)\in R} (\hat{r}_{xi} - r_{xi})^2$

□ Plug in the formulas:

minimize
$$J(w) = [b_{x0} + w_{01}(r_{x1} - b_{x1}) + w_{02}(r_{x2} - b_{x2}) - r_{x0}]^2$$

+ $[b_{x1} + w_{01}(r_{x0} - b_{x0}) + w_{12}(r_{x2} - b_{x2}) - r_{x1}]^2$
+ $[b_{x2} + w_{02}(r_{x0} - b_{x0}) + w_{12}(r_{x1} - b_{x1}) - r_{x2}]^2$

Example: Algorithm

Initialize unknown variables:

$$\mathbf{w^{new}} = \begin{bmatrix} w_{01}^{new} \\ w_{02}^{new} \\ w_{12}^{new} \end{bmatrix} = \begin{bmatrix} w_{01}^{0} \\ w_{02}^{0} \\ w_{12}^{0} \end{bmatrix}$$

Iterate:

while
$$|w^{new} - w^{old}| > \varepsilon$$

 $w^{old} = w^{new}$
 $w^{new} = w^{old} - \eta \cdot \nabla J(w^{old})$

 η is the learning rate (a parameter) How to compute $\nabla J(w^{old})$?

Example: Gradient-Based Update

$$J(w) = [b_{x0} + w_{01}(r_{x1} - b_{x1}) + w_{02}(r_{x2} - b_{x2}) - r_{x0}]^{2} + [b_{x1} + w_{01}(r_{x0} - b_{x0}) + w_{12}(r_{x2} - b_{x2}) - r_{x1}]^{2} + [b_{x2} + w_{02}(r_{x0} - b_{x0}) + w_{12}(r_{x1} - b_{x1}) - r_{x2}]^{2}$$

$$\nabla J(w) = \begin{bmatrix} \frac{\partial J(w)}{\partial w_{01}} \\ \frac{\partial J(w)}{\partial w_{02}} \\ \frac{\partial J(w)}{\partial w_{12}} \end{bmatrix}$$

$$Each partial derivative is evaluated at w^{old}.$$

Example: Computing Partial Derivatives

$$J(w) = [b_{x0} + w_{01}(r_{x1} - b_{x1}) + w_{02}(r_{x2} - b_{x2}) - r_{x0}]^{2}$$

+ $[b_{x1} + w_{01}(r_{x0} - b_{x0}) + w_{12}(r_{x2} - b_{x2}) - r_{x1}]^{2}$
+ $[b_{x2} + w_{02}(r_{x0} - b_{x0}) + w_{12}(r_{x1} - b_{x1}) - r_{x2}]^{2}$

Reminder:
$$\frac{\partial ((ax+b)^2)}{\partial x} = 2 (ax+b) a$$

$$\frac{\partial J(w)}{\partial w_{01}} = 2[b_{x0} + w_{01}(r_{x1} - b_{x1}) + w_{02}(r_{x2} - b_{x2}) - r_{x0}](r_{x1} - b_{x1}) + 2[b_{x1} + w_{01}(r_{x0} - b_{x0}) + w_{12}(r_{x2} - b_{x2}) - r_{x1}](r_{x0} - b_{x0})$$

Evaluate each partial derivative at wold to compute the gradient direction.

Interpolation Weights

We have the optimization problem, now what?

Gradient descent:

$$J(w) = \sum_{x} \left(\left[b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj}) \right] - r_{xi} \right)^2$$

- Iterate until convergence: $w \leftarrow w \eta \nabla_w J$ $\eta \dots$ learning rate
- where $\nabla_w J$ is the gradient (derivative evaluated on data): $\nabla_w J = \left[\frac{\partial J(w)}{\partial w_{ij}}\right] = 2 \sum_{x,i} \left(\left[b_{xi} + \sum_{k \in N(i;x)} w_{ik}(r_{xk} - b_{xk}) \right] - r_{xi} \right) (r_{xj} - b_{xj})$ for $j \in \{N(i; x), \forall i, \forall x\}$ else $\frac{\partial J(w)}{\partial w_{ij}} = 0$
- Note: We fix movie *i*, go over all r_{xi} , for every movie $j \in N(i; x)$, we compute $\frac{\partial J(w)}{\partial w_{ij}}$ while $|w_{new} w_{old}| > \varepsilon$: $w_{old} = w_{new}$

