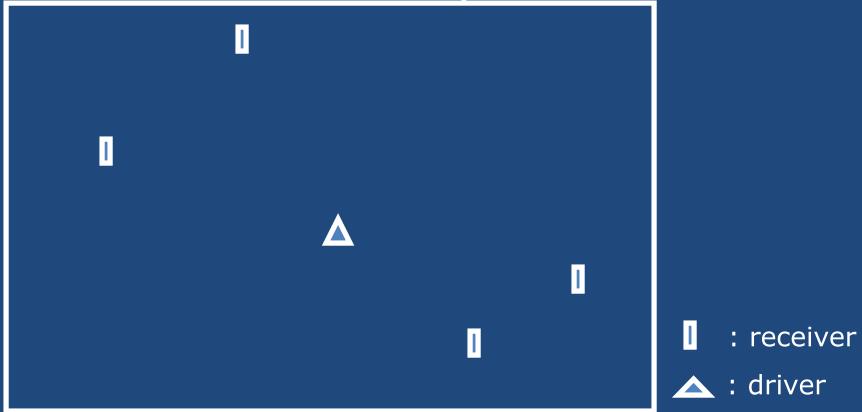
Routing Topology Algorithms

Mustafa Ozdal

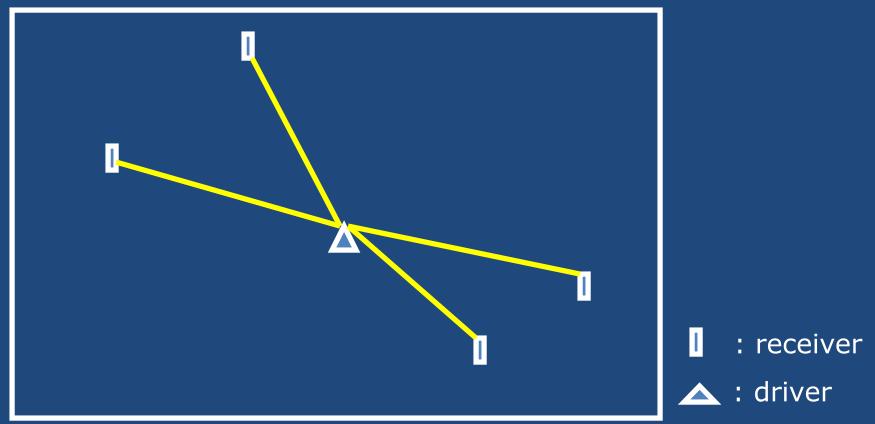
Introduction

- How to connect nets with multiple terminals?
- Net topologies needed before point-to-point routing between terminals.
- Several objectives:
 - Minimum wirelength
 - Best timing
 - Routability

Example

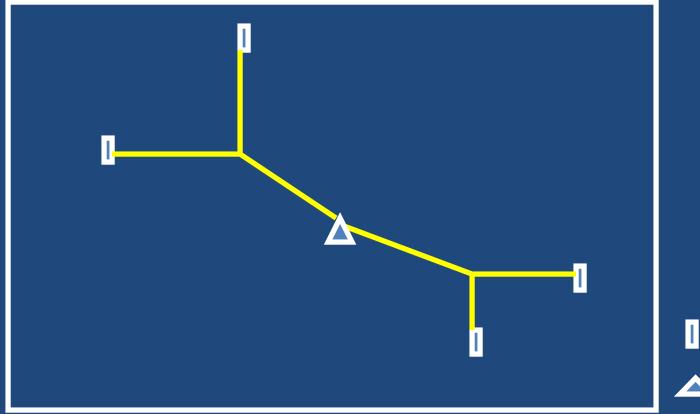


Example – Star topology (suboptimal)



Connect each receiver to the driver independently.

Example – Min Wirelength Topology



: receiver

: driver

Outline

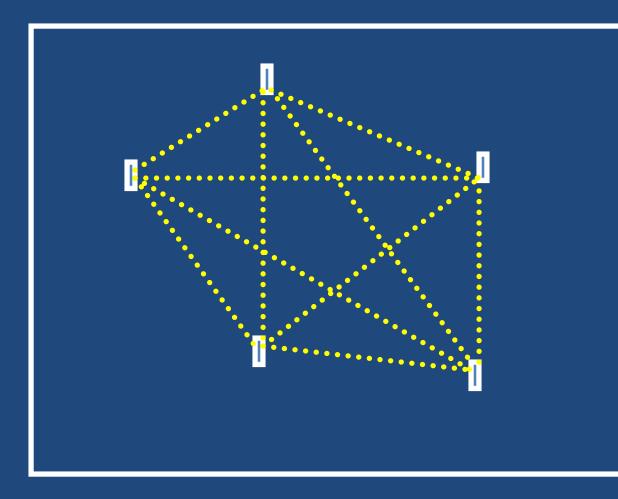
- Definitions and basic algorithms
 - Minimum Spanning Trees (MST)
 - Steiner Trees
 - Rectilinear Steiner Trees

• Wirelength vs timing tradeoff

Minimum Spanning Tree (MST)

