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ENTITY test is

port a: in bit;

end ENTITY test;

DRC

LVS

ERC

Circuit Design

Functional Design

and Logic Design

Physical Design

Physical Verification

and Signoff

Fabrication

System Specification

Architectural Design

Chip

Packaging and Testing

Chip Planning

Placement

Signal Routing

Partitioning

Timing Closure

Clock Tree Synthesis

5.1 Introduction
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Given a placement, a netlist and technology information, 

 determine the necessary wiring, e.g., net topologies and specific routing 

segments, to connect these cells 

 while respecting constraints, e.g., design rules and routing resource capacities, 

and 

 optimizing routing objectives, e.g., minimizing total wirelength and maximizing 

timing slack.

5.1 Introduction
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C

D

A

B

43

21

4

3

4

1

1

654

Netlist:

N1 = {C4, D6, B3} 

N2 = {D4, B4, C1, A4}

N3 = {C2, D5}

N4 = {B1, A1, C3}

Technology Information 
(Design Rules)

Placement result

5.1 Introduction: General Routing Problem
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Netlist:

N1 = {C4, D6, B3}

N2 = {D4, B4, C1, A4}

N3 = {C2, D5}

N4 = {B1, A1, C3}

Technology Information 
(Design Rules)
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Netlist:

N1 = {C4, D6, B3}

N2 = {D4, B4, C1, A4}

N3 = {C2, D5}

N4 = {B1, A1, C3}

Technology Information 
(Design Rules)

5.1 Introduction: General Routing Problem
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Timing-Driven 

Routing

Global

Routing

Detailed

Routing

Large Single-

Net Routing

Coarse-grain 

assignment of 

routes to 

routing regions

(Chap. 5)

Fine-grain 

assignment 

of routes to 

routing tracks

(Chap. 6)

Net topology 

optimization 

and resource 

allocation to 

critical nets

(Chap. 8)

Power (VDD) 

and Ground 

(GND)

routing

(Chap. 3)

Routing

Geometric 

Techniques

Non-Manhattan

and 

clock routing

(Chap. 7)

5.1 Introduction

Multi-Stage Routing 

of Signal Nets
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 Wire segments are tentatively assigned (embedded) within the chip layout 

 Chip area is represented by a coarse routing grid

 Available routing resources are represented by edges with capacities 

in a grid graph 

 Nets are assigned to these routing resources

Global Routing

5.1 Introduction
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N3

N3

N1 N2N1

N3

N1
N2

N3

N3

N1 N2N1

N3

N1
N2

Horizontal

Segment
Via

Vertical 

Segment

Detailed Routing

5.1 Introduction

Global Routing
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Channel

Standard cell layout (Two-layer routing)

5.2 Terminology and Definitions

Rectangular routing region with pins on two opposite sides



VLSI Physical Design: From Graph Partitioning to Timing Closure         Chapter 5: Global Routing

©
 K

L
M

H

L
ie

n
ig

©
 2

0
1
1
 S

p
ri
n

g
e
r 

V
e
rl
a

g

13

Routing channel

Channel

Routing channel

5.2 Terminology and Definitions

Standard cell layout (Two-layer routing)

Rectangular routing region with pins on two opposite sides
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Capacity

A A

B B

B

B B

BC

C

DC

CD

dpitch
h

Horizontal Routing Channel

5.2 Terminology and Definitions

Number of available routing tracks or columns
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 For single-layer routing, the 

capacity is the height h of the 

channel divided by the pitch dpitch

 For multilayer routing, the 

capacity σ is the sum of the 

capacities of all layers.

Capacity


 













Layerslayer pitch layerd

h
Layersσ

)(
)(

A A

B B

B

B B

BC

C

DC

CD

dpitch
h

Horizontal Routing Channel

5.2 Terminology and Definitions

Number of available routing tracks or columns
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A

B

BC

C

3

B

A

B

Vertical

Channel

Vertical

Channel

Horizontal

Channel

Horizontal

Channel

Switchbox  (Two-layer macro cell layout)

5.2 Terminology and Definitions

Intersection of horizontal and vertical channels

Horizontal channel is routed after vertical channel is routed
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A BC

C

B

A

B

B C

Vertical

Channel

Horizontal

Channel

T-junction  (Two-layer macro cell layout)

5.2 Terminology and Definitions
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Gcells (Tiles) with macro cell layout

Metal1

Metal2

Metal3

Metal4 etc.

