CS473-Algorithms I

Lecture 2

Asymptotic Notation

O-notation: Asymptotic upper bound

$\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$ if \exists positive constants $\mathrm{c}, \mathrm{n}_{0}$ such that

$$
0 \leq \mathrm{f}(\mathrm{n}) \leq \operatorname{cg}(\mathrm{n}), \forall \mathrm{n} \geq \mathrm{n}_{0}
$$

> Asymptotic running times of algorithms are usually defined by functions whose domain are $N=\{0,1,2, \ldots\}$ (natural numbers)

Example

Show that $2 n^{2}=O\left(n^{3}\right)$

We need to find two positive constants: \mathbf{c} and $\mathbf{n}_{\mathbf{0}}$ such that:

$$
0 \leq 2 \mathrm{n}^{2} \leq \mathrm{cn}^{3} \text { for all } \mathrm{n} \geq \mathrm{n}_{0}
$$

Choose $\mathrm{c}=2$ and $\mathrm{n}_{0}=1$
$\Rightarrow 2 n^{2} \leq 2 n^{3}$ for all $n \geq 1$

Or, choose $\mathrm{c}=1$ and $\mathrm{n}_{0}=2$
$\Rightarrow 2 n^{2} \leq n^{3}$ for all $n \geq 2$

Example

Show that $2 \mathrm{n}^{2}+\mathrm{n}=\mathrm{O}\left(\mathrm{n}^{2}\right)$

We need to find two positive constants: \mathbf{c} and $\mathbf{n}_{\mathbf{0}}$ such that:

$$
\begin{array}{r}
0 \leq 2 n^{2}+n \leq \mathrm{c}^{2} \text { for all } \mathrm{n} \geq \mathrm{n}_{0} \\
2+(1 / \mathrm{n}) \leq \mathrm{c} \text { for all } \mathrm{n} \geq \mathrm{n}_{0}
\end{array}
$$

Choose $\mathrm{c}=3$ and $\mathrm{n}_{0}=1$

$$
\Rightarrow 2 \mathrm{n}^{2}+\mathrm{n} \leq 3 \mathrm{n}^{2} \text { for all } \mathrm{n} \geq 1
$$

O-notation

\square What does $\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$ really mean?

- The notation is a little sloppy
- One-way equation
$■$ e.g. $n^{2}=O\left(n^{3}\right)$, but we cannot say $O\left(n^{3}\right)=n^{2}$
$\square \mathrm{O}(\mathrm{g}(\mathrm{n}))$ is in fact a set of functions:

$$
\begin{aligned}
& \mathrm{O}(\mathrm{~g}(\mathrm{n}))=\left\{\mathrm{f}(\mathrm{n}): \exists \text { positive constants } \mathrm{c}, \mathrm{n}_{0}\right. \text { such that } \\
& \left.0 \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{cg}(\mathrm{n}), \forall \mathrm{n} \geq \mathrm{n}_{0}\right\}
\end{aligned}
$$

O-notation

$\square \quad \mathrm{O}(\mathrm{g}(\mathrm{n}))=\left\{\mathrm{f}(\mathrm{n}): \exists\right.$ positive constants $\mathrm{c}, \mathrm{n}_{0}$ such that

$$
\left.0 \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{cg}(\mathrm{n}), \forall \mathrm{n} \geq \mathrm{n}_{0}\right\}
$$

\square In other words: $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ is in fact:
the set of functions that have asymptotic upper bound $g(n)$
\square e.g. $2 \mathrm{n}^{2}=\mathrm{O}\left(\mathrm{n}^{3}\right)$ means $2 \mathrm{n}^{2} \in \mathrm{O}\left(\mathrm{n}^{3}\right)$
$2 n^{2}$ is in the set of functions that have asymptotic upper bound n^{3}

True or False?