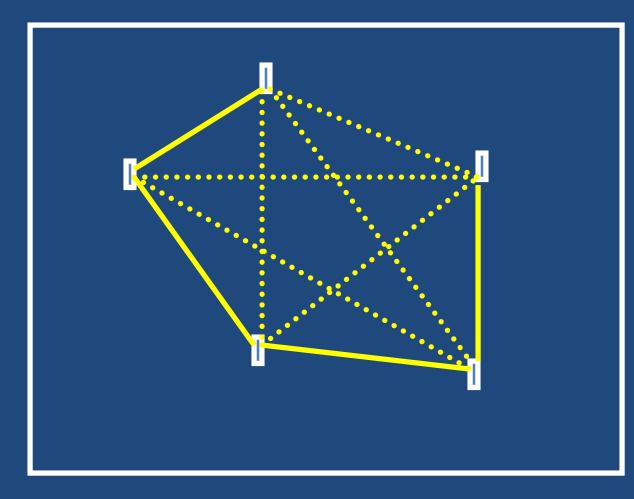
- Consider a connected graph G = (V, E)
 - V: terminals
 - E: potential connections between terminals
 - w(e): wirelength of edge e
- MST: The set of edges E_T such that:
 - E_T is a subset of E
 - The graph $T = (V, E_T)$ is connected
 - The total edge weight of E_T is minimum

MST Example



- 5 vertices
- 10 edges
- Weight of edge e is the Manhattan distance of e
- What is the MST?

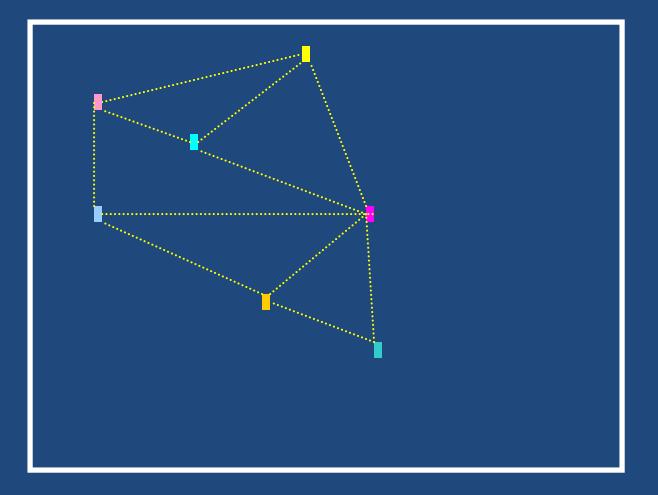
MST Example



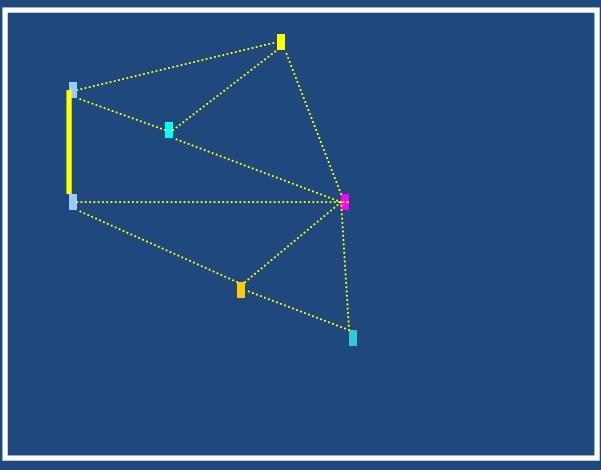
- The edge set E_T :
 - W(E_T) is minimum
 - T = (V, E_T) is still
 connected
- Note: T = (V, E_T) must contain n vertices and n-1 edges.

Kruskal's MST Algorithm

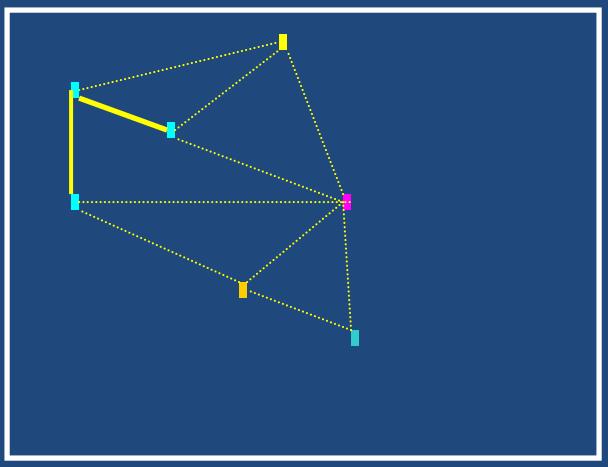
- 1. Initialize T as empty set
- 2. Define a disjoint set corresponding to each vertex in V.
- 3. Sort edges in non-decreasing order of weights
- 4. For each e = (v1, v2) in the sorted edge list
 - 1. If v1 and v2 belong to different sets
 - 1. Add e to T
 - 2. Merge the sets corresponding to v1 and v2
- 5. Return T