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mnus.org = $w_{old} - \eta \cdot \nabla w_{old}$

Interpolation Weights

• So far:
$$\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj})$$

- Weights *w_{ij}* derived based on their role; no use of an arbitrary similarity measure (*w_{ij}* ≠ *s_{ij}*)
- Explicitly account for interrelationships among the neighboring movies

Next: Latent factor model

Extract "regional" correlations

Performance of Various Methods

Basic Collaborative filtering: 0.94 CF+Biases+learned weights: 0.91 Global average: 1.1296

<u>User average:</u> 1.0651 Movie average: 1.0533

Netflix: 0.9514

Grand Prize: 0.8563

Latent Factor Models (e.g., SVD)

Latent Factor Models

SVD: $A = U \Sigma V^T$

"SVD" on Netflix data: R ≈ Q · P^T

- For now let's assume we can approximate the rating matrix *R* as a product of "thin" *Q* · *P*^T
 - R has missing entries but let's ignore that for now!
 - Basically, we will want the reconstruction error to be small on known ratings and we don't care about the values on the missing ones

Ratings as Products of Factors

Ratings as Products of Factors

Ratings as Products of Factors

Latent Factor Models

Latent Factor Models

FYI: Singular Value Decomposition (SVD)

FYI, SVD:

- A: Input data matrix
- U: Left singular vecs
- V: Right singular vecs
- Σ: Singular values

 $\hat{r}_{xi} = q_i \cdot p_x$

SVD: More good stuff

We already know that SVD gives minimum reconstruction error (Sum of Squared Errors):

$$\min_{U,V,\Sigma} \sum_{ij \in A} \left(A_{ij} - \left[U \Sigma V^{\mathrm{T}} \right]_{ij} \right)^{2}$$

- Note two things:
 - SSE and RMSE are monotonically related:
 - $RMSE = \frac{1}{c}\sqrt{SSE}$ Great news: SVD is minimizing RMSE
 - Complication: The sum in SVD error term is over all entries (no-rating in interpreted as zero-rating). But our *R* has missing entries!

Latent Factor Models

SVD isn't defined when entries are missing!
Use specialized methods to find P, Q

$$\min_{P,Q} \sum_{(i,x)\in\mathbb{R}} (r_{xi} - q_i \cdot p_x)^2 \qquad \hat{r}_{xi} = q_i \cdot p_x$$

- Note:
 - We don't require cols of P, Q to be orthogonal/unit length
 - P, Q map users/movies to a latent space
 - The most popular model among Netflix contestants

Finding the Latent Factors

General Concept: Overfitting

Latent Factor Models

Our goal is to find P and Q such that:

$$\min_{P,Q}\sum_{(i,x)\in R} (r_{xi}-q_i\cdot p_x)^2$$

Back to Our Problem

- Want to minimize SSE for unseen test data
- Idea: Minimize SSE on <u>training</u> data
 - Want large k (# of factors) to capture all the signals
 - But, SSE on <u>test</u> data begins to rise for k > 2
- This is a classical example of overfitting:
 - With too much freedom (too many free parameters) the model starts fitting noise
 - That is it fits too well the training data and thus not generalizing well to unseen test data

Dealing with Missing Entries

To solve overfitting we introduce regularization:

- Allow rich model where there are sufficient data
- Shrink aggressively where data are scarce

 $\lambda_1, \lambda_2 \ldots$ user set regularization parameters

Note: We do not care about the "raw" value of the objective function, but we care in P,Q that achieve the minimum of the objective

