CS473-Algorithms I

Lecture 3
 Solving Recurrences

Solving Recurrences

\square Reminder: Runtime ($\mathrm{T}(\mathrm{n})$) of MergeSort was expressed as a recurrence

$$
\mathrm{T}(\mathrm{n})= \begin{cases}\Theta(1) & \text { if } n=1 \\ 2 T(n / 2)+\Theta(n) & \text { otherwise }\end{cases}
$$

\square Solving recurrences is like solving differential equations, integrals, etc.
\square Need to learn a few tricks

Recurrences

\square Recurrence: An equation or inequality that describes a function in terms of its value on smaller inputs.

Example:

$$
T(n)= \begin{cases}1 & \text { if } \mathrm{n}=1 \\ T(\lceil n / 2\rceil)+1 & \text { if } \mathrm{n}>1\end{cases}
$$

Recurrence - Example

$$
T(n)= \begin{cases}1 & \text { if } \mathrm{n}=1 \\ T(\lceil n / 2\rceil)+1 & \text { if } \mathrm{n}>1\end{cases}
$$

- Simplification: Assume $n=2^{k}$
\square Claimed answer: $\mathrm{T}(\mathrm{n})=\operatorname{lgn}+1$
\square Substitute claimed answer in the recurrence:

$$
\begin{aligned}
& 1 \quad \text { if } \mathrm{n}=1 \\
& \lg n+1= \\
& (\lg (n / 2)+2) \text { if } n>1 \\
& \text { True when } n=2^{k}
\end{aligned}
$$

Technicalities: Floor/Ceiling

\square Technically, should be careful about the floor and ceiling functions (as in the book).
\square e.g. For merge sort, the recurrence should in fact be:
(1)
$T(n)=$

$$
T(n / 2)+T(n / 2)+(n) \quad \text { if } \mathrm{n}>1
$$

\square But, it's usually ok to:
> ignore floor/ceiling
$>$ solve for exact powers of 2 (or another number)

Technicalities: Boundary Conditions

\square Usually assume: $T(n)=\Theta(1)$ for sufficiently small n

- Changes the exact solution, but usually the asymptotic solution is not affected (e.g. if polynomially bounded)
\square For convenience, the boundary conditions generally implicitly stated in a recurrence

$$
\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\Theta(\mathrm{n})
$$

assuming that

$$
T(n)=\Theta(1) \text { for sufficiently small } n
$$

Example: When Boundary Conditions Matter

\square Exponential function: $\mathrm{T}(\mathrm{n})=(\mathrm{T}(\mathrm{n} / 2))^{2}$
\square Assume $\mathrm{T}(1)=\mathrm{c} \quad$ (where c is a positive constant).

$$
\begin{aligned}
& \mathrm{T}(2)=(\mathrm{T}(1))^{2}=\mathrm{c}^{2} \\
& \mathrm{~T}(4)=(\mathrm{T}(2))^{2}=\mathrm{c}^{4} \\
& \mathrm{~T}(\mathrm{n})=\Theta\left(\mathrm{c}^{\mathrm{n}}\right)
\end{aligned}
$$

\square e.g. $T(1)=2 \quad T(n)=\left(2^{n}\right)$

$$
\text { However } \quad\left(2^{n}\right)
$$

\square Difference in solution more dramatic when:

$$
T(1)=1 \Rightarrow T(n)=\Theta\left(1^{n}\right)=\Theta(1)
$$

Solving Recurrences

\square We will focus on 3 techniques in this lecture:

1. Substitution method
2. Recursion tree approach
3. Master method

Substitution Method

\square The most general method:

1. Guess
2. Prove by induction
3. Solve for constants

Substitution Method: Example

Solve $\mathrm{T}(\mathrm{n})=4 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}($ assume $T(1)=\Theta(1))$

1. Guess $\mathrm{T}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{3}\right)$ (need to prove O and Ω separately)
2. Prove by induction that $T(n) \leq \mathrm{cn}^{3}$ for large n (i.e. $\mathrm{n} \geq \mathrm{n}_{0}$)

