
1

CS612
Algorithms for Electronic Design Automation

CS 612 – Lecture 3

Partitioning

Mustafa Ozdal

Computer Engineering Department, Bilkent University

Mustafa Ozdal

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 2

Chapter 2 – Netlist and System Partitioning

Original Authors:

Andrew B. Kahng, Jens Lienig, Igor L. Markov, Jin Hu

VLSI Physical Design: From Graph Partitioning to Timing Closure

MOST SLIDES ARE FROM THE BOOK:

MODIFICATIONS WERE MADE ON THE ORIGINAL SLIDES

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 3

Chapter 2 – Netlist and System Partitioning

2.1 Introduction

2.2 Terminology

2.3 Optimization Goals

2.4 Partitioning Algorithms

2.4.1 Kernighan-Lin (KL) Algorithm

2.4.2 Extensions of the Kernighan-Lin Algorithm

2.4.3 Fiduccia-Mattheyses (FM) Algorithm

2.5 Framework for Multilevel Partitioning

2.5.1 Clustering

2.5.2 Multilevel Partitioning

2.6 System Partitioning onto Multiple FPGAs

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 4

2.1 Introduction

ENTITY test is

port a: in bit;

end ENTITY test;

DRC

LVS

ERC

Circuit Design

Functional Design

and Logic Design

Physical Design

Physical Verification

and Signoff

Fabrication

System Specification

Architectural Design

Chip

Packaging and Testing

Chip Planning

Placement

Signal Routing

Partitioning

Timing Closure

Clock Tree Synthesis

5CS 612 – Lecture 3 Mustafa Ozdal

Computer Engineering Department, Bilkent University

Divide and Conquer Strategy for Chip Design

 Partition the design. Then, work on each partition separately

 Advantages:

 Parallel implementation of each part by different designers

 Tool capacity issues avoided

 Disadvantages:

 Potentially less room for optimization

 Inter-dependency between different partitions

 Difficulty of combining partitions at the end

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 6

Circuit:

Cut ca: four external connections

1

2

4

5

3

6

7 8

5

6

48

7 23

1

56

48

7 2

3 1

Cut ca

Cut cb

Block A Block B Block A Block B

Cut cb: two external connections

2.1 Introduction

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 7

2.2 Terminology

5 6

4

2

1

3
3

2

4

5 6

1

Graph G2: Nodes 1, 2, 6.

Graph G1: Nodes 3, 4, 5.

Collection of cut edges

Cut set: (1,3), (2,3), (5,6),

Block (Partition)

Cells

cut edge: connects nodes in different partitions

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 8

2.3 Optimization Goals

 Given a graph G(V,E) with |V| nodes and |E| edges where each node v V

and each edge e E.

 Each node has area s(v) and each edge has cost or weight w(e).

 The objective is to divide the graph G into k disjoint subgraphs such that all

optimization goals are achieved:

 Number (or total weight) of connections between partitions is minimized

 Partition sizes are balanced

 NP-hard problem

 Efficient heuristics are developed in the 1970s and 1980s.

They are high quality and in low-order polynomial time.

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 9

Chapter 2 – Netlist and System Partitioning

2.1 Introduction

2.2 Terminology

2.3 Optimization Goals

2.4 Partitioning Algorithms

2.4.1 Kernighan-Lin (KL) Algorithm

2.4.2 Extensions of the Kernighan-Lin Algorithm

2.4.3 Fiduccia-Mattheyses (FM) Algorithm

2.5 Framework for Multilevel Partitioning

2.5.1 Clustering

2.5.2 Multilevel Partitioning

2.6 System Partitioning onto Multiple FPGAs

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 10

Given: A graph with 2n nodes where each node has the same weight.

Goal: A partition (division) of the graph into two disjoint subsets A and B with

minimum cut cost and |A| = |B| = n.

2

5

6

3

1

4

7

8

Example: n = 4

Block A Block B

2.4.1 Kernighan-Lin (KL) Algorithm

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 11

Gain D(v) of a node v

D(v) = |Ec(v)| – |Enc(v)| ,

where

Ec(v) is the set of v’s incident edges that are cut by the

cut line, and

Enc(v) is the set of v’s incident edges that are not cut by

the cut line.