5.2 Terminology and Definitions
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Metal1

(Standard cells)

Metal2

(Cell ports)

Metal3

Metal4 etc.

5.2 Terminology and Definitions

Gcells (Tiles) with standard cells
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 Global routing seeks to

 determine whether a given placement is routable, and 

 determine a coarse routing for all nets within available routing regions

 Considers goals such as

 minimizing total wirelength, and

 reducing signal delays on critical nets

5.3 Optimization Goals
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 Routing regions are represented using efficient data structures

 Routing context is captured using a graph, where 

 nodes represent routing regions and 

 edges represent adjoining regions

 Capacities are associated with both edges and nodes 

to represent available routing resources 

5.4 Representations of Routing Regions
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Grid graph model

ggrid = (V,E), where the nodes v  V represent the routing grid cells (gcells)

and the edges represent connections of grid cell pairs (vi,vj) 

5.4 Representations of Routing Regions
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1 2 3

4

5

6

7

8

9 1 2 3

4

5

6

7

8

9

Channel connectivity graph

G = (V,E), where the nodes v  V represent channels, 

and the edges E represent adjacencies of the channels 

5.4 Representations of Routing Regions
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14

Switchbox connectivity graph

G = (V, E), where the nodes v  V represent switchboxes

and an edge exists between two nodes if the corresponding switchboxes 

are on opposite sides of the same channel 

5.4 Representations of Routing Regions
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5.5 The Global Routing Flow

1. Defining the routing regions (Region definition)

 Layout area is divided into routing regions

 Nets can also be routed over standard cells

 Regions, capacities and connections are represented by a graph

2. Mapping nets to the routing regions (Region assignment)

 Each net of the design is assigned to one or several

routing regions to connect all of its pins

 Routing capacity, timing and congestion affect mapping
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5.3 Optimization Goals

5.4 Representations of Routing Regions

5.5 The Global Routing Flow
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5.8 Modern Global Routing

5.8.1 Pattern Routing

5.8.2 Negotiated-Congestion Routing 

5.6 Single-Net Routing
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B (2, 6)

A (2, 1)

C (6, 4)

B (2, 6)

A (2, 1)

C (6, 4)
S (2, 4)

Rectilinear Steiner 

minimum tree (RSMT) 

Rectilinear minimum 

spanning tree (RMST) 

5.6.1 Rectilinear Routing
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5.6.1 Rectilinear Routing

 An RMST can be computed in O(p2lgp) time, where p is the number of terminals 

in the net using methods such as Prim’s Algorithm

 Prim’s Algorithm builds an MST by starting with a single terminal and greedily 

adding least-cost edges to the partially-constructed tree

 Advanced computational-geometric techniques reduce the runtime to O(p log p)
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Characteristics of an RSMT

 An RSMT for a p-pin net has between 0 and p – 2 (inclusive) Steiner points

 The degree of any terminal pin is 1, 2, 3, or 4 

The degree of a Steiner point is either 3 or 4

 A RSMT is always enclosed in the minimum bounding box (MBB) of the net

 The total edge length LRSMT of the RSMT is at least half the perimeter of the 

minimum bounding box of the net: LRSMT  LMBB / 2

5.6.1 Rectilinear Routing
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Transforming an initial RMST into a low-cost RSMT

p1

p2

p3

p1

p3

p2

S1

p1

p3

p2

Construct L-shapes between points 

with (most) overlap of net segments 

p1

p3S

p2

Final tree (RSMT) 

5.6.1 Rectilinear Routing
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Converting an MST to RSMT

 Start with a minimum spanning tree (MST) with flylines

 Consider the bounding boxes with largest overlaps

 Choose the L-routes leading to the max segment sharing

p1

p2

p3

p4

p1

p2

p3

p4

p1

p3

p4
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Hanan grid

 Adding Steiner points to an RMST can significantly reduce the wirelength 

 Maurice Hanan proved that for finding Steiner points, it suffices to consider 

only points located at the intersections of vertical and horizontal lines 

that pass through terminal pins 

 The Hanan grid consists of the lines x = xp, y = yp that pass through the 

location (xp,yp) of each terminal pin p

 The Hanan grid contains at most (n2-n) candidate Steiner points 

(n = number of pins), thereby greatly reducing the solution space 

for finding an RSMT

5.6.1 Rectilinear Routing
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Hanan points (  ) RSMTIntersection linesTerminal pins