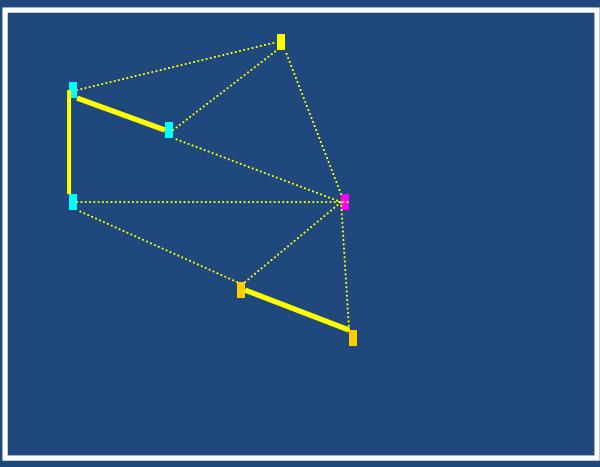
- Initially, each vertex is a disjoint set (different color)
- We will process edges from shortest to longest



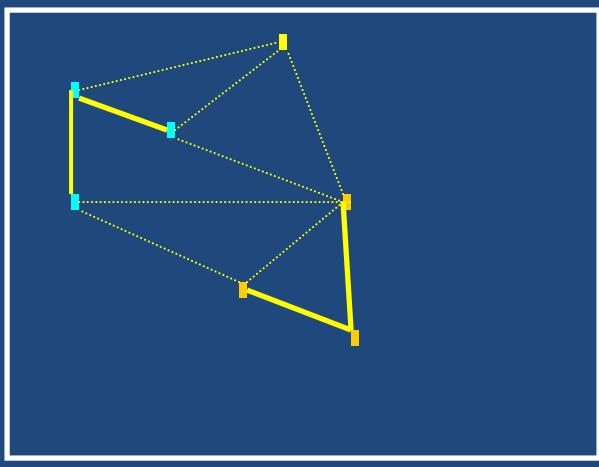
- Start from the shortest edge
- The vertices connected are in different sets
- Add the edge to MST
- Merge the vertices



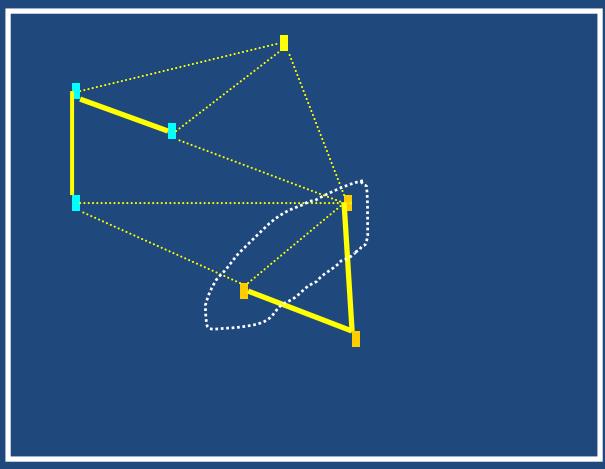
- Process the next shortest edge.
- The vertices connected are in different sets
- Add the edge to MST
- Merge the vertices



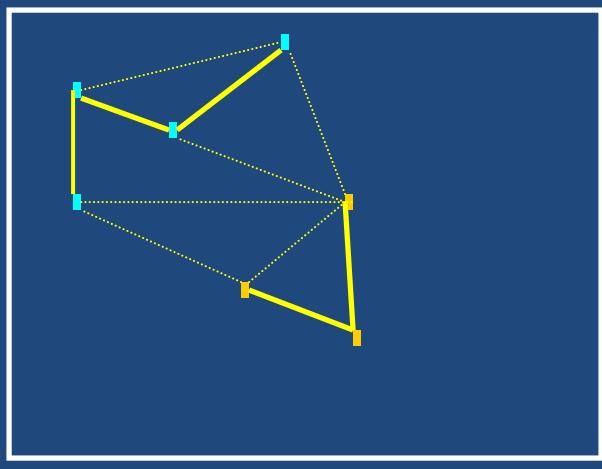
- Process the next shortest edge.
- The vertices connected are in different sets
- Add the edge to MST
- Merge the vertices



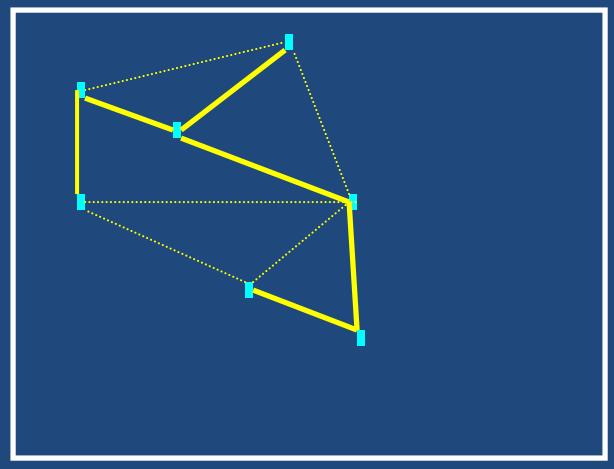
- Process the next shortest edge.
- The vertices connected are in different sets
- Add the edge to MST
- Merge the vertices



- Process the next shortest edge.
- The vertices connected are in the same set
- Skip the edge



