CS612

Algorithms for Electronic Design Automation

Course Overview

Mustafa Ozdal

CS 612 – Lecture 1

Mustafa Ozdal Computer Engineering Department, Bilkent University

1

What is EDA?

Stands for *Electronic Design Automation* a.k.a VLSI CAD

Software tools to support engineers in the creation of new IC designs.

EDA tools significantly reduce the cost and time-tomarket of new projects.

A CPU can easily contain > 1B transistors in a single chip
Manual design is prohibitive

What is EDA?

□ Solves a wide-range of problems

high-level system design to fabrication (and everything in between)

Strong software skills required

This course will cover the physical design problems
Abstract and algorithmic problems
No EE knowledge needed

Why Study EDA Algorithms?

□ You may consider a career in the EDA field

- EDA companies: Synopsys, Cadence, Mentor Graphics, ...
- Design companies: Intel, IBM, Apple, AMD, Nvidia, TI, Qualcomm, ARM, TSMC, ...

□ You may be working in a related field

- e.g. Computer architecture: What is the hardware cost, energy cost, etc. of a new feature?
- e.g. Scientific computing: Common algorithms used in both domains (e.g. graph partitioning, clustering, etc.)
- □ You may want to improve your algorithmic skills
 - We will study algorithms for abstract problems that also occur in other domains. e.g. routing, rectangle packing, partitioning, etc.

Course Overview

□ Schedule:

Lecture:	Tue. 13:40-14:30	EA502
Lecture:	Thu. 15:40-17:30	EA502
Spare Hour:	Tue. 14:40:15:30	

□ Course project: More in-depth study of a topic

- Literature survey + implementation + experiments
- Presentation (survey + plans)
- Final report (implementation + experiments + conclusions)

Sneak Preview of the Problems

CS 612 – Lecture 1

Mustafa Ozdal Computer Engineering Department, Bilkent University

Partitioning Problem

Partition the netlist into 2 equal parts (i.e. each part must have 4 gates) such that the # of edges between two partitions is minimized.

Partitioning Problem

Cut c_a : four external connections

How to do this for > 1M gates?

VLSI Physical Design: From Graph Partitioning to Timing Closure

Cut $c_{\rm b}$: two external connections

Floorplanning Problem

Example Given: Three blocks with the following potential widths and heights Block A: w = 1, h = 4 or w = 4, h = 1 or w = 2, h = 2Block B: w = 1, h = 2 or w = 2, h = 1Block C: w = 1, h = 3 or w = 3, h = 1

Task: Floorplan with minimum total area enclosed

Floorplanning Problem

Example Given: Three blocks with the following potential widths and heights Block A: w = 1, h = 4 or w = 4, h = 1 or w = 2, h = 2Block B: w = 1, h = 2 or w = 2, h = 1Block C: w = 1, h = 3 or w = 3, h = 1

Task: Floorplan with minimum total area enclosed

Floorplanning Problem

Example Given: Three blocks with the following potential widths and heights Block A: w = 1, h = 4 or w = 4, h = 1 or w = 2, h = 2Block B: w = 1, h = 2 or w = 2, h = 1Block C: w = 1, h = 3 or w = 3, h = 1

Task: Floorplan with minimum total area enclosed

Solution: Aspect ratios Block A with w = 2, h = 2; Block B with w = 2, h = 1; Block C with w = 1, h = 3

This floorplan has a global bounding box with minimum possible area (9 square units).

How to do this for 1000s of blocks?

VLSI Physical Design: From Graph Partitioning to Timing Closure

Placement

Placement as an Optimization Problem

Place all cells in the netlist such that:

- Minimize chip area
- Minimize wire length
- Make routing easy
- Satisfy timing constraints
 - Keep cells on critical paths closer
- Satisfy various other design constraints

- A typical design can have > 1M cells
- NP-complete problem

Routing Problem

Routing Problem

Routing Problem

Netlist:

 $N_{1} = \{C_{4}, D_{6}, B_{3}\}$ $N_{2} = \{D_{4}, B_{4}, C_{1}, A_{4}\}$ $N_{3} = \{C_{2}, D_{5}\}$ $N_{4} = \{B_{1}, A_{1}, C_{3}\}$

Technology Information (Design Rules)

How to do this for > 1M nets?