Regularization

 $\lambda_1, \lambda_2 \dots$ user set regularization parameters

 What happens if the user x has rated hundreds of movies? The error term will dominate, and we'll get a rich model Noise is less of an issue because we have lots of data
 What happens if the user x has rated only a few movies? Length term for p_x will have more effect, and we'll get a simple model
 Same argument applies for items

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Gradient Descent

Want to find matrices <u>P</u> and Q:

$$\min_{P,Q} \sum_{training} (r_{xi} - q_i p_x)^2 + \left[\lambda_1 \sum_x \|p_x\|^2 + \lambda_2 \sum_i \|q_i\|^2 \right]$$

Gradient descent:

- Initialize P and Q (using SVD, pretend missing ratings are 0)
- Do gradient descent:

•
$$P \leftarrow P - \eta \cdot \nabla P$$

•
$$\mathbf{Q} \leftarrow \mathbf{Q} \cdot \boldsymbol{\eta} \cdot \nabla \mathbf{Q}$$

How to compute gradient of a matrix? Compute gradient of every element independently!

• where ∇Q is gradient/derivative of matrix Q: $\nabla Q = [\nabla q_{if}]$ and $\nabla q_{if} = \sum_{x,i} -2(r_{xi} - q_i p_x)p_{xf} + 2\lambda_2 q_{if}$

Here q_{if} is entry f of row q_i of matrix Q

Observation: Computing gradients is slow!

Example

$$\min_{P,Q} \sum_{\text{training}} (r_{xi} - q_i p_x)^2 + \left[\lambda_1 \sum_x \|p_x\|^2 + \lambda_2 \sum_i \|q_i\|^2 \right]$$

Assume we want 3 factors per user and item: $p_x = \begin{bmatrix} p_{x0} \\ p_{x1} \\ p_{x2} \end{bmatrix}$ $q_i = \begin{bmatrix} q_{i0} \\ q_{i1} \\ q_{i2} \end{bmatrix}$

Rewrite objective as:

$$\min \sum_{x,i} [r_{xi} - (q_{i0}p_{x0} + q_{i1}p_{x1} + q_{i2}p_{x2})]^2 + \lambda_1 \sum_x (p_{x0}^2 + p_{x1}^2 + p_{x2}^2) + \lambda_2 \sum_i (q_{i0}^2 + q_{i1}^2 + q_{i2}^2)$$

Example

$$\min \sum_{x,i} [r_{xi} - (q_{i0}p_{x0} + q_{i1}p_{x1} + q_{i2}p_{x2})]^2 + \lambda_1 \sum_x (p_{x0}^2 + p_{x1}^2 + p_{x2}^2) + \lambda_2 \sum_i (q_{i0}^2 + q_{i1}^2 + q_{i2}^2)$$

$$p_2$$

$$p_x = \begin{bmatrix} p_{x0} \\ p_{x1} \\ p_{x2} \end{bmatrix} \qquad q_i = \begin{bmatrix} q_{i0} \\ q_{i1} \\ q_{i2} \end{bmatrix}$$

Compute gradient for variable q_{i0}:

$$\nabla q_{i0} = \sum_{x,i} -2(r_{xi} - (q_{i0}p_{x0} + q_{i1}p_{x1} + q_{i2}p_{x2}))p_{x0} + 2\lambda_2 q_{i0}$$

Do the same for every free variable

$$\nabla Q = [\nabla q_{if}]$$
 and $\nabla q_{if} = \sum_{x,i} -2(r_{xi} - q_i p_x)p_{xf} + 2\lambda_2 q_{if}$

How many free variables do we have? (# of users + # of items). (# of factors)
Which ratings do we process to compute ∇q_{if}? All ratings for item i
Which ratings do we process to compute ∇p_{xf}? All ratings for user x
What is the complexity of one iteration? O(# of ratings . # of factors)