High gains (D > 0) indicate that the node

should move, while low gains (D < 0) indicate

that the node should stay within the same

partition.

2

5

6

3

1

4

7

8
Node 3:

D(3) = 3-1=2

Node 7:

D(7) = 2-1=1

2.4.1 Kernighan-Lin (KL) Algorithm – Terminology

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 12

Gain of swapping a pair of nodes a and b

g = D(a) + D(b) - 2* c(a,b),

where

• D(a), D(b) are the respective gains of nodes a, b

• c(a,b) is the connection weight between a and b:

If an edge exists between a and b,

then c(a,b) = edge weight (here 1),

otherwise, c(a,b) = 0.

The gain g indicates how useful the swap between two

nodes will be

The larger g, the more the total cut cost will be reduced

2

5

6

3

1

4

7

8

2.4.1 Kernighan-Lin (KL) Algorithm – Terminology

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 13

Gain of swapping a pair of nodes a und b

g = D(a) + D(b) - 2* c(a,b),

where

• D(a), D(b) are the respective gains of nodes a, b

• c(a,b) is the connection weight between a and b:

If an edge exists between a and b,

then c(a,b) = edge weight (here 1),

otherwise, c(a,b) = 0.

2

5

6

3

1

4

7

8
Node 3:

D(3) = 3-1=2

Node 7:

D(7) = 2-1=1

g (3,7) = D(3) + D(7) - 2* c(a,b) = 2 + 1 – 2 = 1

=> Swapping nodes 3 and 7 would reduce the cut size by 1

2

5

6

3

1

4

7

8

2.4.1 Kernighan-Lin (KL) Algorithm – Terminology

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 14

Gain of swapping a pair of nodes a und b

g = D(a) + D(b) - 2* c(a,b),

where

• D(a), D(b) are the respective gains of nodes a, b

• c(a,b) is the connection weight between a and b:

If an edge exists between a and b,

then c(a,b) = edge weight (here 1),

otherwise, c(a,b) = 0.

2

5

6

3

1

4

7

8
Node 3:

D(3) = 3-1=2

Node 5:

D(5) = 2-1=1

g (3,5) = D(3) + D(5) - 2* c(a,b) = 2 + 1 – 0 = 3

=> Swapping nodes 3 and 5 would reduce the cut size by 3

2

5

6

3

1

4

7

8

2.4.1 Kernighan-Lin (KL) Algorithm – Terminology

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 15

Gain of swapping a pair of nodes a and b

The goal is to find a pair of nodes a and b to exchange such that g is

maximized and swap them.

2.4.1 Kernighan-Lin (KL) Algorithm – Terminology

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 16

Maximum positive gain Gm of a pass

The maximum positive gain Gm corresponds to the best prefix of m swaps

within the swap sequence of a given pass.

These m swaps lead to the partition with the minimum cut cost

encountered during the pass.

Gm is computed as the sum of Δg values over the first m swaps of the

pass, with m chosen such that Gm is maximized.

m

i

im gG
1

2.4.1 Kernighan-Lin (KL) Algorithm – Terminology

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 17

Kernighan-Lin Algorithm

Step 0:

– V = 2n nodes

– {A, B} is an initial arbitrary partitioning

Step 1:

– i = 1

– Compute D(v) for all nodes vÎV

Step 2:

– Choose ai and bi such that Dgi = D(ai) + D(bi) – 2 * c(aibi) is maximized

– Swap and fix ai and bi

Step 3:

– If all nodes are fixed, go to Step 4. Otherwise

– Compute and update D values for all nodes that are connected to ai and bi and are not fixed.

– i = i + 1

– Go to Step 2

Step 4:

– Find the move sequence 1...m (1 £ m £ i), such that å =
=

m

i im gG
1
Δ is maximized

– If Gm > 0, go to Step 5. Otherwise, END

Step 5:

– Execute m swaps, reset remaining nodes

– Go to Step 1

2.4.1 Kernighan-Lin (KL) Algorithm

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 18

2

5

6

3

1

4

7

8

Cut cost: 9

Not fixed:

1,2,3,4,5,6,7,8

2.4.1 Kernighan-Lin (KL) Algorithm – Example

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 19

2

5

6

3

1

4

7

8

Cut cost: 9

Not fixed:

1,2,3,4,5,6,7,8

D(1) = 1 D(5) = 1

D(2) = 1 D(6) = 2

D(3) = 2 D(7) = 1

D(4) = 1 D(8) = 1

gains D(v) of each node:

Nodes that lead to

maximum gain

2.4.1 Kernighan-Lin (KL) Algorithm – Example

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 20

2

5

6

3

1

4

7

8

Cut cost: 9

Not fixed:

1,2,3,4,5,6,7,8

D(1) = 1 D(5) = 1

D(2) = 1 D(6) = 2

D(3) = 2 D(7) = 1

D(4) = 1 D(8) = 1

g1 = 2+1-0 = 3

Swap (3,5)

G1 = g1 =3

Nodes that lead to

maximum gain

Gain in the current pass

gains D(v) of each node:

Gain after node swapping

2.4.1 Kernighan-Lin (KL) Algorithm – Example

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 21

Cut cost: 9

Not fixed:

1,2,3,4,5,6,7,8

2

5

6

3

1

4

7

8

D(1) = 1 D(5) = 1

D(2) = 1 D(6) = 2

D(3) = 2 D(7) = 1

D(4) = 1 D(8) = 1

g1 = 2+1-0 = 3

Swap (3,5)

G1 = g1 =3

Nodes that lead to

maximum gain

Gain in the current pass

Gain after node swapping

2.4.1 Kernighan-Lin (KL) Algorithm – Example

2

5

6

3

1

4

7

8

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 22

Cut cost: 9

Not fixed:

1,2,3,4,5,6,7,8

Cut cost: 6

Not fixed:

1,2,4,6,7,8

D(1) = 1 D(5) = 1

D(2) = 1 D(6) = 2

D(3) = 2 D(7) = 1

D(4) = 1 D(8) = 1

g1 = 2+1-0 = 3

Swap (3,5)

G1 = g1 =3

2.4.1 Kernighan-Lin (KL) Algorithm – Example

2

5

6

3

1

4

7

8

2

5

6

3

1

4

7

8

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 23

Cut cost: 9

Not fixed:

1,2,3,4,5,6,7,8

Cut cost: 6

Not fixed:

1,2,4,6,7,8

D(1) = 1 D(5) = 1

D(2) = 1 D(6) = 2

D(3) = 2 D(7) = 1

D(4) = 1 D(8) = 1

g1 = 2+1-0 = 3

Swap (3,5)

G1 = g1 =3

D(1) = -1 D(6) = 2

D(2) = -1 D(7)=-1

D(4) = 3 D(8)=-1

2.4.1 Kernighan-Lin (KL) Algorithm – Example

2

5

6

3

1

4

7

8

2

5

6

3

1

4

7

8

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 24

Cut cost: 9

Not fixed:

1,2,3,4,5,6,7,8

Cut cost: 6

Not fixed:

1,2,4,6,7,8

2

5

6

3

1

4

7

8

D(1) = 1 D(5) = 1

D(2) = 1 D(6) = 2

D(3) = 2 D(7) = 1

D(4) = 1 D(8) = 1

g1 = 2+1-0 = 3

Swap (3,5)

G1 = g1 =3

D(1) = -1 D(6) = 2

D(2) = -1 D(7)=-1

D(4) = 3 D(8)=-1

g2 = 3+2-0 = 5

Swap (4,6)

G2 = G1+g2 =8

Nodes that lead to

maximum gain

Gain in the current pass

Gain after node swapping

2.4.1 Kernighan-Lin (KL) Algorithm – Example

2

5

6

3

1

4

7

8

2

5

6

3

1

4

7

8

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 25

Cut cost: 9

Not fixed:

1,2,3,4,5,6,7,8

Cut cost: 6

Not fixed:

1,2,4,6,7,8

Cut cost: 1

Not fixed:

1,2,7,8

2

5

6

3

1

4

7

8

Cut cost: 7

Not fixed:

2,8

D(1) = 1 D(5) = 1

D(2) = 1 D(6) = 2

D(3) = 2 D(7) = 1

D(4) = 1 D(8) = 1

g1 = 2+1-0 = 3

Swap (3,5)

G1 = g1 =3

D(1) = -1 D(6) = 2

D(2) = -1 D(7)=-1

D(4) = 3 D(8)=-1

g2 = 3+2-0 = 5

Swap (4,6)