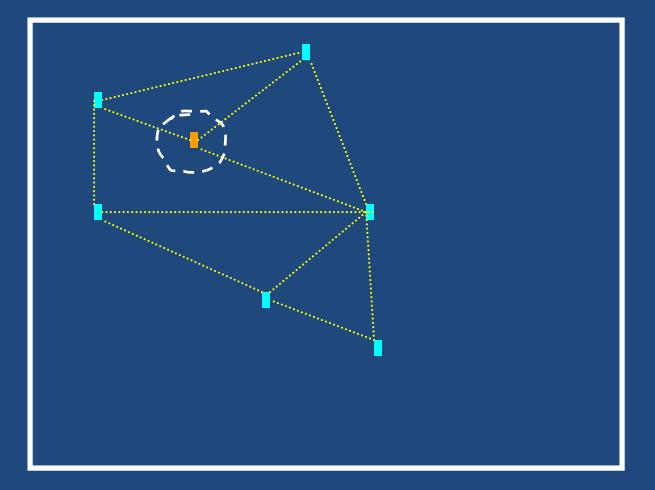
- Process the next shortest edge.
- The vertices connected are in different sets
- Add the edge to MST
- Merge the vertices



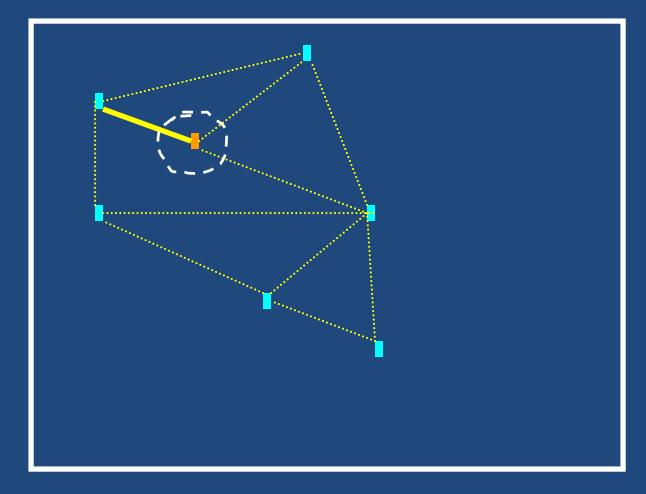
- All vertices are connected
- MST edges are highlighted

Prim's MST Algorithm

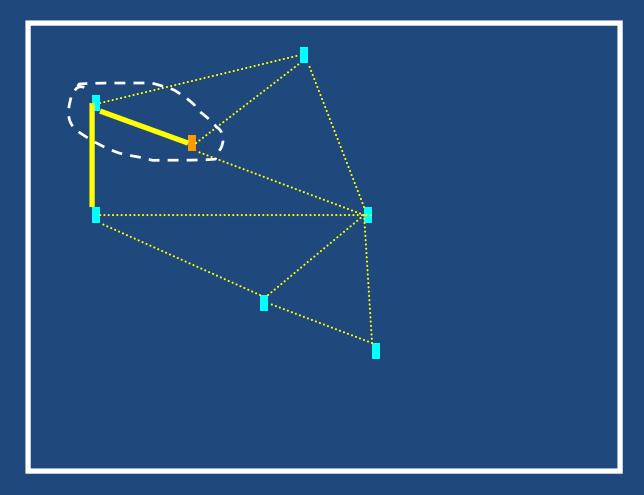
- 1. Initialize V_T and MST to be empty set
- 2. Pick a root vertex v in V (e.g. driver terminal)
- 3. Add v to V_T
- 4. While V_T is not equal to V
 - 1. Find edge e = (v1, v2) such that
 - 1. v1 is in V_T
 - 2. v2 is NOT in V_T
 - 3. weight of e is minimum
 - 2. Add e to MST
 - 3. Add v2 to V_T
- 5. Return MST



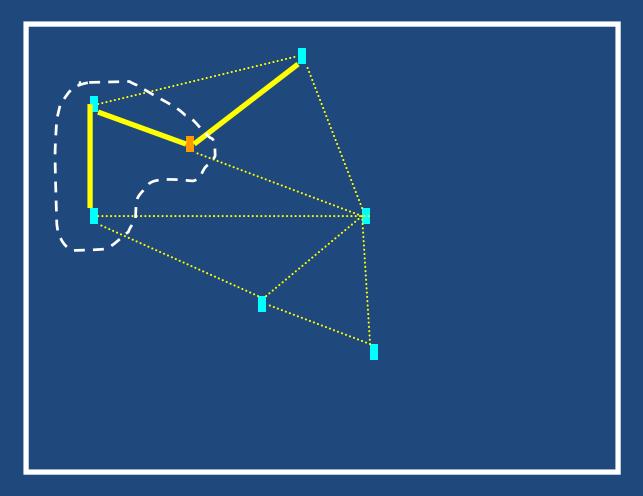
 Initially, V_T contains the root vertex (e.g. driver)