$$
\begin{array}{ll}
10^{9} \mathrm{n}^{2}=\mathrm{O}\left(\mathrm{n}^{2}\right) \quad \text { True } \quad \text { Choose } \mathrm{c}=10^{9} \text { and } \mathrm{n}_{0}=1 \\
& 0 \leq 10^{9} \mathrm{n}^{2} \leq 10^{9} \mathrm{n}^{2} \text { for } \mathrm{n} \geq 1
\end{array}
$$

$$
100 \mathrm{n}^{1.9999}=\mathrm{O}\left(\mathrm{n}^{2}\right)
$$

True
Choose $\mathrm{c}=100$ and $\mathrm{n}_{0}=1$
$0 \leq 100 \mathrm{n}^{1.9999} \leq 100 \mathrm{n}^{2}$ for $\mathrm{n} \geq 1$

$$
10^{-9} \mathrm{n}^{2.0001} \leq \mathrm{cn}^{2} \text { for } \mathrm{n} \geq \mathrm{n}_{0}
$$

$10^{-9} \mathrm{n}^{0.0001} \leq \mathrm{c}$ for $\mathrm{n} \geq \mathrm{n}_{0}$
Contradiction

O-notation

$\square O$-notation is an upper bound notation
\square What does it mean if we say:
"The runtime $(T(n))$ of Algorithm A is at least $\mathrm{O}\left(\mathrm{n}^{2}\right)$ "
\rightarrow says nothing about the runtime. Why?
$\mathrm{O}\left(\mathrm{n}^{2}\right)$: The set of functions with asymptotic upper bound n^{2}
$\mathrm{T}(\mathrm{n}) \geq \mathrm{O}\left(\mathrm{n}^{2}\right)$ means: $\mathrm{T}(\mathrm{n}) \geq \mathrm{h}(\mathrm{n})$ for some $\mathrm{h}(\mathrm{n}) \in \mathrm{O}\left(\mathrm{n}^{2}\right)$
$h(n)=0$ function is also in $O\left(n^{2}\right)$. Hence: $T(n) \geq 0$
runtime must be nonnegative anyway!

Summary: O-notation: Asymptotic upper bound

$\mathrm{f}(\mathrm{n}) \in \mathrm{O}(\mathrm{g}(\mathrm{n}))$ if \exists positive constants $\mathrm{c}, \mathrm{n}_{0}$ such that

$$
0 \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{cg}(\mathrm{n}), \exists \mathrm{n} \geq \mathrm{n}_{0}
$$

ת-notation: Asymptotic lower bound

$\mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n}))$ if \exists positive constants $\mathrm{c}, \mathrm{n}_{0}$ such that

$$
0 \leq \mathrm{cg}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}), \forall \mathrm{n} \geq \mathrm{n}_{0}
$$

ת: "big Omega"

Example

Show that $2 n^{3}=\Omega\left(n^{2}\right)$

We need to find two positive constants: \mathbf{c} and $\mathbf{n}_{\mathbf{0}}$ such that:

$$
0 \leq \mathrm{cn}^{2} \leq 2 \mathrm{n}^{3} \text { for all } \mathrm{n} \geq \mathrm{n}_{0}
$$

Choose $\mathrm{c}=1$ and $\mathrm{n}_{0}=1$
$\Rightarrow \mathrm{n}^{2} \leq 2 \mathrm{n}^{3}$ for all $\mathrm{n} \geq 1$

Example

Show that $\sqrt{n}=\Omega(\lg \mathrm{n})$

We need to find two positive constants: \mathbf{c} and $\mathbf{n}_{\mathbf{0}}$ such that:

$$
\mathrm{c} \lg \mathrm{n} \leq \sqrt{n} \text { for all } \mathrm{n} \geq \mathrm{n}_{0}
$$

Choose $\mathrm{c}=1$ and $\mathrm{n}_{0}=16$
$\rightarrow \lg \mathrm{n} \leq \sqrt{n}$ for all $\mathrm{n} \geq 16$

Note: Comparison of $\lg (\mathrm{n})$ and \sqrt{n}

CS 473 - Lecture 2
Cevdet Aykanat and Mustafa Ozdal

Q-notation: Asymptotic Lower Bound

$\square \Omega(\mathrm{g}(\mathrm{n}))=\left\{\mathrm{f}(\mathrm{n}): \exists\right.$ positive constants $\mathrm{c}, \mathrm{n}_{0}$ such that

$$
\left.0 \leq \mathrm{cg}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}), \forall \mathrm{n} \geq \mathrm{n}_{0}\right\}
$$