Inductive hypothesis: $\mathrm{T}(\mathrm{k}) \leq \mathrm{ck}^{3}$ for any $\mathrm{k}<\mathrm{n}$

Assuming ind. hyp. holds, prove $\mathrm{T}(\mathrm{n}) \leq \mathrm{cn}^{3}$

Substitution Method: Example - cont'd

Original recurrence: $T(n)=4 T(n / 2)+n$

From inductive hypothesis: $\mathrm{T}(\mathrm{n} / 2) \leq \mathrm{c}(\mathrm{n} / 2)^{3}$
Substitute this into the original recurrence:

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & \leq 4 \mathrm{c}(\mathrm{n} / 2)^{3}+\mathrm{n} \\
& =(\mathrm{c} / 2) \mathrm{n}^{3}+\mathrm{n} \\
& =\mathrm{cn}^{3}-\left((\mathrm{c} / 2) \mathrm{n}^{3}-\mathrm{n}\right) \\
& \leq \mathrm{cn}^{3} \\
& \quad \text { when }\left((\mathrm{c} / 2) \mathrm{n}^{3}-\mathrm{n}\right) \geq 0
\end{aligned}
$$

Substitution Method: Example - cont'd

\square So far, we have shown:

$$
\mathrm{T}(\mathrm{n}) \leq \mathrm{cn}^{3} \quad \text { when }\left((\mathrm{c} / 2) \mathrm{n}^{3}-\mathrm{n}\right) \geq 0
$$

- We can choose $\mathrm{c} \geq 2$ and $\mathrm{n}_{0} \geq 1$
\square But, the proof is not complete yet.
- Reminder: Proof by induction:

1. Prove the base cases

haven't proved
the base cases yet
2. Inductive hypothesis for smaller sizes
3. Prove the general case

Substitution Method: Example - cont'd

\square We need to prove the base cases
Base: $T(n)=\Theta(1)$ for small $n\left(e . g\right.$. for $n=n_{0}$)
\square We should show that:

$$
" \Theta(1) " \leq c n^{3} \quad \text { for } \mathrm{n}=\mathrm{n}_{0}
$$

This holds if we pick c big enough
\square So, the proof of $T(n)=O\left(n^{3}\right)$ is complete.
\square But, is this a tight bound?

Example: A tighter upper bound?

\square Original recurrence: $T(n)=4 T(n / 2)+n$
\square Try to prove that $T(n)=O\left(n^{2}\right)$, i.e. $T(n) \leq \mathrm{cn}^{2}$ for all $\mathrm{n} \geq \mathrm{n}_{0}$
\square Ind. hyp: Assume that $\mathrm{T}(\mathrm{k}) \leq \mathrm{ck}^{2}$ for $\mathrm{k}<\mathrm{n}$
\square Prove the general case: $T(n) \leq \mathrm{cn}^{2}$

Example (cont'd)

\square Original recurrence: $\mathrm{T}(\mathrm{n})=4 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}$
\square Ind. hyp: Assume that $\mathrm{T}(\mathrm{k}) \leq \mathrm{ck}^{2}$ for $\mathrm{k}<\mathrm{n}$
\square Prove the general case: $T(n) \leq \mathrm{cn}^{2}$

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =4 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n} \\
& \leq 4 \mathrm{c}(\mathrm{n} / 2)^{2}+\mathrm{n} \\
& =\mathrm{cn}^{2}+\mathrm{n} \\
& =\mathrm{n}^{2} \quad \text { Wrong! We must prove exactly }
\end{aligned}
$$

Example (cont'd)

\square Original recurrence: $T(n)=4 T(n / 2)+n$
\square Ind. hyp: Assume that $\mathrm{T}(\mathrm{k}) \leq \mathrm{ck}^{2}$ for $\mathrm{k}<\mathrm{n}$
\square Prove the general case: $T(n) \leq \mathrm{cn}^{2}$
\square So far, we have:
$\mathrm{T}(\mathrm{n}) \leq \mathrm{cn}^{2}+\mathrm{n}$
No matter which positive c value we choose, this does not show that $\mathrm{T}(\mathrm{n}) \leq \mathrm{cn}^{2}$
Proof failed?

