CS612

Algorithms for Electronic Design Automation

Course Overview

Mustafa Ozdal

What is EDA?

\square Stands for Electronic Design Automation

- a.k.a VLSI CAD
\square Software tools to support engineers in the creation of new IC designs.
\square EDA tools significantly reduce the cost and time-tomarket of new projects.
- A CPU can easily contain > 1B transistors in a single chip
- Manual design is prohibitive

What is EDA?

\square Solves a wide-range of problems
high-level system design to fabrication (and everything in between)
\square Strong software skills required
\square This course will cover the physical design problems

- Abstract and algorithmic problems
- No EE knowledge needed

Why Study EDA Algorithms?

\square You may consider a career in the EDA field

- EDA companies: Synopsys, Cadence, Mentor Graphics, ...
- Design companies: Intel, IBM, Apple, AMD, Nvidia, TI, Qualcomm, ARM, TSMC, ...
\square You may be working in a related field
- e.g. Computer architecture: What is the hardware cost, energy cost, etc. of a new feature?
- e.g. Scientific computing: Common algorithms used in both domains (e.g. graph partitioning, clustering, etc.)
\square You may want to improve your algorithmic skills
- We will study algorithms for abstract problems that also occur in other domains. e.g. routing, rectangle packing, partitioning, etc.

Course Overview

\square Schedule:

Lecture:
Lecture:
Spare Hour:

Tue. 13:40-14:30 EA502
Thu. 15:40-17:30 EA502

Tue. 14:40:15:30
\square Course project: More in-depth study of a topic

- Literature survey + implementation + experiments
- Presentation (survey + plans)
- Final report (implementation + experiments + conclusions)

Sneak Preview of the Problems

Partitioning Problem

Circuit:

Partition the netlist into 2 equal parts (i.e. each part must have 4 gates) such that the \# of edges between two partitions is minimized.

Partitioning Problem

Circuit

$$
\begin{aligned}
& =1 \text { Cut } c_{b} \\
& =2,6 \\
& 2 \\
& \text { Cut } c_{a}
\end{aligned}
$$

Cut c_{a} : four external connections

Cut c_{b} : two external connections How to do this for > 1 M gates?

Floorplanning Problem

Example

Given: Three blocks with the following potential widths and heights
Block A: $w=1, h=4$ or $w=4, h=1$ or $w=2, h=2$
Block B : $w=1, h=2$ or $w=2, h=1$
Block C : $w=1, h=3$ or $w=3, h=1$

Task: Floorplan with minimum total area enclosed

Floorplanning Problem

Example

Given: Three blocks with the following potential widths and heights
Block A: $w=1, h=4$ or $w=4, h=1$ or $w=2, h=2$
Block $B: w=1, h=2$ or $w=2, h=1$
Block C : $w=1, h=3$ or $w=3, h=1$

Task: Floorplan with minimum total area enclosed

Floorplanning Problem

Example

Given: Three blocks with the following potential widths and heights
Block A: $w=1, h=4$ or $w=4, h=1$ or $w=2, h=2$
Block B : $w=1, h=2$ or $w=2, h=1$
Block C : $w=1, h=3$ or $w=3, h=1$
Task: Floorplan with minimum total area enclosed

Solution:
Aspect ratios
Block A with $w=2, h=2$; Block B with $w=2, h=1$; Block C with $w=1, h=3$
This floorplan has a global bounding box with minimum possible area (9 square units).

Placement

More wirelength Harder routing

Which is better?

Less wirelength Easier routing

Placement as an Optimization Problem

- Place all cells in the netlist such that:
- Minimize chip area
- Minimize wire length
- Make routing easy
- Satisfy timing constraints
- Keep cells on critical paths closer
- Satisfy various other design constraints
- A typical design can have $>1 \mathrm{M}$ cells
- NP-complete problem

Routing Problem

Routing Problem

Netlist:
$N_{1}=\left\{C_{4}, D_{6}, B_{3}\right\}$
$N_{2}=\left\{D_{4}, B_{4}, C_{1}, A_{4}\right\}$
$N_{3}=\left\{C_{2}, D_{5}\right\}$
$N_{4}=\left\{B_{1}, A_{1}, C_{3}\right\}$

Technology Information (Design Rules)

Routing Problem

Netlist:

$$
\begin{aligned}
& N_{1}=\left\{C_{4}, D_{6}, B_{3}\right\} \\
& N_{2}=\left\{D_{4}, B_{4}, C_{1}, A_{4}\right\} \\
& N_{3}=\left\{C_{2}, D_{5}\right\} \\
& N_{4}=\left\{B_{1}, A_{1}, C_{3}\right\}
\end{aligned}
$$

Technology Information
(Design Rules)

How to do this for $>1 \mathrm{M}$ nets?