\square In other words: $\Omega(\mathrm{g}(\mathrm{n})$) is in fact:
the set of functions that have asymptotic lower bound $g(n)$

True or False?

$$
\begin{array}{lll}
10^{9} \mathrm{n}^{2}=\Omega\left(\mathrm{n}^{2}\right) & \text { True } & \begin{array}{l}
\text { Choose } \mathrm{c}=10^{9} \text { and } \mathrm{n}_{0}=1 \\
0 \leq 10^{9} \mathrm{n}^{2} \leq 10^{9} \mathrm{n}^{2} \text { for } \mathrm{n} \geq 1
\end{array} \\
\hline
\end{array} \begin{aligned}
& \text { False } \\
& \begin{array}{c}
\mathrm{cn}^{2} \leq 100 \mathrm{n}^{1.9999} \\
n^{0.0001} \leq(100 / \mathrm{c})
\end{array} \\
& \text { for } \mathrm{n} \geq \mathrm{n}_{0} \\
& \text { Cor } \mathrm{n} \geq \mathrm{n}_{0}
\end{aligned}
$$

$$
10^{-9} \mathrm{n}^{2.0001}=\Omega\left(\mathrm{n}^{2}\right) \quad \text { True }
$$

Choose $\mathrm{c}=10^{-9}$ and $\mathrm{n}_{0}=1$

$$
0 \leq 10^{-9} \mathrm{n}^{2} \leq 10^{-9} \mathrm{n}^{2.0001} \text { for } \mathrm{n} \geq 1
$$

Summary: O-notation and Ω-notation

$\square \mathrm{O}(\mathrm{g}(\mathrm{n}))$: The set of functions with asymptotic upper bound $\mathrm{g}(\mathrm{n})$

$$
\begin{aligned}
& \mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{~g}(\mathrm{n})) \\
& \mathrm{f}(\mathrm{n}) \in \mathrm{O}(\mathrm{~g}(\mathrm{n})) \text { if } \exists \text { positive constants } \mathrm{c}, \mathrm{n}_{0} \text { such that } \\
& \qquad 0 \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{cg}(\mathrm{n}), \forall \mathrm{n} \geq \mathrm{n}_{0}
\end{aligned}
$$

$\square \Omega(\mathrm{g}(\mathrm{n}))$: The set of functions with asymptotic lower bound $\mathrm{g}(\mathrm{n})$

$$
\mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n}))
$$

$\mathrm{f}(\mathrm{n}) \in \Omega(\mathrm{g}(\mathrm{n})) \exists$ positive constants $\mathrm{c}, \mathrm{n}_{0}$ such that

$$
0 \leq \mathrm{cg}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}), \forall \mathrm{n} \geq \mathrm{n}_{0}
$$

Summary: O-notation and Ω-notation

Θ-notation: Asymptotically tight bound

$\square \mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$ if \exists positive constants $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{n}_{0}$ such that

$$
0 \leq \mathrm{c}_{1} \mathrm{~g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{c}_{2} \mathrm{~g}(\mathrm{n}), \forall \mathrm{n} \geq \mathrm{n}_{0}
$$

Example

Show that $2 n^{2}+n=\Theta\left(n^{2}\right)$

We need to find 3 positive constants: $\mathbf{c}_{\mathbf{1}}, \mathbf{c}_{\mathbf{2}}$ and $\mathbf{n}_{\mathbf{0}}$ such that:

$$
\begin{aligned}
0 \leq \mathrm{c}_{1} \mathrm{n}^{2} & \leq 2 \mathrm{n}^{2}+\mathrm{n} \leq \mathrm{c}_{2} \mathrm{n}^{2} \text { for all } \mathrm{n} \geq \mathrm{n}_{0} \\
\mathrm{c}_{1} & \leq 2+(1 / \mathrm{n}) \leq \mathrm{c}_{2} \text { for all } \mathrm{n} \geq \mathrm{n}_{0}
\end{aligned}
$$