Example (cont'd)

\square What was the problem?
> The inductive hypothesis was not strong enough
\square Idea: Start with a stronger inductive hypothesis

- Subtract a low-order term
\square Inductive hypothesis: $\mathrm{T}(k) \leq \mathrm{c}_{1} k^{2}-\mathrm{c}_{2} k$ for $k<n$
\square Prove the general case: $T(n) \leq c_{1} n^{2}-c_{2} n$

Example (cont'd)

\square Original recurrence: $T(n)=4 T(n / 2)+n$
\square Ind. hyp: Assume that $T(k) \leq c_{1} \mathrm{k}^{2}-\mathrm{c}_{2} \mathrm{k}$ for $\mathrm{k}<\mathrm{n}$
\square Prove the general case: $T(n) \leq c_{1} n^{2}-c_{2} n$

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =4 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n} \\
& \leq 4\left(\mathrm{c}_{1}(\mathrm{n} / 2)^{2}-\mathrm{c}_{2}(\mathrm{n} / 2)\right)+\mathrm{n} \\
& =\mathrm{c}_{1} \mathrm{n}^{2}-2 \mathrm{c}_{2} \mathrm{n}+\mathrm{n} \\
& =\mathrm{c}_{1} \mathrm{n}^{2}-\mathrm{c}_{2} \mathrm{n}-\left(\mathrm{c}_{2} \mathrm{n}-\mathrm{n}\right) \\
& \leq \mathrm{c}_{1} \mathrm{n}^{2}-\mathrm{c}_{2} \mathrm{n} \quad \\
& \\
& \quad \text { for } \mathrm{n}\left(\mathrm{c}_{2}-1\right) \geq 0
\end{aligned}
$$

Example (cont'd)

\square We now need to prove

$$
\mathrm{T}(\mathrm{n}) \leq \mathrm{c}_{1} \mathrm{n}^{2}-\mathrm{c}_{2} \mathrm{n}
$$

for the base cases.

$$
\begin{aligned}
& \mathrm{T}(\mathrm{n})=\Theta(1) \text { for } 1 \leq \mathrm{n} \leq \mathrm{n}_{0} \text { (implicit assumption) } \\
& " \Theta(1) " \leq \mathrm{c}_{1} \mathrm{n}^{2}-\mathrm{c}_{2} \mathrm{n} \quad \text { for } \mathrm{n} \text { small enough (e.g. } \mathrm{n}=\mathrm{n}_{0} \text {) }
\end{aligned}
$$

We can choose c_{1} large enough to make this hold
$\square \underline{\text { We have proved that } T(n)=O\left(n^{2}\right)}$

Substitution Method: Example 2

\square For the recurrence $T(n)=4 T(n / 2)+n$, prove that $T(n)=\Omega\left(n^{2}\right)$
i.e. $T(n) \geq \mathrm{cn}^{2} \quad$ for any $\mathrm{n} \geq \mathrm{n}_{0}$

- Ind. hyp: $\quad T(k) \geq \mathrm{ck}^{2} \quad$ for any $\mathrm{k}<\mathrm{n}$
- Prove general case: $\mathrm{T}(\mathrm{n}) \geq \mathrm{cn}^{2}$

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =4 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n} \\
& \geq 4 \mathrm{c}(\mathrm{n} / 2)^{2}+\mathrm{n} \\
& =\mathrm{cn}^{2}+\mathrm{n} \\
& \geq \mathrm{cn}^{2} \quad \text { since } \mathrm{n}>0
\end{aligned}
$$

Proof succeeded - no need to strengthen the ind. hyp as in the last example

Example 2 (cont'd)