- <u>Gradient Descent (GD)</u>: Update all free variables in one step.
 Need to process all ratings.
- Stochastic Gradient Descent (SGD): Update the free variables associated with a single rating in one step.
 - Need many more steps to converge
 - Each step is much faster
 - In practice: SGD much faster than GD

$$\Box \text{ GD: } \boldsymbol{Q} \leftarrow \boldsymbol{Q} - \eta \left[\sum_{\boldsymbol{r}_{xi}} \nabla \boldsymbol{Q}(\boldsymbol{r}_{xi}) \right]$$
$$\Box \text{ SGD: } \boldsymbol{Q} \leftarrow \boldsymbol{Q} - \mu \nabla \boldsymbol{Q}(\boldsymbol{r}_{xi})$$

$$\nabla q_{if} = \sum_{x,i} -2(r_{xi} - q_i p_x) p_{xf} + 2\lambda_2 q_{if}$$
$$\nabla p_{xf} = \sum_{x,i} -2(r_{xi} - q_i p_x) q_{if} + 2\lambda_1 p_{xf}$$

Which free variables are associated with rating r_{xi} ?

$$p_{x} = \begin{bmatrix} p_{x0} \\ p_{x1} \\ \vdots \\ \vdots \\ p_{xk} \end{bmatrix} \qquad q_{i} = \begin{bmatrix} q_{i0} \\ q_{i1} \\ \vdots \\ \vdots \\ q_{ik} \end{bmatrix}$$

$$\nabla q_{if} = \sum_{x,i} -2(r_{xi} - q_i p_x) p_{xf} + 2\lambda_2 q_{if}$$
$$\nabla p_{xf} = \sum_{x,i} -2(r_{xi} - q_i p_x) q_{if} + 2\lambda_1 p_{xf}$$

For each *r_{xi}*:

$$\begin{aligned} \varepsilon_{xi} &= (r_{xi} - q_i \cdot p_x) & \text{(derivative} \\ q_i &\leftarrow q_i + \mu_1 \left(\varepsilon_{xi} p_x - \lambda_2 q_i \right) & \text{(update} \\ p_x &\leftarrow p_x + \mu_2 \left(\varepsilon_{xi} q_i - \lambda_1 p_x \right) & \text{(update} \end{aligned}$$

(derivative of the "error")
(update equation)
(update equation)
μ ... learning rate

Note: The operations above are vector operations

Stochastic gradient decent:

- Initialize **P** and **Q** (using SVD, pretend missing ratings are 0)
- Then iterate over the ratings (multiple times if necessary) and update factors:
 - For each *r_{xi}*:

$$\bullet \varepsilon_{xi} = (r_{xi} - q_i \cdot p_x)$$

$$\bullet q_i \leftarrow q_i + \mu_1 \left(\varepsilon_{xi} p_x - \lambda_2 q_i \right)$$

 $\bullet p_x \leftarrow p_x + \mu_2 (\varepsilon_{xi} q_i - \lambda_1 p_x)$ 2 for loops:

(derivative of the "error")

(update equation)

(update equation) μ ... learning rate

- For until convergence:
 - For each r_{xi}
 - Compute gradient, do a "step"
 Hardward Palaraman I IIIman: Mining of Massive Datasets, http://www.mmds.org

SGD vs. GD

Iteration/step

GD improves the value of the objective function at every step. **SGD** improves the value but in a "noisy" way. **GD** takes fewer steps to converge but each step takes much longer to compute. In practice, **SGD** is much faster!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Extending Latent Factor Model to Include Biases

Modeling Biases and Interactions

Baseline predictor

- Separates users and movies
- Benefits from insights into user's behavior
- Among the main practical contributions of the competition

user-movie interaction

User-Movie interaction

- Characterizes the matching between users and movies
- Attracts most research in the field
- Benefits from algorithmic and mathematical innovations
- μ = overall mean rating
 b_x = bias of user x
 b_i = bias of movie i

Baseline Predictor

We have expectations on the rating by user x of movie i, even without estimating x's attitude towards movies like i

- Rating scale of user x
- Values of other ratings user gave recently (day-specific mood, anchoring, multi-user accounts)