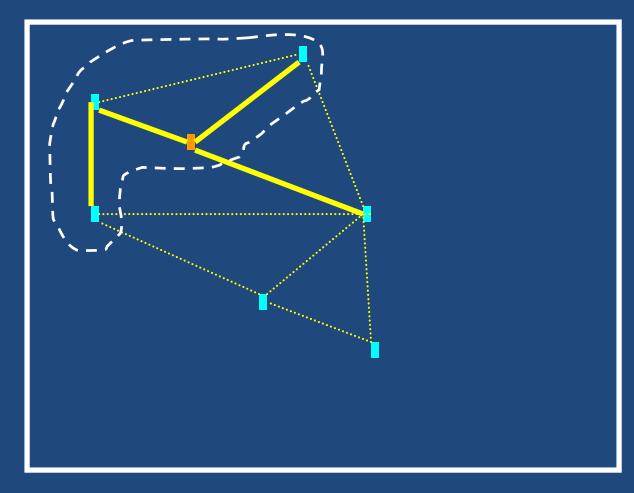
- Pick the shortest edge between V_T and V - V_T
- Add that edge to MST
- Expand V_T



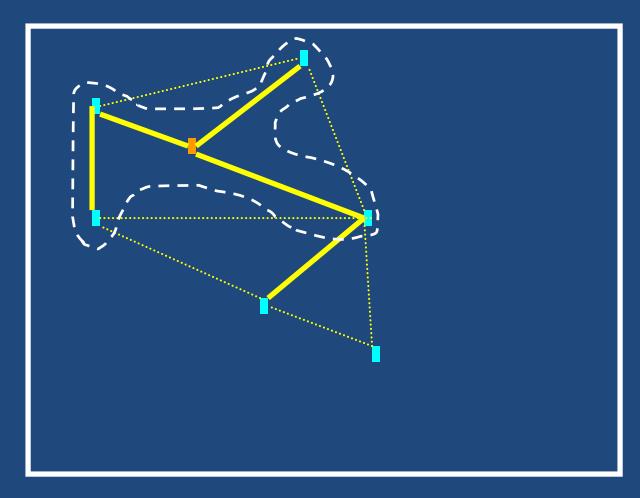
- Pick the shortest edge between V_T and V - V_T
- Add that edge to MST
- Expand V_T



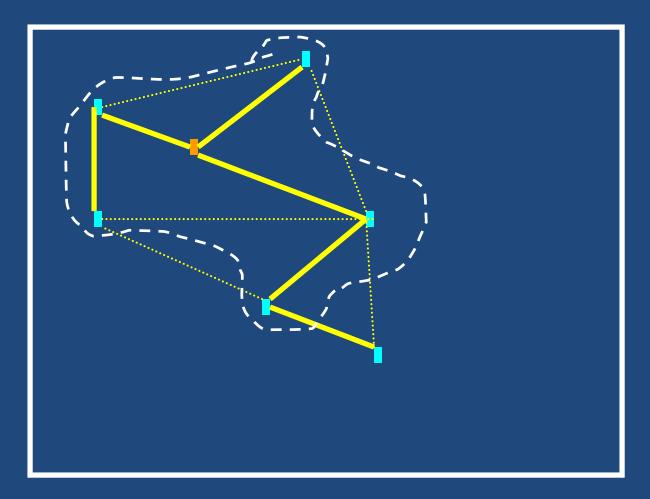
- Pick the shortest edge between V_T and V - V_T
- Add that edge to MST
- Expand V_T



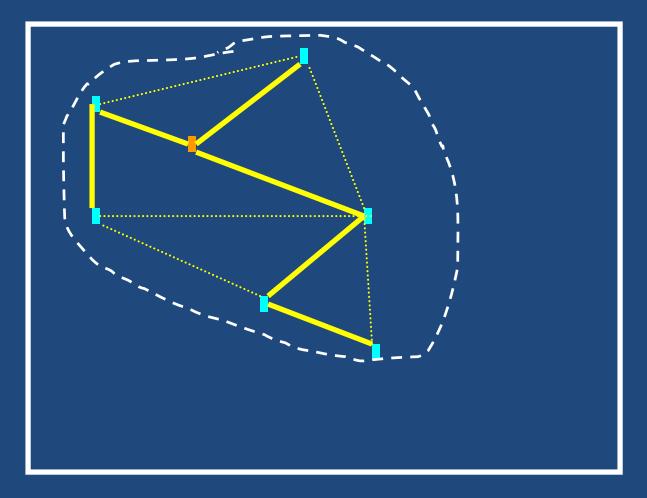
- Pick the shortest edge between V_T and V - V_T
- Add that edge to MST
- Expand V_T



- Pick the shortest edge between V_T and V - V_T
- Add that edge to MST
- Expand V_T



- Pick the shortest edge between V_T and V - V_T
- Add that edge to MST
- Expand V_T



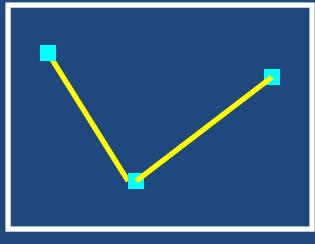
- All vertices are included in V_T
- MST edges are highlighted

MST – Summary

- Find the min-cost edge set that connects a given vertex set.
- Possible to solve it optimally in O(ElogE) time
 - Kruskal's algorithm
 - Prim's algorithm
- In general Prim's algorithm is better to control timing tradeoffs because we expand a wavefront from the driver.