Choose $\mathrm{c}_{1}=2, \mathrm{c}_{2}=3$, and $\mathrm{n}_{0}=1$

$$
\Rightarrow 2 \mathrm{n}^{2} \leq 2 \mathrm{n}^{2}+\mathrm{n} \leq 3 \mathrm{n}^{2} \text { for all } \mathrm{n} \geq 1
$$

Example

Show that $\frac{1}{2} n^{2} \quad 2 n=\left(n^{2}\right)$
We need to find 3 positive constants: $\mathbf{c}_{\mathbf{1}}, \mathbf{c}_{\mathbf{2}}$ and $\mathbf{n}_{\mathbf{0}}$ such that:

$$
\begin{array}{r}
0 \leq \mathrm{c}_{1} \mathrm{n}^{2} \leq \frac{1}{2} n^{2} \quad 2 n \leq \mathrm{c}_{2} \mathrm{n}^{2} \text { for all } \mathrm{n} \geq \mathrm{n}_{0} \\
c_{1} \quad \frac{1}{2} \quad \frac{2}{n} \quad c_{2} \quad \text { for all } \mathrm{n} \geq \mathrm{n}_{0}
\end{array}
$$

Example (cont'd)

\square Choose 3 positive constants: $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{n}_{0}$ that satisfy:

Example (cont'd)

\square Choose 3 constants: $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{n}_{0}$ that satisfy:

$$
c_{1} \quad \frac{1}{2} \quad \frac{2}{n} \quad c_{2} \quad \text { for all } \mathrm{n} \geq \mathrm{n}_{0}
$$

$$
\frac{1}{10} \quad \frac{1}{2} \quad \frac{2}{n} \quad \text { for } \mathrm{n} \geq 5 \quad \frac{1}{2} \quad \frac{2}{n} \quad \frac{1}{2} \quad \text { for } \mathrm{n} \geq 0
$$

Therefore, we can choose:: $\quad c_{1}=\frac{1}{10} \quad c_{2}=\frac{1}{2} \quad \mathrm{n}_{0}=5$

Θ-notation: Asymptotically tight bound

- Theorem: leading constants \& low-order terms don't matter
\square Justification: can choose the leading constant large enough to make high-order term dominate other terms

True or False?

$$
10^{9} \mathrm{n}^{2}=\Theta\left(\mathrm{n}^{2}\right) \quad \text { True }
$$

Θ-notation: Asymptotically tight bound

$\square \Theta(\mathrm{g}(\mathrm{n}))=\left\{\mathrm{f}(\mathrm{n}): \exists\right.$ positive constants $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{n}_{0}$ such that

$$
\left.0 \leq \mathrm{c}_{1} \mathrm{~g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{c}_{2} \mathrm{~g}(\mathrm{n}), \forall \mathrm{n} \geq \mathrm{n}_{0}\right\}
$$

\square In other words: $\Theta(\mathrm{g}(\mathrm{n})$) is in fact:
the set of functions that have asymptotically tight bound $g(n)$

Θ-notation: Asymptotically tight bound

\square Theorem:

$$
\begin{aligned}
& \mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n})) \text { if and only if } \\
& \qquad \mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{~g}(\mathrm{n})) \text { and } \mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n}))
\end{aligned}
$$

\square In other words:
Θ is stronger than both O and Ω
\square In other words:

$$
\begin{aligned}
& \Theta(\mathrm{g}(\mathrm{n})) \subseteq \mathrm{O}(\mathrm{~g}(\mathrm{n})) \text { and } \\
& \Theta(\mathrm{g}(\mathrm{n})) \subseteq \Omega(\mathrm{g}(\mathrm{n}))
\end{aligned}
$$

Example

\square Prove that $10^{-8} \mathrm{n}^{2} \neq \Theta(\mathrm{n})$

Before proof, note that $10^{-8} n^{2}=\Omega(n)$ but $10^{-8} n^{2} \neq O(n)$

Proof by contradiction:

Suppose positive constants c_{2} and n_{0} exist such that:

$$
\begin{aligned}
& 10^{-8} \mathrm{n}^{2} \leq \mathrm{c}_{2} \mathrm{n} \quad \text { for all } \mathrm{n} \geq \mathrm{n}_{0} \\
& 10^{-8} \mathrm{n} \leq \mathrm{c}_{2} \quad \text { for all } \mathrm{n} \geq \mathrm{n}_{0}
\end{aligned}
$$

Contradiction: c_{2} is a constant

Summary: O, Ω, and Θ notations

$\square \mathrm{O}(\mathrm{g}(\mathrm{n}))$: The set of functions with asymptotic upper bound $\mathrm{g}(\mathrm{n})$
$\square \Omega(\mathrm{g}(\mathrm{n}))$: The set of functions with asymptotic lower bound $\mathrm{g}(\mathrm{n})$
$\square \Theta(\mathrm{g}(\mathrm{n}))$: The set of functions with asymptotically tight bound $\mathrm{g}(\mathrm{n})$
$\square \mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$ if and only if $\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$ and $\mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n}))$

Summary: O, Ω, and Θ notations

Cevdet Aykanat and Mustafa Ozdal
29
CS 473 - Lecture 2
Computer Engineering Department, Bilkent University

o ("small o") Notation Asymptotic upper bound that is not tight

Reminder: Upper bound provided by O ("big O") notation can be tight or not tight:
e.g. $2 n^{2}=O\left(n^{2}\right)$
$2 \mathrm{n}=\mathrm{O}\left(\mathrm{n}^{2}\right)$
is asymptotically tight \quad both true
o-Notation: An upper bound that is not asymptotically tight

o ("small o") Notation Asymptotic upper bound that is not tight

$\square \mathrm{o}(\mathrm{g}(\mathrm{n}))=\{\mathrm{f}(\mathrm{n})$: for any constant $\mathrm{c}>0$,

$$
\exists \text { a constant } n_{0}>0, \text { such that }
$$

$$
\left.0 \leq \mathrm{f}(\mathrm{n})<\operatorname{cg}(\mathrm{n}), \forall \mathrm{n} \geq \mathrm{n}_{0}\right\}
$$

- Intuitively: $\quad \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$
- e.g., $2 \mathrm{n}=\mathrm{o}\left(\mathrm{n}^{2}\right)$,
but $2 \mathrm{n}^{2} \neq \mathrm{o}\left(\mathrm{n}^{2}\right)$,
any positive c satisfies
$c=2$ does not satisfy

ω ("small omega") Notation Asymptotic lower bound that is not tight

- $\omega(\mathrm{g}(\mathrm{n}))=\{\mathrm{f}(\mathrm{n})$: for any constant $\mathrm{c}>0$, \exists a constant $n_{0}>0$, such that $\left.0 \leq \mathrm{cg}(\mathrm{n})<\mathrm{f}(\mathrm{n}), \forall \mathrm{n} \geq \mathrm{n}_{0}\right\}$
- Intuitively: $\quad \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$
- e.g., $n^{2} / 2=\omega(n)$,
but $\mathrm{n}^{2} / 2 \neq \omega\left(\mathrm{n}^{2}\right)$,
any positive c satisfies
$c=1 / 2$ does not satisfy

Analogy to the comparison of two real numbers

$$
\begin{aligned}
& \mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{~g}(\mathrm{n})) \leftrightarrow \mathrm{a} \leq \mathrm{b} \\
& \mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n})) \leftrightarrow \mathrm{a} \geq \mathrm{b} \\
& \mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n})) \leftrightarrow \mathrm{a}=\mathrm{b} \\
& \mathrm{f}(\mathrm{n})=\mathrm{o}(\mathrm{~g}(\mathrm{n})) \leftrightarrow \mathrm{a}<\mathrm{b} \\
& \mathrm{f}(\mathrm{n})=\omega(\mathrm{g}(\mathrm{n})) \leftrightarrow \mathrm{a}>\mathrm{b}
\end{aligned}
$$

True or False?