5.6.1 Rectilinear Routing
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A Sequential Steiner Tree Heuristic

1. Find the closest (in terms of rectilinear distance) pin pair, 

construct their minimum bounding box (MBB) 

2. Find the closest point pair (pMBB,pC) between any point pMBB on the MBB 

and pC from the set of pins to consider 

3. Construct the MBB of pMBB and pC

4. Add the L-shape that pMBB lies on to T (deleting the other L-shape). 

If pMBB is a pin, then add any L-shape of the MBB to T. 

5. Goto step 2 until the set of pins to consider is empty

5.6.1 Rectilinear Routing
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1

5.6.1 Rectilinear Routing: Example Sequential Steiner Tree Heuristic
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5.6.1 Rectilinear Routing: Example Sequential Steiner Tree Heuristic
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5.6.1 Rectilinear Routing: Example Sequential Steiner Tree Heuristic

MBB

pc
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5.6.1 Rectilinear Routing: Example Sequential Steiner Tree Heuristic

pMBB
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5.6.1 Rectilinear Routing: Example Sequential Steiner Tree Heuristic
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5.6.1 Rectilinear Routing: Example Sequential Steiner Tree Heuristic
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5.6.1 Rectilinear Routing: Example Sequential Steiner Tree Heuristic
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5.6.1 Rectilinear Routing: Example Sequential Steiner Tree Heuristic
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5.6.1 Rectilinear Routing: Example Sequential Steiner Tree Heuristic
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What is wrong with this heuristic?

Sequential processing of the pins leads to suboptimality.

Using the dashed segments would decrease the total wirelength.
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Iterated 1-Steiner Approach

Iterated 1-Steiner Heuristic:

1. Start with the original point set P

2. Find the Steiner point x such that ΔMST(P, x) is maximum

3. If ΔMST(P, x) > 0 then add x to P

4. Remove the Steiner points in P that have degree ≤ 2 

5. Repeat steps 2-4 until ΔMST(P, x) < 0

Notation: 

ΔMST(A, x) = cost(MST(A)) – cost(MST(A U x))

i.e. the change in the MST cost after we add the extra point x
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Example: Iterated 1-Steiner

Construct initial MST
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Example: Iterated 1-Steiner

Determine the new Steiner point that will reduce the wirelength most
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Example: Iterated 1-Steiner

Determine the new Steiner point that will reduce the wirelength most
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Example: Iterated 1-Steiner

Final Steiner tree
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5.6.2 Global Routing in a Connectivity Graph
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 Combines switchboxes and channels, handles non-rectangular block shapes 

 Suitable for full-custom design and multi-chip modules 

Overview:
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Horizontal macro-cell edges Vertical macro-cell edges

Defining the routing regions

5.6.2 Global Routing in a Connectivity Graph

+
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Single Net Routing Algorithms

 Lee’s maze routing algorithm

 Maze routing enhancements

 Line search algorithms

 Routing nets with multiple terminals

 Dijkstra’s algorithm

 A* search
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Lee’s Maze Routing Algorithm

Assumption:

Each grid cell has equal cost

Similar to breadth-first search

Two steps:

1. Expand a wavefront

2. Backtrace

Finds an optimal path
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Lee’s Maze Routing Algorithm

Assumption:

Each grid cell has equal cost

Similar to breadth-first search

Two steps:

1. Expand a wavefront

2. Backtrace

Finds an optimal path
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Exercise

s

t
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Hadlock’s Min Detour Algorithm

Observation: Shortest-path is 
the same as the path with min 
detour value.

Uses the detour number as cell 
label.

Cells with smaller labels 
expanded before others.