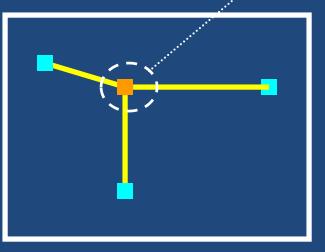
Steiner Trees

- Similar to MSTs, but:
 - Extra intermediate vertices can be added to reduce wirelength.



MST

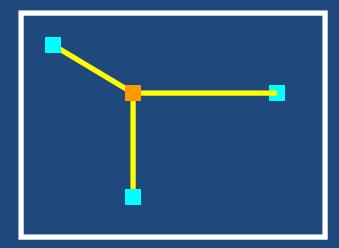
Steiner point



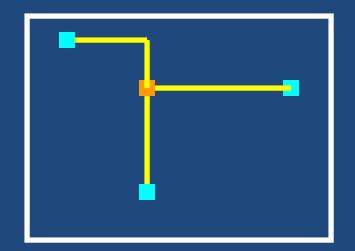
Steiner tree

Rectilinear Steiner Trees

- Steiner trees of which edges are all Manhattan
 - i.e. The routing of the slanted edges are all pre-determined



Steiner tree

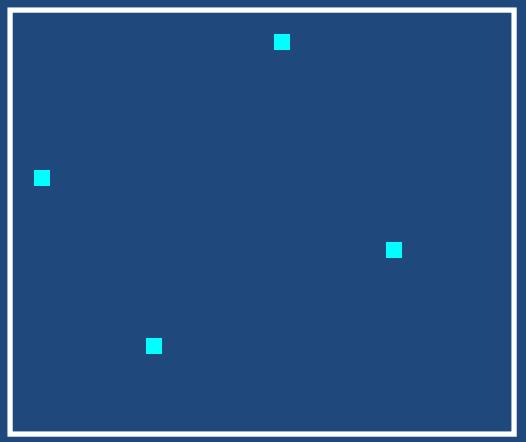


Rectilinear Steiner tree

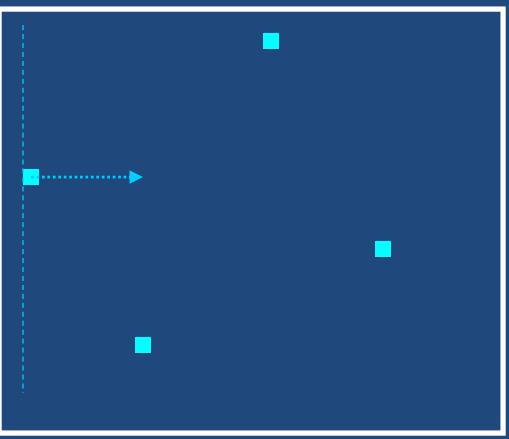
Steiner Tree Algorithms

- Steiner tree problem is NP-complete
 - Most likely there's no polynomial time optimal algorithm
 - Note: MST problem can be solved optimally in O(ElogE)
- Many Steiner tree heuristics
 - Iteratively add Steiner points to an MST
 - Route each edge of MST allowing Steiner points be created in the process.
 - Exponential time algorithms: Based on ILP, SAT, SMT solvers
 - A popular and practical algorithm: FLUTE

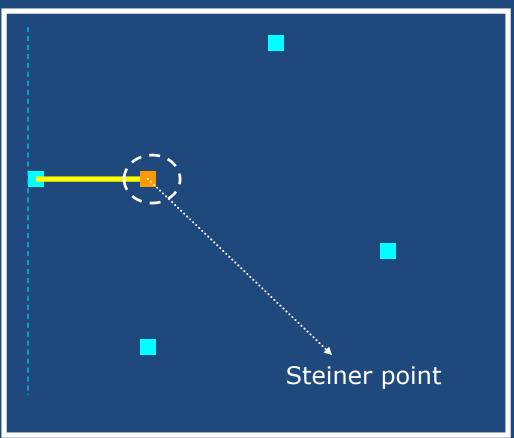
C. Chu et al., "FLUTE: Fast Lookup Table Based Rectilinear Steiner Minimal Tree Algorithm for VLSI Design", IEEE Trans. On CAD, Jan 2008.



• "Press" terminals from each side

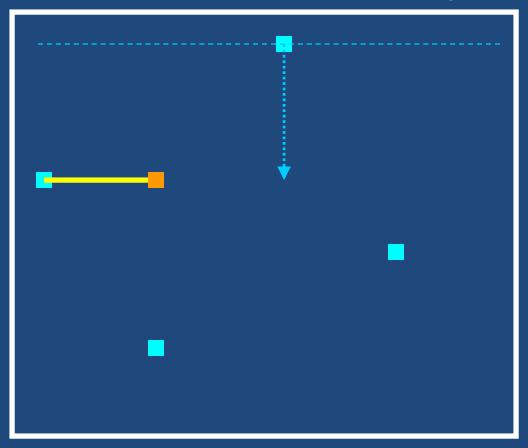


- Press from left
- From the leftmost terminal to the second leftmost one.

