CS473 - Algorithms |

Lecture 3
Solving Recurrences

CS 473 — Lecture 3 Cevd'et Ay_kanat and Mustafq Ozdal _ _ 1
Computer Engineering Department, Bilkent University



Solving Recurrences

-]
o Reminder: Runtime (T(n)) of MergeSort was
expressed as a recurrence

(1) if n=1
L 2T(n/2) + &(n) otherwise

T(n)= "~

o Solving recurrences is like solving differential
equations, integrals, etc.
2 Need to learn a few tricks

CS 473 — Lecture 3 Cevd'et Ay_kanat and Mustafq Ozdal _ _ 2
Computer Engineering Department, Bilkent University



Recurrences

-]
o Recurrence: An equation or inequality that describes

a function in terms of its value on smaller inputs.

Example:
T (n) 1 if n=1
n) = <
T(n/2)+1 if n>1
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Recurrence - Example
N
1 if n=1

T(n) =+ .
T(n/2p)+1 if n>

o Simplification: Assume n = 2k
o Claimed answer: T(n) =Ign + 1
o Substitute claimed answer In the recurrence:

11 ifn=1

Ve

F(lg@1/20+2) ifn>1

True when n = 2k

Ign+1=
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Technicalities: Floor/Celling

-4
o Technically, should be careful about the floor and

ceiling functions (as in the book).
0 e.g. For merge sort, the recurrence should in fact be:

T'(n,

_IQ(l) ifn=1
i T(60/20+T(81/2§+Q(n)  itn>1

0 But, 1t’s usually ok to:
> Ignore floor/ceiling
> solve for exact powers of 2 (or another number)
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Technicalities: Boundary Conditions

-]
o Usually assume: T(n) = ©(1) for sufficiently small n

o Changes the exact solution, but usually the asymptotic
solution is not affected (e.g. if polynomially bounded)

o For convenience, the boundary conditions generally
Implicitly stated in a recurrence

T(n) =2T(n/2) + ©(n)
assuming that
T(n) = ©(1) for sufficiently small n
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Example: When Boundary Conditions Matter

-1
o Exponential function: T(n) = (T(n/2))?
o Assume T(1) = ¢ (where c is a positive constant).
T(2) = (T(1))>=c?
T(4)=(T(2))*=c*
T(n) = 6(c")

089 TM)=2k T(n)= Q(Zn)yHowever Q(2")1 Q(3")

r)=3pk T(n)=Q(3")p
o Difference in solution more dramatic when:
TA)=1=TM)=60@1")=06(Q)
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Solving Recurrences
N

o We will focus on 3 techniques in this lecture:
1. Substitution method

2. Recursion tree approach

3. Master method
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Substitution Method

-4
o The most general method:

1. Guess
2. Prove by induction
3. Solve for constants
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Substitution Method: Example

4
Solve T(n) =4T(n/2) + n (assume T(1) = ©(1))

1. Guess T(n) = O(n3) (need to prove O and Q separately)
2. Prove by induction that T(n) < cn?® for large n (i.e. n > n,)
Inductive hypothesis: T(k) < ck® for any k < n

Assuming ind. hyp. holds, prove T(n) <cn?®
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Substitution Method: Example — cont’d

Original recurrence: T(n) =4T(n/2) + n

From inductive hypothesis: T(n/2) < c(n/2)?
Substitute this into the original recurrence:
T(n) < 4c(n/2)®+n

= (c/2) n®+n desired - residual
= cn®— ((c/2)nd — n) —_
<cn3

when ((c/2)n®—-n) >0
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Substitution Method: Example — cont’d
N
o So far, we have shown:

T(n) <cn® when ((c/2)n®—n) >0

o We can choose ¢ >2 and n, > 1
o But, the proof is not complete yet.

o Reminder: Proof by induction:
1. Prove the base cases , haven't proved
2. Inductive hypothesis for smaller sizes the base cases yet
3. Prove the general case
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Substitution Method: Example — cont’d

-]
o We need to prove the base cases

Base: T(n) = ©(1) for small n (e.g. for n =ny)

o We should show that:
“©(1)”<cn® forn=n,
This holds if we pick ¢ big enough

o So, the proof of T(n) = O(n3) is complete.
o But, Is this a tight bound?
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Example: A tighter upper bound?