- (Recent) popularity of movie *i*
- Selection bias; related to number of ratings user gave on the same day ("frequency")

Putting It All Together

Example:

- Mean rating: μ = 3.7
- You are a critical reviewer: your ratings are 1 star lower than the mean: b_x = -1
- Star Wars gets a mean rating of 0.5 higher than average movie: b_i = + 0.5
- Predicted rating for you on Star Wars:
 = 3.7 1 + 0.5 = 3.2

Fitting the New Model

• Solve:

$$\min_{Q,P} \sum_{(x,i)\in R} (r_{xi} - (\mu + b_x + b_i + q_i p_x))^2$$
goodness of fit
$$+ \left(\lambda_1 \sum_i ||q_i||^2 + \lambda_2 \sum_x ||p_x||^2 + \lambda_3 \sum_x ||b_x||^2 + \lambda_4 \sum_i ||b_i||^2 \right)$$
A is selected via grid-search on a validation set

Stochastic gradient decent to find parameters

Note: Both biases b_x, b_i as well as interactions q_i, p_x are treated as parameters (we estimate them)

Performance of Various Methods

Performance of Various Methods

The Netflix Challenge: 2006-09

Temporal Biases Of Users

- Sudden rise in the average movie rating (early 2004)
 - Improvements in Netflix
 - GUI improvements
 - Meaning of rating changed

Movie age

- Users prefer new movies without any reasons
- Older movies are just inherently better than newer ones

Y. Koren, Collaborative filtering with temporal dynamics, KDD '09

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Temporal Biases & Factors

Original model:

$$r_{xi} = \mu + b_x + b_i + q_i \cdot p_x$$

• Add time dependence to biases: $r_{xi} = \mu + b_x(t) + b_i(t) + q_i \cdot p_x$

- Make parameters b_x and b_i to depend on time
- (1) Parameterize time-dependence by linear trends
 (2) Each bin corresponds to 10 consecutive weeks
 $b_i(t) = b_i + b_{i,\text{Bin}(t)}$

Add temporal dependence to factors

p_x(t)... user preference vector on day t

Y. Koren, Collaborative filtering with temporal dynamics, KDD '09 J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

60

Adding Temporal Effects

Performance of Various Methods

Basic Collaborative filtering: 0.94 Collaborative filtering++: 0.91 Latent factors: 0.90

Latent factors+Biases: 0.89

Latent factors+Biases+Time: 0.876

Global average: 1.1296

<u>User</u> average: 1.0651 Movie average: 1.0533

Netflix: 0.9514

Still no prize! ③ Getting desperate. Try a "kitchen sink" approach!

Grand Prize: 0.8563

The big picture Solution of BellKor's Pragmatic Chaos

Michaele Jahrer / Andheas Jinschening of Rame Big Chanse ://w September 21, 2009

Standing on June 26th 2009

FLI	X						
Netflix Prize Rules Leaderboard Register Update Submit Download Leaderboard Display top 20 leaders.							
Grand	Prize - RMSE <= 0.8563	0.0550	10.05	2003-00-20 10.42.37			
2	PragmaticTheory	0.8582	9.80	2009-06-25 22:15:51			
3	BellKor in BigChaos	0.8590	9.71	2009-05-13 08:14:09			
4	Grand Prize Team	0.8593	9.68	2009-06-12 08:20:24			
5	Dace	0.8604	9.56	2009-04-22 05:57:03			
5	BigChaos	0.8613	9.47	2009-06-23 23:06:52			
Progra	ess Prize 2008 - RMSE = 0.8	616 - Winning T	eam: BellKor in BigC	haos			
	BellKor	0.8620	9.40	2009-06-24 07:16:02			
3	Gravity	0.8634	9.25	2009-04-22 18:31:32			
9	Opera Solutions	0.8638	9.21	2009-06-26 23:18:13			
10	BruceDengDaoCiYiYou	0.8638	9.21	2009-06-27 00:55:55			
11	pengpengzhou	0.8638	9.21	2009-06-27 01:06:43			
12	xivector	0.8639	9.20	2009-06-26 13:49:04			
10	viendiana	0 0620	0.20	2000-06-26 07-47-24			