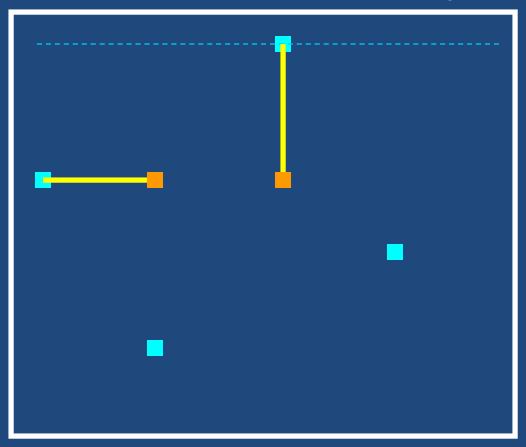


- Create a Steiner edge corresponding to pressing edge
- Create a Steiner point at the new location

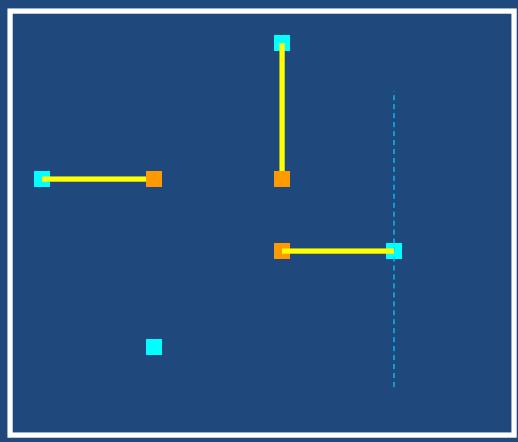
It is proven that pressing maintains optimality of Steiner tree.



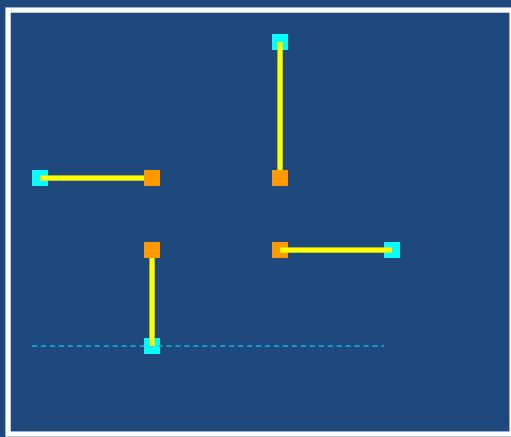
• Press from top



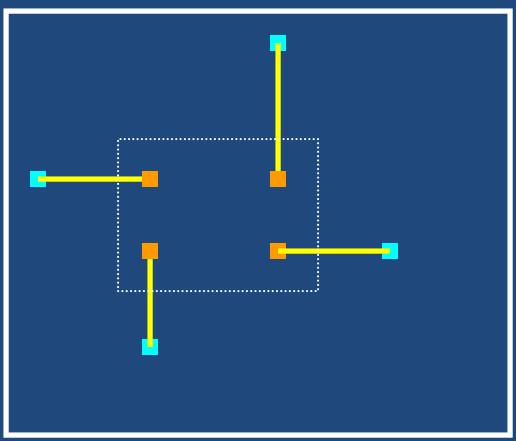
• Press from top



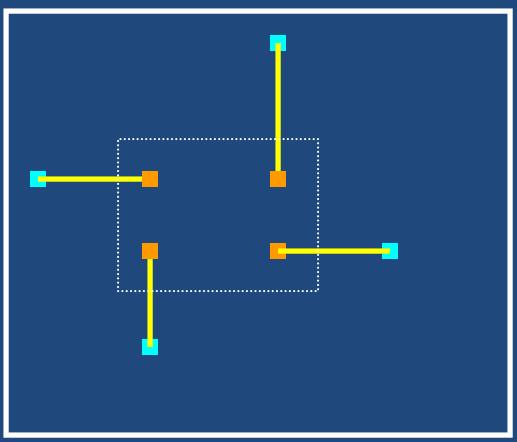
• Press from right



Press from bottom

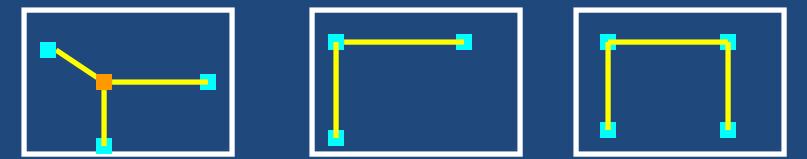


- Problem is reduced to the rectangle at the center.
- How to connect these 4 Steiner (orange) points?

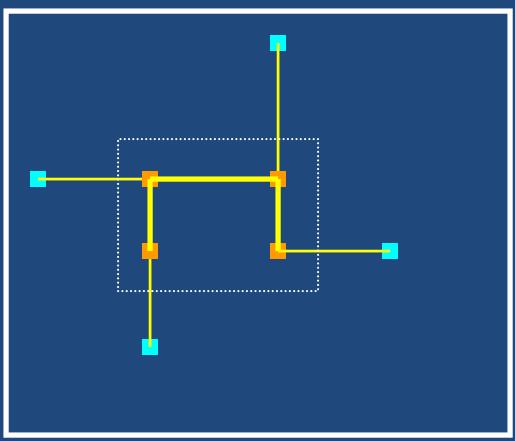


- FLUTE pre-computes all Steiner tree solutions for such rectangles up to 10 terminals.
- After pressing, if there are less than 10 nodes, returns the solution from database.