-4
o Original recurrence: T(n) =4T(n/2) + n

o Try to prove that T(n) = O(n?),
l.e. T(n) < cn® for all n > n,

o Ind. hyp: Assume that T(k) < ck? for k <n
o Prove the general case: T(n) < cn?
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Example (cont’d)
-]

o Original recurrence: T(n) =4T(n/2) + n

o Ind. hyp: Assume that T(k) < ck® fork <n

o Prove the general case: T(n) < cn?

T(n) =4T(n/2) +n
<4c(n/2)? +n

=cn?+n
;)éﬁE(Wrong | We must prove exactly
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Example (cont’d)
-]

o Original recurrence: T(n) =4T(n/2) + n

o Ind. hyp: Assume that T(k) < ck® fork <n

o Prove the general case: T(n) < cn?

o So far, we have:
T(n)<cn?+n
No matter which positive ¢ value we choose,

this does not show that T(n) < cn?
Proof failed?
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Example (cont’d)

-4
o What was the problem?

> The inductive hypothesis was not strong enough

o ldea: Start with a stronger inductive hypothesis
o Subtract a low-order term

o Inductive hypothesis: T(k) < c¢,k*— ¢,k fork <n

o Prove the general case: T(n) <c¢,n? - c,n
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Example (cont’d)
]
o Original recurrence: T(n) =4T(n/2) + n
o Ind. hyp: Assume that T(k) < c,k?- ¢,k fork <n
o Prove the general case: T(n) < c¢,n°—¢c,n
T(n) =4T(n/2) +n
<4 (¢, (n/2)? — c,(n/2)) + n
=C,N?—2C,n +n
=¢,N°>-c,n—(c,n—n)
< ¢,n?—C,N forn(c,—1)>0
choose ¢, > 1
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Example (cont’d)
-1
o We now need to prove
T(n) <c.n?—c,n
for the base cases.

T(n) =06(1) for 1 <n<n, (Implicit assumption)
“O(1)” <c¢,n?—-c,n for nsmall enough (e.g. n =ny)
We can choose c, large enough to make this hold

o We have proved that T(n) = O(n?)
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Substitution Method: Example 2
B

o For the recurrence T(n) =4T(n/2) + n,
prove that T(n) = Q(n?)
l.e. T(n) >cn® forany n>n,
o Ind. hyp:  T(k)>ck?  foranyk<n
o Prove general case: T(n) > cn?
T(n) =4T(n/2) +n
>4c (n/2)?+n
=cn’+n
> cn? sincen >0

Proof succeeded — no need to strengthen the ind. hyp as
In the last example
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Example 2 (cont’d)
-]
o We now need to prove that
T(n) > cn?

for the base cases

T(n) =06(1) for 1 <n<n, (Implicit assumption)
“O(1)”>cn? forn=n,
n, Is sufficiently small (i.e. constant)
We can choose ¢ small enough for this to hold

o We have proved that T(n) = Q (n?)
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Substitution Method - Summary

-]
1. Guess the asymptotic complexity

1. Prove your guess using induction
1. Assume inductive hypothesis holds for k < n

2. Try to prove the general case for n
Note: MUST prove the EXACT inequality
CANNOT ignore lower order terms

If the proof falils, strengthen the ind. hyp. and try again
3. Prove the base cases (usually straightforward)
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Recursion Tree Method

e
o A recursion tree models the runtime costs of a

recursive execution of an algorithm.
o The recursion tree method is good for generating
guesses for the substitution method.

o The recursion-tree method can be unreliable.

o Not suitable for formal proofs

o The recursion-tree method promotes intuition,
however.
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Solve Recurrence: T(n) = 2T (n/2) + ®(n)

O(n)
T(n/2) T(n/2)
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Solve Recurrence: T(n) = 2T (n/2) + ®(n)

]
O(n)
3 O(n/2) O(n/2) S5
$ 5 / \ / \ £ 3
AN & S ©
% v 8 S
» YT(n/4) T(n/4) T(n/4) T(n/4)
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Ign

Solve Recurrence: T(n) = 2T (n/2) + ®(n)

N

O(n/2) (17 » O(n)

N /N

T(V4)  T(4) T(v4)  T(n/4)

v4"""""""""|'g'n'_' """""""" >
29 =n Total: ®(nlgn)
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Example of Recursion Tree
Solve T(n) = T(n/4) + T(n/2) + nZ:
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Example of Recursion Tree
Solve T(n) = T(n/4) + T(n/2) + nZ:
T(n)
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Example of Recursion Tree
Solve T(n) = T(n/4) + T(n/2) + nZ:

PN

T/4)  T(n/2)
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Example of Recursion Tree
Solve T(n) = T(n/4) + T(n/2) + n:

PN
(n/4)? (n/2)2
AN

T(n/16) T(n/8) T(n/8) T(n/4)
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Example of Recursion Tree
Solve T(n) = T(n/4) + T(n/2) + nZ:

PN
(n/4)? (n/2)2
AN

(n/16)2  (n/8)2  (n/8)2  (n/4)?