June 26th submission triggers 30-day "last call"

The Last 30 Days

Ensemble team formed

- Group of other teams on leaderboard forms a new team
- Relies on combining their models
- Quickly also get a qualifying score over 10%

BellKor

- Continue to get small improvements in their scores
- Realize that they are in direct competition with Ensemble

Strategy

- Both teams carefully monitoring the leaderboard
- Only sure way to check for improvement is to submit a set of predictions
 - This alerts the other team of your latest score

24 Hours from the Deadline

Submissions limited to 1 a day

Only 1 final submission could be made in the last 24h

24 hours before deadline...

 BellKor team member in Austria notices (by chance) that Ensemble posts a score that is slightly better than BellKor's

Frantic last 24 hours for both teams

- Much computer time on final optimization
- Carefully calibrated to end about an hour before deadline

Final submissions

- BellKor submits a little early (on purpose), 40 mins before deadline
- Ensemble submits their final entry 20 mins later
- …and everyone waits….

NETFLIX

Rules

Netflix Prize

Home

Leaderboard

Download

Update

Leaderboard

Showing Test Score. Click here to show quiz score

COMPLETED

Display top 20 \$ leaders.

Rank	Team Name	Best Test Score	% Improvement	Best Submit Time				
Grand Prize - RMSE = 0.8567 - Winning Team: BellKor's Bragmatic Chaos								
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28				
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22				
3	Grand Prize Team	0.8002	0.90	200-01-10-21:240				
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31				
5	Vandelay Industries !	0.8591	9.81	2009-07-10 00:32:20				
6	PragmaticTheory	0.8594	9.77	2009-06-24 12:06:56				
7	BellKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09				
8	Dace_	0.8612	9.59	2009-07-24 17:18:43				
9	Feeds2	0.8622	9.48	2009-07-12 13:11:51				
10	BigChaos	0.8623	9.47	2009-04-07 12:33:59				
11	Opera Solutions	0.8623	9.47	2009-07-24 00:34:07				
12	BellKor	0.8624	9.46	2009-07-26 17:19:11				
Progress Prize 2008 - RMSE = 0.8627 - Winning Team: BellKor in BigChaos								
13	xiangliang	0.8642	9.27	2009-07-15 14:53:22				
14	Gravity	0.8643	9.26	2009-04-22 18:31:32				
15	Ces	0.8651	9.18	2009-06-21 19:24:53				
16	Invisible Ideas	0.8653	9.15	2009-07-15 15:53:04				
17	Just a guy in a garage	0.8662	9.06	2009-05-24 10:02:54				
18	<u>J Dennis Su</u>	0.8666	9.02	2009-03-07 17:16:17				
19	Craig Carmichael	0.8666	9.02	2009-07-25 16:00:54				
20	acmehill	0.8668	9.00	2009-03-21 16:20:50				

Progress Prize 2007. Leskovec, A. Rajaramah, J. Uliman: Mining of Massive Datasets, http://www.mmds.org

Million \$ Awarded Sept 21st 2009

T			
	alla	2009	
NE NE	TELIX	DATE 09.21.09	
PAY 10 1	BellKor's Promotio Chaos	S 1 000 000 9	
CREEK	Denitora magnarie erioss	00/100	
AMOUNT	ONE MILLION	/100	and the second second
EOR The	EOR The Netflix Prize Read Hattings		
			1 7/4 3

- Some slides and plots borrowed from Yehuda Koren, Robert Bell and Padhraic Smyth
- Further reading:
 - Y. Koren, Collaborative filtering with temporal dynamics, KDD '09
 - http://www2.research.att.com/~volinsky/netflix/bpc.html
 - <u>http://www.the-ensemble.com/</u>