\square We now need to prove that

$$
\mathrm{T}(\mathrm{n}) \geq \mathrm{cn}^{2}
$$

for the base cases

$$
\begin{aligned}
& \mathrm{T}(\mathrm{n})=\Theta(1) \text { for } 1 \leq \mathrm{n} \leq \mathrm{n}_{0} \text { (implicit assumption) } \\
& " \Theta(1) " \geq \mathrm{cn}^{2} \quad \text { for } \mathrm{n}=\mathrm{n}_{0} \\
& \\
& \\
& \mathrm{n}_{0} \text { is sufficiently small (i.e. constant) }
\end{aligned}
$$

We can choose c small enough for this to hold
$\square \underline{\text { We have proved that } T(n)=\Omega\left(\mathrm{n}^{2}\right)}$

Substitution Method - Summary

1. Guess the asymptotic complexity
2. Prove your guess using induction
3. Assume inductive hypothesis holds for $\mathrm{k}<\mathrm{n}$
4. Try to prove the general case for n

Note: MUST prove the EXACT inequality CANNOT ignore lower order terms
If the proof fails, strengthen the ind. hyp. and try again
3. Prove the base cases (usually straightforward)

Recursion Tree Method

\square A recursion tree models the runtime costs of a recursive execution of an algorithm.
\square The recursion tree method is good for generating guesses for the substitution method.
\square The recursion-tree method can be unreliable.

- Not suitable for formal proofs
\square The recursion-tree method promotes intuition, however.

Solve Recurrence: $T(n)=2 T(n / 2)+\Theta(n)$

Solve Recurrence: $T(n)=2 T(n / 2)+\Theta(n)$

> N

Solve Recurrence: $T(n)=2 T(n / 2)+\Theta(n)$

CS 473 - Lecture 3

Example of Recursion Tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of Recursion Tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

$$
T(n)
$$

Example of Recursion Tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of Recursion Tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of Recursion Tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of Recursion Tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of Recursion Tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of Recursion Tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of Recursion Tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

The Master Method

\square A powerful black-box method to solve recurrences.
\square The master method applies to recurrences of the form

$$
T(n)=a T(n / b)+f(n)
$$

where $a \geq 1, b>1$, and f is asymptotically positive.

The Master Method: 3 Cases

\square Recurrence: $T(n)=a T(n / b)+f(n)$
\square Compare $f(n)$ with $n^{\log _{b} a}$

- Intuitively:

Case 1: $f(n)$ grows polynomially slower than $n^{\log _{b} a}$
Case 2: $f(n)$ grows at the same rate as $n^{\log _{b} a}$
Case 3: $f(n)$ grows polynomially faster than $n^{\log _{b} a}$

The Master Method: Case 1

\square Recurrence: $T(n)=a T(n / b)+f(n)$

$$
\text { Case 1: } \quad \frac{n^{\log _{b} a}}{f(n)}=(n \quad) \quad \text { for some constant } \varepsilon>0
$$

i.e., $f(n)$ grows polynomialy slower than $n^{\log _{b} a}$
(by an n^{ε} factor).

$$
\text { Solution: } T(n)=\Theta\left(n^{\log _{b} a}\right)
$$

The Master Method: Case 2 (simple version)

\square Recurrence: $T(n)=a T(n / b)+f(n)$

$$
\underline{\text { Case 2: }} \frac{f(n)}{n^{\log _{b} a}}=\text { (1) }
$$

$$
\text { i.e., } f(n) \text { and } n^{\log _{b} a} \text { grow at similar rates }
$$

$$
\text { Solution: } T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)
$$

The Master Method: Case 3

Case 3: $\frac{f(n)}{n^{\log _{b} a}}=\quad(n) \quad$ for some constant $\varepsilon>0$
i.e., $f(n)$ grows polynomialy faster than $n^{\log _{b} a}$ (by an n^{ε} factor).
and the following regularity condition holds:

$$
a f(n / b) \leq \mathrm{c} f(n) \text { for some constant } \mathrm{c}<1
$$

Solution: $\quad T(n)=\Theta(f(n))$

Example: $T(n)=4 T(n / 2)+n$

$$
\begin{gathered}
\mathrm{a}=4 \\
\mathrm{~b}=2 \\
\mathrm{f}(\mathrm{n})=\mathrm{n} \\
n^{\log _{b} a}=n^{2}
\end{gathered}
$$