$5 n^{2}=O\left(n^{2}\right)$	True	$n^{2} \operatorname{lgn}=O\left(n^{2}\right)$	False
$5 n^{2}=\Omega\left(n^{2}\right)$	True	$n^{2} \operatorname{lgn}=\Omega\left(n^{2}\right)$	True
$5 n^{2}=\Theta\left(n^{2}\right)$	True	$n^{2} \operatorname{lgn}=\Theta\left(n^{2}\right)$	False
$5 n^{2}=o\left(n^{2}\right)$	False	$n^{2} \operatorname{lgn}=o\left(n^{2}\right)$	False
$5 n^{2}=\omega\left(n^{2}\right)$	False	$n^{2} \operatorname{lgn}=\omega\left(n^{2}\right)$	True
$2^{n}=O\left(3^{n}\right)$	True		
$2^{n}=\Omega\left(3^{n}\right)$	False	$2^{n}=o\left(3^{n}\right)$	True
$2^{n}=\Theta\left(3^{n}\right)$	False	$2^{n}=\omega\left(3^{n}\right)$	False

Analogy to comparison of two real numbers

\square Trichotomy property for real numbers:
For any two real numbers a and b,

$$
\text { we have either } a<b \text {, or } a=b \text {, or } a>b
$$

\square Trichotomy property does not hold for asymptotic notation

For two functions $f(n) \& g(n)$, it may be the case that neither $\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$ nor $\mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n}))$ holds
e.g. n and $\mathrm{n}^{1+\sin (\mathrm{n})}$ cannot be compared asymptotically

Asymptotic Comparison of Functions

(Similar to the relational properties of real numbers)

Transitivity: holds for all

$$
\text { e.g., } f(n)=\Theta(g(n)) \& g(n)=\Theta(h(n)) \Rightarrow f(n)=\Theta(h(n))
$$

Reflexivity: holds for Θ, O, Ω

$$
\text { e.g., } f(n)=O(f(n))
$$

Symmetry: holds only for Θ

$$
\text { e.g., } f(n)=\Theta(g(n)) \Leftrightarrow g(n)=\Theta(f(n))
$$

Transpose symmetry: holds for $(\mathrm{O} \leftrightarrow \Omega)$ and $(\mathrm{o} \leftrightarrow \omega)$)

$$
\text { e.g., } f(n)=O(g(n)) \Leftrightarrow g(n)=\Omega(f(n))
$$

Using O-Notation to Describe Running Times

\square Used to bound worst-case running times

- Implies an upper bound runtime for arbitrary inputs as well
\square Example:
"Insertion sort has worst-case runtime of $\mathrm{O}\left(\mathrm{n}^{2}\right)$ "

Note: This $\mathrm{O}\left(\mathrm{n}^{2}\right)$ upper bound also applies to its running time on every input.

Using O-Notation to Describe Running Times

\square Abuse to say "running time of insertion sort is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ "
\square For a given n , the actual running time depends on the particular input of size n
\square i.e., running time is not only a function of n
\square However, worst-case running time is only a function of n

Using O-Notation to Describe Running Times

\square When we say:

$$
\text { "Running time of insertion sort is } O\left(n^{2}\right) \text { ", }
$$

what we really mean is:
"Worst-case running time of insertion sort is $O\left(n^{2}\right)$ "
or equivalently:
"No matter what particular input of size n is chosen, the running time on that set of inputs is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ "

Using Ω-Notation to Describe Running Times

\square Used to bound best-case running times

- Implies a lower bound runtime for arbitrary inputs as well
\square Example:
"Insertion sort has best-case runtime of $\Omega(\mathrm{n})$ "

Note: This $\Omega(\mathrm{n})$ lower bound also applies to its running time on every input.

Using Ω-Notation to Describe Running Times

\square When we say:
"Running time of algorithm A is $\Omega(g(n))$ ",
what we mean is:
"For any input of size n , the runtime of A is at least a constant times $\mathrm{g}(\mathrm{n})$ for sufficiently large n "

Using Ω-Notation to Describe Running Times

\square Note: It's not contradictory to say:
"worst-case running time of insertion sort is $\Omega\left(n^{2}\right)$ "
because there exists an input that causes the algorithm to take $\Omega\left(\mathrm{n}^{2}\right)$.