Finds an optimal path.
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Wavefront Comparison

Lee’s Maze Router Hadlock’s Min Detour Router
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Exercise

s

t
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Soukup’s Fast Maze Routing Algorithm

Iteratively conducted in 2 phases:

1. Expand towards target without 

changing direction until an 

obstacle is encountered.

2. Expand all directions as in the 

original maze routing 

algorithm. When a cell in the 

direction toward target is found, 

switch back to phase 1.

Not guaranteed to find optimal path
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Maze Routing for Arbitrary Unit Costs

Previously assumed: All grid cells 

have equal costs.

What if different cells have 

different costs?

Will the original maze routing 

algorithm work?
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Maze Routing for Arbitrary Unit Costs

Consider Lee’s original maze 

routing algorithm.

This example illustrates the stage 

when the wavefront from the 

source reaches the target the first 

time.

Is this the optimal path?
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Maze Routing for Arbitrary Unit Costs

Continue expanding after reaching the 
target.

A longer path may turn out to have 
smaller cost.

Need to continue expanding after 
reaching the target.

The issue: We are using BFS on a 
graph with weighted edges.

 Use Dijkstra’s algorithm instead
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Mikami-Tabuchi’s Line Search Algorithm

1. Expand a horizontal and 

vertical line from source and 

target.

2. In every iteration, expand 

from the last expanded line.

3. Continue until a line from the 

source intersects another line 

from the target.

4. Backtrace from the 

intersection.

Guaranteed to find min-bend path
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Exercise

s

t
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Hightower’s Line Search Algorithm

Does not expand from every point.

Identifies “escape lines” based on the 
positions of the obstacles that blocked 
the previous line.

Reduces the # of expansions 
significantly.

Not guaranteed to find a valid path even 
if one exists.
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Exercise

s

t
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Maze Routing and Line Search Algorithms

Summary

 Maze routing:

 A variation of breadth-first search (BFS)

 Worst case complexity when all costs are uniform: O(NxM)

where NxM is the grid size

 this complexity not guaranteed for arbitrary weights

 Usually better to use Dijkstra’s algorithm for arbitrary weights

 Line search:

 Doesn’t have to visit all grid points

 The runtime complexity depends on the # of bends

 Good when the number of bends in the solution is small

 Good when there are not many blockages in the design
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 Finds a shortest path between two specific nodes in the routing graph 

 Input 

 graph G(V,E) with non-negative edge weights W, 

 source (starting) node s, and 

 target (ending) node t

 Maintains three groups of nodes 

 Group 1 – contains the nodes that have not yet been visited 

 Group 2 – contains the nodes that have been visited but for which the 

shortest-path cost from the starting node has not yet been found

 Group 3 – contains the nodes that have been visited and for which the 

shortest path cost from the starting node has been found

 Once t is in Group 3, the algorithm finds the shortest path by backtracing 

5.6.3 Finding Shortest Paths with Dijkstra’s Algorithm
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1 4 7

2 5 8

3 6 9

s

t

1,4 8,8

2,6 2,8

9,8 3,3

8,6 9,7 3,2

1,4 2,8 4,5

Find the shortest path from source s

to target t where the path cost

∑w1 + ∑w2 is minimal

5.6.3 Finding Shortest Paths with Dijkstra’s Algorithm

Example
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Group 2 Group 3

(1)

Current node: 1
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[1]
N [2] 8,6

W [4] 1,4

W [4] 1,4

parent of node [node name] ∑w1(s,node),∑w2(s,node)

Group 2 Group 31 4 7

2 5 8

3 6 9

1,4 8,8

2,6 2,8

9,8 3,3

8,6 9,7 3,2

1,4 2,8 4,5

Current node: 1

Neighboring nodes: 2, 4

Minimum cost in group 2: node 4 

s

t
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W [4] 1,4
N [5] 10,11

W [7] 9,12

N [2] 8,6

Current node: 4

Neighboring nodes: 1, 5, 7

Minimum cost in group 2: node 2 

s

t

parent of node [node name] ∑w1(s,node),∑w2(s,node)
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Current node: 2

Neighboring nodes: 1, 3, 5

Minimum cost in group 2: node 3 
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t

parent of node [node name] ∑w1(s,node),∑w2(s,node)
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parent of node [node name] ∑w1(s,node),∑w2(s,node)
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8,6 9,7 3,2