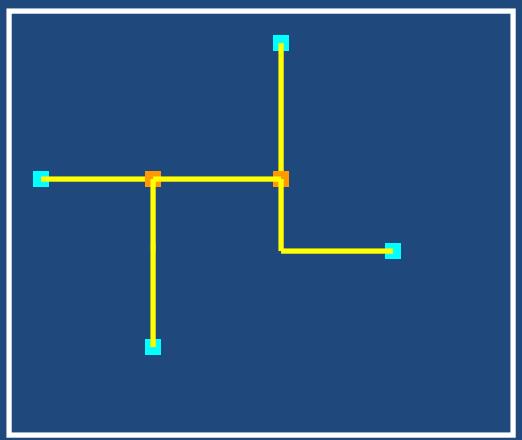
- The solutions for simple problems are stored in a database.
- After pressing operations, if the problem is turned into one of those in the database, the best solution in the database is returned.
- If not in the database, use reduction heuristics.



Canonical solutions stored in database



Solution inside the center rectangle is chosen from the database.

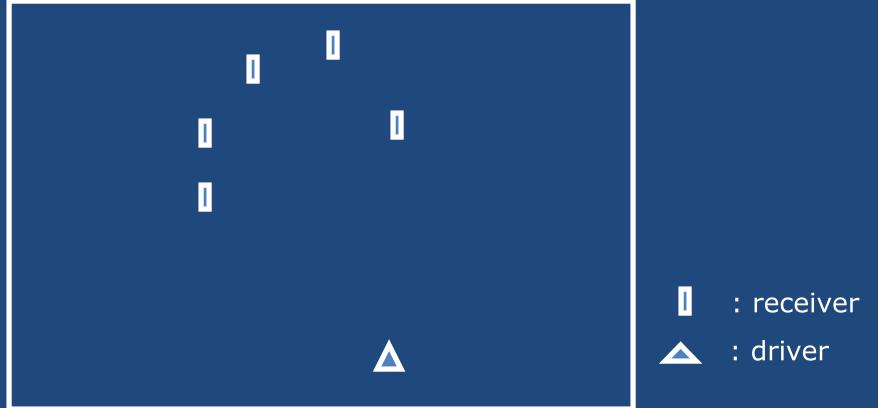


• Final rectilinear Steiner tree

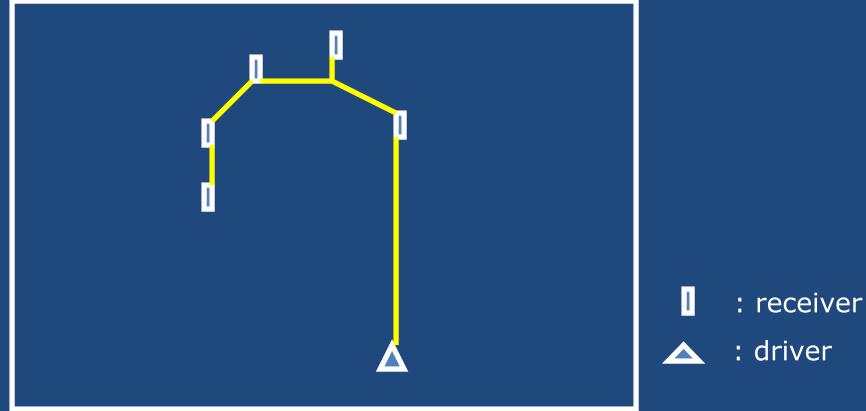
Cost Metrics

- Many tradeoffs to consider for routing topologies
- Topology with best wirelength can have poor timing
- Topology with best wirelength and timing may not be routable

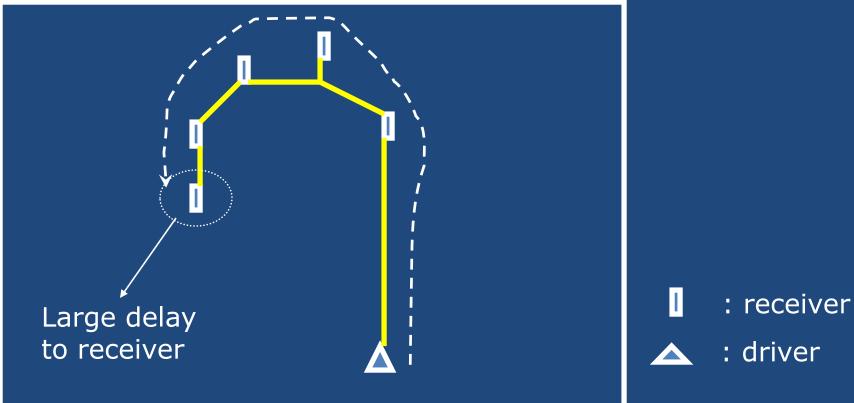
Example Wirelength/Timing Tradeoff



Example Min Wirelength



Example Min Wirelength



47

Example Better Timing – Worse Wirelength