G2 = G1+g2 =8

D(1) = -3 D(7)=-3

D(2) = -3 D(8)=-3

g3 = -3-3-0 = -6

Swap (1,7)

G3= G2 +g3 = 2 Gain in the current pass

Nodes that lead to

maximum gain

Gain after node swapping

2.4.1 Kernighan-Lin (KL) Algorithm – Example

2

5

6

3

1

4

7

8

2

5

6

3

1

4

7

8

2

5

6

3

1

4

7

8

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 26

Cut cost: 9

Not fixed:

1,2,3,4,5,6,7,8

2

5

6

3

1

4

7

8

Cut cost: 9

Not fixed:

–

Cut cost: 6

Not fixed:

1,2,4,6,7,8

Cut cost: 1

Not fixed:

1,2,7,8

Cut cost: 7

Not fixed:

2,8

D(1) = 1 D(5) = 1

D(2) = 1 D(6) = 2

D(3) = 2 D(7) = 1

D(4) = 1 D(8) = 1

g1 = 2+1-0 = 3

Swap (3,5)

G1 = g1 =3

D(1) = -1 D(6) = 2

D(2) = -1 D(7)=-1

D(4) = 3 D(8)=-1

g2 = 3+2-0 = 5

Swap (4,6)

G2 = G1+g2 =8

D(1) = -3 D(7)=-3

D(2) = -3 D(8)=-3

g3 = -3-3-0 = -6

Swap (1,7)

G3= G2 +g3 = 2

D(2) = -1 D(8)=-1

g4 = -1-1-0 = -2

Swap (2,8)

G4 = G3 +g4 = 0

2.4.1 Kernighan-Lin (KL) Algorithm – Example

2

5

6

3

1

4

7

8

2

5

6

3

1

4

7

8

2

5

6

3

1

4

7

8

2

5

6

3

1

4

7

8

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 27

Maximum positive gain Gm = 8 with m = 2.

D(1) = 1 D(5) = 1

D(2) = 1 D(6) = 2

D(3) = 2 D(7) = 1

D(4) = 1 D(8) = 1

g1 = 2+1-0 = 3

Swap (3,5)

G1 = g1 =3

D(1) = -1 D(6) = 2

D(2) = -1 D(7)=-1

D(4) = 3 D(8)=-1

g2 = 3+2-0 = 5

Swap (4,6)

G2 = G1+g2 =8

D(1) = -3 D(7)=-3

D(2) = -3 D(8)=-3

g3 = -3-3-0 = -6

Swap (1,7)

G3= G2 +g3 = 2

D(2) = -1 D(8)=-1

g4 = -1-1-0 = -2

Swap (2,8)

G4 = G3 +g4 = 0

2.4.1 Kernighan-Lin (KL) Algorithm – Example

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 28

D(1) = 1 D(5) = 1

D(2) = 1 D(6) = 2

D(3) = 2 D(7) = 1

D(4) = 1 D(8) = 1

g1 = 2+1-0 = 3

Swap (3,5)

G1 = g1 =3

D(1) = -1 D(6) = 2

D(2) = -1 D(7)=-1

D(4) = 3 D(8)=-1

g2 = 3+2-0 = 5

Swap (4,6)

G2 = G1+g2 =8

D(1) = -3 D(7)=-3

D(2) = -3 D(8)=-3

g3 = -3-3-0 = -6

Swap (1,7)

G3= G2 +g3 = 2

D(2) = -1 D(8)=-1

g4 = -1-1-0 = -2

Swap (2,8)

G4 = G3 +g4 = 0

Since Gm > 0, the first m = 2 swaps

(3,5) and (4,6) are executed.
2

5

6

3

1

4

7

8

2.4.1 Kernighan-Lin (KL) Algorithm – Example

Since Gm > 0, more passes are needed until

Gm 0.

Maximum positive gain Gm = 8 with m = 2.

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

1-pass runtime: O(n3)

Optimized implementation: O(n2lgn)

29

Kernighan-Lin Algorithm

Step 0:

– V = 2n nodes

– {A, B} is an initial arbitrary partitioning

Step 1:

– i = 1

– Compute D(v) for all nodes vÎV

Step 2:

– Choose ai and bi such that Dgi = D(ai) + D(bi) – 2 * c(aibi) is maximized

– Swap and fix ai and bi

Step 3:

– If all nodes are fixed, go to Step 4. Otherwise

– Compute and update D values for all nodes that are connected to ai and bi and are not fixed.