1,4 2,8 4,5

Group 2 Group 3

(1)
N (2) 8,6

W (4) 1,4

W (4) 1,4
N (5) 10,11

W (7) 9,12

N (2) 8,6
N (3) 9,10

W (5) 10,12

N (3) 9,10W (6) 18,18

N (5) 10,11
N (6) 12,19

W (8) 12,19

W (7) 9,12N (8) 12,14

N (8) 12,14

Current node: 7

Neighboring nodes: 4, 8

Minimum cost in group 2: node 8 

s

t

parent of node [node name] ∑w1(s,node),∑w2(s,node)
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1 7

2 5 8

3 6 9

1,4 8,8

2,6 2,8

9,8 3,3

8,6 9,7 3,2

1,4 2,8 4,5

Group 2 Group 3

(1)
N (2) 8,6

W (4) 1,4

W (4) 1,4
N (5) 10,11

W (7) 9,12

N (2) 8,6
N (3) 9,10

W (5) 10,12

N (3) 9,10W (6) 18,18

N (5) 10,11
N (6) 12,19

W (8) 12,19

W (7) 9,12N (8) 12,14

N (8) 12,14

Retrace from t to s

s

t

4
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1 4 7

2 5 8

3 6 9

1,4 9,12

12,14

Optimal path 1-4-7-8 from s to t

with accumulated cost (12,14)

s

t
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5.6.4 Finding Shortest Paths with A* Search

 A* search operates similarly to Dijkstra’s algorithm, but extends the cost 

function to include an estimated distance from the current node to the target

 Expands only the most promising nodes; its best-first search strategy 

eliminates a large portion of the solution space 

A* search

(exploring 6 nodes)

Dijkstra‘s algorithm

(exploring 31 nodes)

1

2

3

4

13

56

7

8

9

10

29

11

12

14

15

16

17

18

1921

2022

23

25

26

27

2830

24

O

O

O31

1

2

4

3

5 O

O6

O

s s

t t

s Source

t

O

Target

Obstacle
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A* Search

 “Best-first” search

 Cost function: f(x) = g(x) + h(x)

g(x): the cost of the partial path src → x

h(x): the estimated cost of the remaining path x → tgt

Note: If h(x) = 0  same as Dijkstra’s algorithm

 Optimality: If h(x) is admissible then the path computed is 

guaranteed to be optimal

h(x) is admissible if it does not overestimate the cost
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A* Search: Example

5

5

5

O

O

O

s

t

An easy choice for h(x): the Manhattan

distance between x and tgt

 Guaranteed to be a lower bound

Assume each grid cell has cost = 1

6

6

6

5

Another practical heuristic:

For identical f(x) values, break ties 

based on h(x)

66

5

f(x) = 1 + 4 = 5

actual cost 

s→x

est. cost 

x→tgt
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Optimality of A* Search

 h(x) is admissible: h(x) does not overestimate the cost to target

 Optimality proof:

When A* terminates its search at node t:

What is the cost of the path found?

f(t) = g(t)

Can there be another node y that has f(y) < f(t) ?

No, because we expand from the min cost node

Can there be another node y that can lead to a shorter path?

No, because f(y) = g(y) + h(y), and 

h(y) underestimates the path length to target.
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Inadmissible Heuristics

 We may want to use inadmissible heuristics when:

 We cannot find an effective admissible heuristics

 e.g. When the edge weights differ a lot. What if there is a 0-cost edge? 

 We don’t want to explore all nodes with equal f(x) values

 Possible to tradeoff solution quality vs. runtime using inadmissible heuristics

"Weighted A star with eps 5" by Subh83 - Own work. Licensed under CC BY 3.0 via Commons -

https://commons.wikimedia.org/wiki/File:Weighted_A_star_with_eps_5.gif#/media/File:Weighted_A_star_with_eps_5.gif
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Exercise