7’

o)
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Example of Recursion Tree
Solve T(n) = T(n/4) + T(n/2) + nZ:

0 n2
VRN
(n/4)2 (n/2)2
/ \ / \
(n/16)2  (n/8)2 (n/8)2  (n/4)?
o(1)
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Example of Recursion Tree
Solve T(n) = T(n/4) + T(n/2) + nZ:

(n/4)? (17 R — 5/16 n2

NN

(n/16)2  (n/8)2  (n/8)2  (n/4)?

7’

o)
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Example of Recursion Tree
Solve T(n) = T(n/4) + T(n/2) + nZ:

(n/4)? (17 R — 5/16 n2

VN

(n/16)>  (n/8)= (n/8)*  (n/4)%-.... 25/256 n’

7’

o)
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Example of Recursion Tree
Solve T(n) = T(n/4) + T(n/2) + nZ:

(n/4)? (17 R — 5/16 n2

NN

(n/16)¢  (n/8)> (n/8)*  (n/4)?..... 25/256 n?

Ve :
o (’1) Total = n2 (1 + 5/16 + (5/16)2 + (5/16)3 + ...)
= 0O(n%) geometric series
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The Master Method

-4
o A powerful black-box method to solve recurrences.

o The master method applies to recurrences of the form

T(n) = aT(n/b) + f (n)

wherea>1, b > 1, and f is asymptotically positive.
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The Master Method: 3 Cases

-4
o Recurrence: T(n) =aT(n/b) + f (n)

- Compare f (n) with n'*°®®
o Intuitively:

Case 1: f (n) grows polynomially slower than 71094

Case 2: f (n) grows at the same rate as p 9> 2

Case 3: f (n) grows polynomially faster than %%
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The Master Method: Case 1

-4
o Recurrence: T(n) =aT(n/b) + f (n)

log, a e
Case 1. — V\(n ) for some constant € > 0

f(n)

i.e., f (n) grows polynomialy slower than p'°9-2
(by an ne factor).

Solution: T(n) = ®(n %> %)
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he Master Method: Case 2 (simple version)

-4
o Recurrence: T(n) =aT(n/b) + f (n)

Case 2: f(n) =Q(1)

log,, a

9p

i.e., f(nyand n'"°®** grow at similar rates

Solution: T(n) = ®(n °°*? Ign)
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The Master Method: Case 3
B

Case 3: / (n) — V\(n ) for some constant £ > 0
. log, a

l.e., f (n) grows polynomialy faster than N 095 @ (by an né¢ factor).

and the following regularity condition holds:
af(n/b) <cf(n) for some constant ¢ <1

Solution: T(n) = G( f(n))
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Example: T(n) =4T(n/2) + n
N

a=4 f(n) grows polynomially slower than 7;'°%¢
b=2
_ log, a 2
=n " A
nlogba = nz f(n) n fore=1

T(n) = ©(n?)
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Example: T(n) = 4T(n/2) + n?
N

a=4 f(n) grows at similar rate as  77'°%“
b=2
f(n) = n2 > f(n)=0(n")=n2
loga — 2 mmp CASE 2

w T(n)=©(n"*"" Ign)
T(n) = ©(n?lgn)
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Example: T(n) =4T(n/2) + n3
N

a=4 f(n) grows polynomially faster than 7%
b=2
3
- n n
f(n) = n3 fl( ):—:n:\/\(ne)

09, a 2

log,a — 2 n n fore=1

n — N

seems like CASE 3, but need

— to check the regularity condition

m= Regularity condition: a f (n/b) <c f (n) for some constant c <1

m 4 (n/2)2<cndforc=1/2
s CASE 3 m T(n) = O(f(n)) mmp T(n) = O(n°)

CS 473 — Lecture 3 Cevd'et Ay_kanat and Mustafq Ozdal _ _ 43
Computer Engineering Department, Bilkent University