– i = i + 1

– Go to Step 2

Step 4:

– Find the move sequence 1...m (1 £ m £ i), such that å =
=

m

i im gG
1
Δ is maximized

– If Gm > 0, go to Step 5. Otherwise, END

Step 5:

– Execute m swaps, reset remaining nodes

– Go to Step 1

2.4.1 Kernighan-Lin (KL) Algorithm – Complexity Analysis

O(n)

O(n2)

O(n2)

O(n)

O(n)

n
 t

im
e

s

n: # of nodes in each partition

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 30

2.4.2 Extensions for Kernighan-Lin (KL) Algorithm

 Unequal partition sizes

 Unequal cell sizes or unequal node weights

 k-way partitioning (generating k partitions)

30

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 31

 Single cells are moved independently instead of swapping pairs of cells.

Thus, this algorithm is applicable to partitions of unequal size or the

presence of initially fixed cells.

 Cut costs are extended to include hypergraphs, i.e., nets with two or more

pins. While the KL algorithm aims to minimize cut costs based on edges,

the FM algorithm minimizes cut costs based on nets.

 The area of each individual cell is taken into account.

 Nodes and subgraphs are referred to as cells and blocks, respectively.

2.4.3 Fiduccia-Mattheyses (FM) Algorithm

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 32

Given: a graph G(V,E) with nodes and weighted edges

Goal: to assign all nodes to disjoint partitions, so as to minimize the total cost

(weight) of all cut nets while satisfying partition size constraints

2.4.3 Fiduccia-Mattheyses (FM) Algorithm

33CS 612 – Lecture 3 Mustafa Ozdal

Computer Engineering Department, Bilkent University

Fiduccia-Mattheyses (FM) Algorithm – Terminology

FS(c): the # of cut nets connected only to cell c in c’s partition

“moving force”

c

FS(c) = 1

34CS 612 – Lecture 3 Mustafa Ozdal

Computer Engineering Department, Bilkent University

Fiduccia-Mattheyses (FM) Algorithm – Terminology

TE(c): the # of uncut nets connected to cell c

“retention force”

c

TE(c) = 1

35CS 612 – Lecture 3 Mustafa Ozdal

Computer Engineering Department, Bilkent University

Fiduccia-Mattheyses (FM) Algorithm – Terminology

Δg(c) = FS(c) – TE(c)

“gain of moving c”

c

Δg(c) = 0

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 36

Gain g(c) for cell c

g(c) = FS(c) – TE(c) ,

where

the “moving force“ FS(c) is the number of nets connected

to c but not connected to any other cells within c’s

partition, i.e., cut nets that connect only to c, and

the “retention force“ TE(c) is the number of uncut nets

connected to c.

The higher the gain g(c), the higher is the

priority to move the cell c to the other partition.

Cell 2: FS(2) = 0 TE(2) = 1 g(2) = -1

1

3

4

2

5

a
b

c
d

e

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Terminology

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 37

Gain g(c) for cell c

g(c) = FS(c) – TE(c) ,

where

the “moving force“ FS(c) is the number of nets connected

to c but not connected to any other cells within c’s

partition, i.e., cut nets that connect only to c, and

the “retention force“ TE(c) is the number of uncut nets

connected to c.

Cell 1: FS(1) = 2 TE(1) = 1 g(1) = 1

Cell 2: FS(2) = 0 TE(2) = 1 g(2) = -1

Cell 3: FS(3) = 1 TE(3) = 1 g(3) = 0

Cell 4: FS(4) = 1 TE(4) = 1 g(4) = 0

Cell 5: FS(5) = 1 TE(5) = 0 g(5) = 1

1

3

4

2

5

a
b

c
d

e

1

3

4

2

5

a
b

c
d

e

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Terminology

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 38

Maximum positive gain Gm of a pass

The maximum positive gain Gm is the cumulative cell gain of m moves

that produce a minimum cut cost.

Gm is determined by the maximum sum of cell gains g over a prefix of

m moves in a pass

m

i

im gG
1

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Terminology

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 39

Ratio factor

The ratio factor is the relative balance between the two partitions with respect to

cell area.