s
t
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5.1 Introduction

5.2 Terminology and Definitions

5.3 Optimization Goals

5.4 Representations of Routing Regions

5.5 The Global Routing Flow

5.6 Single-Net Routing

5.6.1 Rectilinear Routing

5.6.2 Global Routing in a Connectivity Graph

5.6.3 Finding Shortest Paths with Dijkstra’s Algorithm

5.6.4 Finding Shortest Paths with A* Search

5.7 Full-Netlist Routing

5.7.1 Routing by Integer Linear Programming

5.7.2 Rip-Up and Reroute (RRR)

5.8 Modern Global Routing

5.8.1 Pattern Routing

5.8.2 Negotiated-Congestion Routing 

5.7 Full-Netlist Routing
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5.7 Full-Netlist Routing

 Global routers must properly match nets with routing resources, 

without oversubscribing resources in any part of the chip 

 Signal nets are either routed 

 simultaneously, e.g., by integer linear programming, or 

 sequentially, e.g., one net at a time 

 When certain nets cause resource contention or overflow for routing edges, 

sequential routing requires multiple iterations: rip-up and reroute 
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5.7.2 Rip-Up and Reroute (RRR)

 Rip-up and reroute (RRR) framework: focuses on hard-to-route nets 

 Idea: allow temporary violations, so that all nets are routed, but then iteratively 

remove some nets (rip-up), and route them differently (reroute) 

D

B

D’

A’

B’

C’
C

A

D

B

C

A

D’

A’

B’

C’

Routing without 

allowing violations

WL = 21

D

B

C

A

D’

A’

B’

C’

Routing with allowing 

violations and RRR

WL = 19
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5.1 Introduction

5.2 Terminology and Definitions

5.3 Optimization Goals

5.4 Representations of Routing Regions

5.5 The Global Routing Flow

5.6 Single-Net Routing

5.6.1 Rectilinear Routing

5.6.2 Global Routing in a Connectivity Graph

5.6.3 Finding Shortest Paths with Dijkstra’s Algorithm

5.6.4 Finding Shortest Paths with A* Search

5.7 Full-Netlist Routing

5.7.1 Routing by Integer Linear Programming

5.7.2 Rip-Up and Reroute (RRR)

5.8 Modern Global Routing

5.8.1 Pattern Routing

5.8.2 Negotiated-Congestion Routing 

5.8 Modern Global Routing
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 General flow for modern global routers, where each router uses a unique set 

of optimizations: 

Global Routing Instance

Net Decomposition Initial Routing

Layer Assignment

Final Improvements

no

yes

Rip-up and Reroute

Violations?

(optional)

5.8 Modern Global Routing
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 Pattern Routing

 Searches through a small number of route patterns to improve runtime

 Topologies commonly used in pattern routing: L-shapes, Z-shapes, U-shapes 

Detour-

Left

Horizontal 

U-Shape

Detour-

Right 

Horizontal 

U-Shape

Detour-Up

Vertical 

U-Shape

Detour-

Down 

Vertical 

U-Shape

Up-Right-

Up 

Z-Shape

Right-Up-

Right 

Z-Shape

Up-Right 

L-Shape

Right-Up 

L-Shape

5.8 Modern Global Routing
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 Negotiated-Congestion Routing

 Each edge e is assigned a cost value cost(e) that reflects the demand for edge e

 A segment from net net that is routed through e pays a cost of cost(e) 

 Total cost of net is the sum of cost(e) values taken over all edges used by net: 

 The edge cost cost(e) is increased according to the edge congestion φ(e), defined 

as the total number of nets passing through e divided by the capacity of e:

 A higher cost(e) value discourages nets from using e and implicitly encourages 

nets to seek out other, less used edges

 Iterative routing approaches (Dijkstra’s algorithm, A* search, etc.) find routes 

with minimum cost while respecting edge capacities 






nete

ecostnetcost )()(

)(

)(
)(

eσ

eη
eφ 

5.8 Modern Global Routing
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Summary of Chapter 5 – Types of Routing  

 Input: netlist, placement, obstacles + (usually) routing grid

 Partitions the routing region (chip or block) into global routing cells (gcells)

 Considers the locations of cells within a region as identical

 Plans routes as sequences of gcells

 Minimizes total length of routes and, possibly, routed congestion

 May fail if routing resources are insufficient

 Variable-die can expand the routing area, so can't usually fail

 Fixed-die is more common today (cannot resize a block in a larger chip)