Using Θ-Notation to Describe Running Times

\square Consider 2 cases about the runtime of an algorithm:
\square Case 1: Worst-case and best-case not asymptotically equal
\rightarrow Use Ω-notation to bound worst-case and best-case runtimes separately
\square Case 2: Worst-case and best-case asymptotically equal
\rightarrow Use Ω-notation to bound the runtime for any input

Using Θ-Notation to Describe Running Times Case 1

\square Case 1: Worst-case and best-case not asymptotically equal
\rightarrow Use Ω-notation to bound the worst-case and best-case runtimes separately

- We can say:

■ "The worst-case runtime of insertion sort is $\Omega\left(n^{2}\right)$ "
■ "The best-case runtime of insertion sort is $\Omega(\mathrm{n})$ "

- But, we can't say:
- "The runtime of insertion sort is $\Omega\left(\mathrm{n}^{2}\right)$ for every input"
- A Θ-bound on worst-/best-case running time does not apply to its running time on arbitrary inputs

Using Θ-Notation to Describe Running Times Case 2

\square Case 2: Worst-case and best-case asymptotically equal
\rightarrow Use Ω-notation to bound the runtime for any input

- e.g. For merge-sort, we have:

$$
\left.\begin{array}{l}
\mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{nlgn}) \\
\mathrm{T}(\mathrm{n})=\Omega(\mathrm{n} \lg \mathrm{n})
\end{array}\right\} \quad \mathrm{T}(\mathrm{n})=\Theta(\mathrm{n} \lg \mathrm{n})
$$

Using Asymptotic Notation to Describe Runtimes Summary

\square "The worst case runtime of Insertion Sort is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ " > Also implies: "The runtime of Insertion Sort is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ "
-"The best-case runtime of Insertion Sort is $\Omega(\mathrm{n})$ " $>$ Also implies: "The runtime of Insertion Sort is $\Omega(\mathrm{n})$ "

- "The worst case runtime of Insertion Sort is $\Theta\left(n^{2}\right)$ "
$>$ But: "The runtime of Insertion Sort is not $\Theta\left(n^{2}\right)$ "
- "The best case runtime of Insertion Sort is $\Theta(n)$ "
> But: "The runtime of Insertion Sort is not $\Theta(\mathrm{n})$ "

Using Asymptotic Notation to Describe Runtimes Summary

-"The worst case runtime of Merge Sort is $\Theta(\mathrm{nlgn})$ "
-"The best case runtime of Merge Sort is $\Theta(n \operatorname{lgn})$ "

- "The runtime of Merge Sort is $\Theta(n \operatorname{lgn})$ "
> This is true, because the best and worst case runtimes have asymptotically the same tight bound $\Theta(\mathrm{nlgn})$

Asymptotic Notation in Equations

- Asymptotic notation appears alone on the RHS of an equation:
> implies set membership

$$
\text { e.g., } n=O\left(n^{2}\right) \text { means } n \in O\left(n^{2}\right)
$$

- Asymptotic notation appears on the RHS of an equation
- stands for some anonymous function in the set

$$
\begin{aligned}
& \text { e.g., } 2 n^{2}+3 n+1=2 n^{2}+\Theta(n) \text { means: } \\
& 2 n^{2}+3 n+1=2 n^{2}+h(n), \text { for some } h(n) \in \Theta(n)
\end{aligned}
$$

$$
\text { i.e., } h(n)=3 n+1
$$

Asymptotic Notation in Equations

- Asymptotic notation appears on the LHS of an equation:
$>$ stands for any anonymous function in the set

$$
\begin{aligned}
& \text { e.g., } 2 n^{2}+\Theta(n)=\Theta\left(n^{2}\right) \text { means: } \\
& \text { for } \underline{\text { any function } g(n) \in \Theta(n)} \begin{array}{l}
\exists \underline{\text { some }} \text { function } h(n) \in \Theta\left(n^{2}\right) \\
\text { such that } 2 n^{2}+g(n)=h(n)
\end{array}
\end{aligned}
$$

\square RHS provides coarser level of detail than LHS