It is used to prevent all cells from clustering into one partition.

The ratio factor r is defined as

where area(A) and area(B) are the total respective areas of partitions A and B

)()(

)(

BareaAarea

Aarea
r

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Terminology

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 40

Balance criterion

The balance criterion enforces the ratio factor.

To ensure feasibility, the maximum cell area areamax(V) must be taken into

account.

A partitioning of V into two partitions A and B is said to be balanced if

[r ∙ area(V) – areamax(V)] ≤ area(A) ≤ [r ∙ area(V) + areamax(V)]

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Terminology

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 41

Base cell

A base cell is a cell c that has maximum cell gain g(c) among all free cells, and

whose move does not violate the balance criterion.

Cell 1: FS(1) = 2 TE(1) = 1 g(1) = 1

Cell 2: FS(2) = 0 TE(2) = 1 g(2) = -1

Cell 3: FS(3) = 1 TE(3) = 1 g(3) = 0

Cell 4: FS(4) = 1 TE(4) = 1 g(4) = 0

Base cell

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Terminology

42CS 612 – Lecture 3 Mustafa Ozdal

Computer Engineering Department, Bilkent University

Fiduccia-Mattheyses (FM) Algorithm – Terminology

 Pin distribution of a net: The pair (A(net), B(net))

where A(net): # of pins in partition A

B(net): # of pins in partition B

 Critical net: A net that contains a cell c whose move

changes the cut state of the net

 Either: The net has 1 cell in partition A and all others in B

 Or: The net has all cells in a single partition

 For a critical cell, one of the following should hold:

A(net) = 0 or A(net) = 1 or B(net) = 0 or B(net) = 1

43CS 612 – Lecture 3 Mustafa Ozdal

Computer Engineering Department, Bilkent University

Fiduccia-Mattheyses (FM) Algorithm – Critical Nets

 Critical nets simplify the gain calculations

 Only the cells belonging to critical nets need to be

considered for gain calculations

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 44

Fiduccia-Mattheyses Algorithm

Step 0: Compute the balance criterion

Step 1: Compute the cell gain Dg1 of each cell

Step 2: i = 1

– Choose base cell c1 that has maximal gain Dg1 , move this cell

Step 3:

– Fix the base cell ci

– Update all cells’ gains that are connected to critical nets via the base cell ci

Step 4:

– If all cells are fixed, go to Step 5. If not:

– Choose next base cell ci with maximal gain Dgi and move this cell

– i = i + 1, go to Step 3

Step 5:

– Determine the best move sequence c1, c2, .., cm (1 £ m £ i) , so that å =
=

m

i im gG
1
Δ is maximized

– If Gm > 0, go to Step 6. Otherwise, END

Step 6:

– Execute m moves, reset all fixed nodes

– Start with a new pass, go to Step 1

2.4.3 Fiduccia-Mattheyses (FM) Algorithm

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 45

1

3

4

2

5

A B

a
b

c
d

e

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Example

Step 0: Compute the balance criterion

[r ∙ area(V) – areamax(V)] ≤ area(A) ≤ [r ∙ area(V) + areamax(V)

]

0,375 * 16 – 5 = 1 area(A) 11 = 0,375 * 16 +5.

Given:

Ratio factor r = 0,375

area(Cell_1) = 2

area(Cell_2) = 4

area(Cell_3) = 1

area(Cell_4) = 4

area(Cell_5) = 5.