 Interpreting failures in global routing

 Failure with many violations => must restructure the netlist 

and/or redo global placement

 Failure with few violations => detailed routing may be able to fix the problems

Global Routing
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Summary of Chapter 5 – Types of Routing  

 Input: netlist, placement, obstacles, global routes (on a routing grid), 

routing tracks, design rules

 Seeks to implement each global route as a sequence of track segments

 Includes layer assignment (unless that is performed during global routing)

 Minimizes total length of routes, subject to design rules

Detailed Routing

 Minimizes circuit delay by optimizing timing-critical nets

 Usually needs to trade off route length and congestion against timing

 Both global and detailed routing can be timing-driven

Timing-Driven routing 
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Summary of Chapter 5 – Types of Routing  

 Nets with many pins can be so complex that routing a single net

warrants dedicated algorithms

 Steiner tree construction

 Minimum wirelength, extensions for obstacle-avoidance

 Nonuniform routing costs to model congestion

 Large signal nets are routed as part of global routing 

and then split into smaller segments processed during detailed routing

Large-Net Routing 

 Performed before global routing to avoid competition for resources 

occupied by signal nets

Clock Tree Routing / Power Routing
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Summary of Chapter 5 – Routing Single Nets  

 Usually ~50% of the nets are two-pin nets, ~25% have three pins, 

~12.5% have four, etc.

 Two-pin nets can be routed as L-shapes or using maze search 

(in a connectivity graph of the routing regions)

 Three-pin nets usually have 0 or 1 branching point

 Larger nets are more difficult to handle

 Pattern routing

 For each net, considers only a small number of shapes (L, Z, U, T, E)

 Very fast, but misses many opportunities

 Good for initial routing, sometimes is sufficient

 Routing pin-to-pin connections

 Breadth-first-search (when costs are uniform)

 Dijkstra's algorithm (non-uniform costs)

 A*-search (non-uniform costs and/or using additional distance information)
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Summary of Chapter 5 – Routing Single Nets  

 Minimum Spanning Trees and Steiner Minimal Trees in the rectilinear topology 

(RMSTs and RSMTs)

 RMSTs can be constructed in near-linear time

 Constructing RSMTs is NP-hard, but feasible in practice

 Each edge of an RMST or RSMT can be considered a pin-to-pin connection 

and routed accordingly

 Routing congestion introduces non-uniform costs, complicates the construction 

of minimal trees (which is why A*-search still must be used)

 For nets with <10 pins, RSMTs can be found using look-up tables (FLUTE) 

very quickly 
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Summary of Chapter 5 – Full Netlist Routing  

 Routing by Integer Linear Programming (ILP)

 Capture the route of each net by 0-1 variables, form equations 

constraining those variables

 The objective function can represent total route length

 Solve the equations while minimizing the objective function (ILP software)

 Usually a convenient but slow technique, may not scale to largest netlists 

(can be extended by area partitioning)

 Rip-up and Re-route (RRR)  

 Processes one net at a time, usually by A*-search and Steiner-tree heuristics 

 Allows temporary overlaps between nets

 When every net is routed (with overlaps), it removes (rips up) those with overlaps 

and routes them again with penalty for overlaps

 This process may not finish, but often does, else use a time-out

 Both ILP-based routing and RRR can be applied in global and detailed routing 

 ILP-based routing is usually preferable for small, difficult-to-route regions

 RRR is much faster when routing is easy
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Summary of Chapter 5 – Modern Global Routing  

 Initial routes are constructed quickly by pattern routing and the FLUTE package 

for Steiner tree construction - very fast

 Several iterations based on modified pattern routing to avoid congestion 

- also very fast

 Sometimes completes all routes without violations

 If violations remain, they are limited to a few congested spots

 The main part of the router is based on a variant of RRR 

called Negotiated-Congestion Routing (NCR)

 Several proposed alternatives are not competitive

 NCR maintains "history" in terms of which regions attracted too many nets

 NCR increases routing cost according to the historical popularity of the regions

 The nets with alternative routes are forced to take those routes

 The nets that do not have good alternatives remain unchanged

 Speed of increase controls tradeoff between runtime and route quality