Example: T(n) =4T(n/2) + n4/Ign
N

a=4 f(n) grows slower than 7;'°%¢
b=2 . :
but is it polynomially slower?
f(n) = n/Ign >
|Ogba 2
n n
nlogba :nz — > — |gn ¢V\(7le)
f(n) n
|g n forany e >0
mmp IS not CASE 1
mmp Master method does not apply!
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he Master Method: Case 2 (general version)

-4
o Recurrence: T(n) =aT(n/b) + f (n)

Case 2: f(n) — Q(|gk n) for some constant k >0

log,, a

Solution: T(N)=© (n'°% % Igktin)
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General Method (Akra-Bazzi)

K
T(n)=> aT(n/b)+ f(n)
=1
Let p be the unique solution to
k
Z (a. /Db ") =1
i=1

Then, the answers are the same as for the

- ; I
master method, but with nP instead of N~~~ °
(Akra and Bazzi also prove an even more general result.)
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|dea of Master Theorem

Recursion tree: (1) J—— f (n)

t(n/b) t(n/b).. T(n/b)... a f (n/b)

=log,n ST/ XA

f (n/b?) £ (V02)...f (VD) e a* f (n/b?)
,' #leaves = a " A |
/ _ aIog n n 09y, aT (1)
T(l) _ I,_llog,oa
\ /
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|dea of Master Theorem

>

Recursion tree: (1) J—— f (n)

t(n/b) t(n/b).. T(n/b) ... a f (n/b)

h=log,n S [ @

f (n/b?) f (n/b2)...F (N/D?) . a f (n/b?)
/ :
I.' /CASE 1: The weight increases b log .a
geometrically from the root to the n T (1)
v T(l) leaves. The leaves hold a constant |—
fraction of the total weight. ® °dp @
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>

Recursion tree: f (n)

|dea of Master Theorem

=log,n ST/ XA

<

f (n/b2) f (n/b2)....f (n/b2)
o

/
/

T(1)

\

CASE 2 : (k=0) The weight
IS approximately the same on
each of the log,n levels.

................. af (n/b)

a f (n/b?)

N %7 (1)

© (n %" Ign)
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|dea of Master Theorem

Recursion tree: f (n)

h=log,n S [ @

<

f (n/b2) f (n/b2).... (n/b?)

o
/

T(1)

\

CASE 3 : The weight decreases

geometrically from the root to the

leaves. The root holds a constant

fraction of the total weight. y

...... af (n/b)

a f (n/b?)

N %7 (1)

O(1({M))
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Proof of Master Theorem:
Case 1 and Case 2

 Recall from the recursion tree (note h = lg,n=tree
height)

h-1
T(nN)=0Mm ") +Y a'f(n/b')
1=0
\ J J
Y Y

Leaf cost  Non-leaf cost = g(n)
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Proof of Case 1

log, a
> =Q(n°)  forsomee>0
f(n)
log, a
° f
. = Q(n’) = Io(nz =0(n*)= f(n)=0(n"""")
f(n) noo°

h-1

>g(n)_ZaO((n/b)'ogbag) (Za(n/b)'c’gbagj

> _ O(nlogbagihZ:aibig /bilogbaJ
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Case 1 (cont’)

h-1 aibig h-1 _ (bg) h—

_ =) a =Y a —
iz(:) bllogba ~ (blogb Z Z_:

= An Increasing geometric series since b > 1

b -1 b -1 b” -1 b -1
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Case 1 (cont’)

g

n

_ g(n) _ O(nlogba—gO(ng)): O[n 0g, a O(ng))

_ O(nlogba)

=T(nN) =0(N"**)+g(n)=0(M""*)+0(n""?)

-0 (n log , a)
Q.E.D.
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Proof of Case 2 (limited to k=0)

f(n)

log, a
n b

= . g(n)= Z a'®((n/b")**)

i=0
[ log, n—1"

\
= T(n)=n""*+O(n*"?Ig n)
_ @(n'Ogba g n)

h-1 log, a h—1 h—1
i n ’ 0g, a i 1 0g, a i 1
=0 Za hilogs :®£nlgb 4 a)ijze)(nlgb d —)
’ - \ a )

=0(lg'n)=01) = f(nN)=0(n""")= f(n/b')= @((g‘_i)'f’gbaj

=0 n** Y1 :®(n'°gbaIogbn):®(n'°gbalg n)
=0

Q.E.D.
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Conclusion

* Next time: applying the master method.
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