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 46

1

3

4

2

5

A B

a
b

c
d

e

Step 1: Compute the gains of each cell

Cell 1: FS(Cell_1) = 2 TE(Cell_1) = 1 g(Cell_1) = 1

Cell 2: FS(Cell_2) = 0 TE(Cell_2) = 1 g(Cell_2) = -1

Cell 3: FS(Cell_3) = 1 TE(Cell_3) = 1 g(Cell_3) = 0

Cell 4: FS(Cell_4) = 1 TE(Cell_4) = 1 g(Cell_4) = 0

Cell 5: FS(Cell_5) = 1 TE(Cell_5) = 0 g(Cell_5) = 1

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Example

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 47

1

3

4

2

5

A B

a
b

c
d

e
Cell1: FS(Cell_1) = 2 TE(Cell_1) = 1 g(Cell_1) = 1

Cell 2: FS(Cell_2) = 0 TE(Cell_2) = 1 g(Cell_2) = -1

Cell 3: FS(Cell_3) = 1 TE(Cell_3) = 1 g(Cell_3) = 0

Cell 4: FS(Cell_4) = 1 TE(Cell_4) = 1 g(Cell_4) = 0

Cell 5: FS(Cell_5) = 1 TE(Cell_5) = 0 g(Cell_5) = 1

Step 2: Select the base cell

Possible base cells are Cell 1 and Cell 5

Balance criterion after moving Cell 1: area(A) = area(Cell_2) = 4

Balance criterion after moving Cell 5: area(A) = area(Cell_1) + area(Cell_2) + area(Cell_5) = 11

Both moves respect the balance criterion, but Cell 1 is selected, moved,

and fixed as a result of the tie-breaking criterion.

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Example

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 48

1

3

4

2

5

A B

a
b

c
d

e

Step 3: Fix base cell, update g values

Cell 2: FS(Cell_2) = 2 TE(Cell_2) = 0 g(Cell_2) = 2

Cell 3: FS(Cell_3) = 0 TE(Cell_3) = 1 g(Cell_3) = -1

Cell 4: FS(Cell_4) = 0 TE(Cell_4) = 2 g(Cell_4) = -2

Cell 5: FS(Cell_5) = 0 TE(Cell_5) = 1 g(Cell_5) = -1

After Iteration i = 1: Partition A1 = 2, Partition B1 = 1,3,4,5, with fixed cell 1.

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Example

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 49

1

3

4

2

5

A B

a
b

c
d

e

Cell 2: FS(Cell_2) = 2 TE(Cell_2) = 0 g(Cell_2) = 2

Cell 3: FS(Cell_3) = 0 TE(Cell_3) = 1 g(Cell_3) = -1

Cell 4: FS(Cell_4) = 0 TE(Cell_4) = 2 g(Cell_4) = -2

Cell 5: FS(Cell_5) = 0 TE(Cell_5) = 1 g(Cell_5) = -1

Iteration i = 2

Cell 2 has maximum gain g2 = 2, area(A) = 0, balance criterion is violated.

Cell 3 has next maximum gain g2 = -1, area(A) = 5, balance criterion is met.

Cell 5 has next maximum gain g2= -1, area(A) = 9, balance criterion is met.

Move cell 3, updated partitions: A2 = {2,3}, B2 = {1,4,5}, with fixed cells {1,3}

Iteration i = 1

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Example

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 50

Cell 2: g(Cell_2) = 1

Cell 4: g(Cell_4) = 0

Cell 5: g(Cell_5) = -1

Iteration i = 3

Cell 2 has maximum gain g3 = 1, area(A) = 1, balance criterion is met.

Move cell 2, updated partitions: A3 = {3}, B3 = {1,2,4,5}, with fixed cells {1,2,3}

1

3

4

2

5

A

Ba b

c
d

e

Iteration i = 2

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Example

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 51

Cell 4: g(Cell_4) = 0

Cell 5: g(Cell_5) = -1

Iteration i = 4

Cell 4 has maximum gain g4 = 0, area(A) = 5, balance criterion is met.

Move cell 4, updated partitions: A4 = {3,4}, B3 = {1,2,5}, with fixed cells {1,2,3,4}

1

3

4

2

5

B A

a b

c
d

e

Iteration i = 3

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Example

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 52

Cell 5: g(Cell_5) = -1

Iteration i = 5

Cell 5 has maximum gain g5 = -1, area(A) = 10, balance criterion is met.

Move cell 5, updated partitions: A4 = {3,4,5}, B3 = {1,2}, all cells {1,2,3,4,5} fixed.

1

3

4

2

5

B A

a b

c
d

e

Iteration i = 4

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Example

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 53

Step 5: Find best move sequence c1 … cm

G1 = g1 = 1

G2 = g1 + g2 = 0

G3 = g1 + g2 + g3 = 1

G4 = g1 + g2 + g3 + g4 = 1

G5 = g1 + g2 + g3 + g4 + g5 = 0.

Maximum positive cumulative gain 1

1

m

i

im gG

found in iterations 1, 3 and 4.

The move prefix m = 4 is selected due to the better balance ratio (area(A) = 5);

the four cells 1, 2, 3 and 4 are then moved.

Result of Pass 1: Current partitions: A = {3,4}, B = {1,2,5}, cut cost reduced from 3 to 2.

1

3

4

2

5

B A

a b

c
d

e

2.4.3 Fiduccia-Mattheyses (FM) Algorithm – Example

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 54

Chapter 2 Supplemental: Difference between KL & FM

 Component dependency of partitioning algorithms

 KL is based on the number of edges

 FM is based on the number of nets

 Time complexity of partitioning algorithms

 KL has cubic time complexity

 FM has linear time complexity

54

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 55

Chapter 2 – Netlist and System Partitioning

2.1 Introduction

2.2 Terminology

2.3 Optimization Goals

2.4 Partitioning Algorithms

2.4.1 Kernighan-Lin (KL) Algorithm

2.4.2 Extensions of the Kernighan-Lin Algorithm

2.4.3 Fiduccia-Mattheyses (FM) Algorithm

2.5 Framework for Multilevel Partitioning

2.5.1 Clustering

2.5.2 Multilevel Partitioning

2.6 System Partitioning onto Multiple FPGAs

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 56

2.5.1 Clustering

56

 To make things easy, groups of tightly-connected nodes can be clustered,

absorbing connections between these nodes

 Size of each cluster is often limited so as to prevent degenerate clustering,

i.e. a single large cluster dominates other clusters

 Refinement should satisfy balance criteria

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 57

2.5.1 Clustering

a

b c

d

e

a,b,c

d

e

a

b

d

c,e

Initital graph Possible clustering hierarchies of the graph

©
 2

0
1
1
 S

p
ri
n

g
e
r

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 58

2.5.2 Multilevel Partitioning

©
 2

0
1
1
 S

p
ri
n

g
e
r

V
e
rl
a

g

59CS 612 – Lecture 3 Mustafa Ozdal

Computer Engineering Department, Bilkent University

FPGA Applications: Programmability

 Instead of fabricating a chip, we can program an FPGA

 Advantages:

 Avoid non-recurring engineering (NRE) costs of IC design

 Enable later changes easily (e.g. in case of a new media format)

 Disadvantages:

 Larger area, more power, slower speed

60CS 612 – Lecture 3 Mustafa Ozdal

Computer Engineering Department, Bilkent University

FPGA Applications: System Prototyping

 Reduce time to market with system prototyping:

 Typical design cycle:

Hardware design

Arch RTL PD Litho Fab Firmware Drivers Apps

Arch RTL PD Litho Fab

Firmware Drivers Apps

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 61

2.6 System Partitioning onto Multiple FPGAs

FPGA FPGA FPGA FPGA

FPIC FPIC FPIC FPIC

FPGA FPGA

RAM Logic Logic

Reconfigurable system with multiple

FPGA and FPIC devices

Mapping of a typical system architecture

onto multiple FPGAs

©
 2

0
1
1
 S

p
ri
n

g
e
r

V
e
rl
a

g

62CS 612 – Lecture 3 Mustafa Ozdal

Computer Engineering Department, Bilkent University

System Partitioning onto Multiple FPGAs

 Challenges:

 Low utilization of FPGA resources (due to hard I/O pin limits)

 Low performance (due to interconnect delays between FPGAs)

 Long runtimes of system partitioning process

 Partitioning formulations:

 Hard upper bound for total area of each partition

 Hard upper bound for the cut size

 3rd dimension for FPGA mapping: time

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 2: Netlist and System Partitioning

©
 K

L
M

H

L
ie

n
ig

 63

Summary of Chapter 2

 Circuit netlists can be represented by graphs or hypergraphs

 Partitioning a graph means assigning nodes to disjoint partitions

 Total size of each partition (number/area of nodes) is limited

 Objective: minimize the number connections between partitions

 Basic partitioning algorithms

 Incremental changes organized into passes

 KL swaps pairs of nodes from different partitions

 FM re-assigns one node at a time

 FM is faster, usually more successful

 Multilevel partitioning

 Clustering

 FM partitioning

 Refinement (also uses FM partitioning)

 Application: system partitioning into FPGAs

 Each FPGA is represented by a partition