$\mathrm{f}(\mathrm{n})$ grows polynomially slower than $n^{\log _{b} a}$

$$
\frac{n^{\log _{b} a}}{f(n)}=\frac{n^{2}}{n}=n=\quad(n)
$$

$$
\text { CASE } 1
$$

$$
\mathrm{T}(\mathrm{n})=\Theta\left(n^{\log _{b} a}\right)
$$

$$
T(n)=\Theta\left(n^{2}\right)
$$

Example: $T(n)=4 T(n / 2)+n^{2}$

$$
\begin{aligned}
& \mathrm{a}=4 \\
& \mathrm{~b}=2 \\
& \mathrm{f}(\mathrm{n})=\mathrm{n}^{2} \\
& n^{\log _{b} a}=n^{2} \\
& \mathrm{f}(\mathrm{n}) \text { grows at similar rate as } n^{\log _{b} a} \\
& \mathrm{f}(\mathrm{n})=\Theta\left(n^{\log _{b} a}\right)=\mathrm{n}^{2} \\
& \Rightarrow \text { CASE } 2 \\
& \mathrm{~T}(\mathrm{n})=\Theta\left(n^{\log _{b} a} \lg \mathrm{n}\right) \\
& T(n)=\Theta\left(n^{2} \lg n\right)
\end{aligned}
$$

Example: $T(n)=4 T(n / 2)+n^{3}$

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{a}=4 \\
\mathrm{~b}=2
\end{array} \\
& \mathrm{f}(\mathrm{n})=\mathrm{n}^{3} \\
& n^{\log _{b} a}=n^{2}
\end{aligned} \quad \begin{gathered}
\mathrm{f}(\mathrm{n}) \text { grows polynomially faster than } n^{\log _{b} a} \\
\frac{f(n)}{n^{\log _{b} a}}=\frac{n^{3}}{n^{2}}=n=(n) \\
\text { segularity condition: } a f(n / b) \leq \mathrm{c} f(n) \text { for some constant } \mathrm{c}<1 \\
\text { seems like CASE 3, but need } \\
\text { to check the regularity condition }
\end{gathered}
$$

Example: $T(n)=4 T(n / 2)+n^{2} / l g n$

$$
\begin{array}{cc}
\begin{array}{c}
\mathrm{a}=4 \\
\mathrm{~b}=2 \\
\mathrm{f}(\mathrm{n})=\mathrm{n}^{2} / \mathrm{lgn} \\
n^{\log _{b} a}=n^{2}
\end{array} & \begin{array}{c}
\mathrm{f}(\mathrm{n}) \text { grows slower than } n^{\log _{b} a} \\
\text { but is it polynomially slower? } \\
\\
\end{array} \\
& \\
& \\
& n^{\log _{b} a}=\frac{n^{2}}{\frac{n^{2}}{\lg n}}=\lg n \neq \quad(n) \quad \text { Master method does not apply! } \varepsilon>0
\end{array}
$$

The Master Method: Case 2 (general version)

\square Recurrence: $T(n)=a T(n / b)+f(n)$

$$
\text { Case 2: } \quad \frac{f(n)}{n^{\log _{b} a}}=\left(\lg ^{k} n\right) \quad \text { for some constant } \mathrm{k} \geq 0
$$

$$
\text { Solution: } T(n)=\Theta\left(n^{\log _{b} a} \lg ^{k+1} n\right)
$$

General Method (Akra-Bazzi)

$$
T(n)=\sum_{i=1}^{k} a_{i} T\left(n / b_{i}\right)+f(n)
$$

Let p be the unique solution to

$$
\sum_{i=1}^{k}\left(a_{i} / b_{i}^{p}\right)=1
$$

Then, the answers are the same as for the master method, but with n^{p} instead of $n^{\log _{b} a}$ (Akra and Bazzi also prove an even more general result.)

Idea of Master Theorem

Proof of Master Theorem: Case 1 and Case 2

- Recall from the recursion tree (note $h=\lg _{b} n=$ tree height)

$$
T(n)=\underbrace{\Theta\left(n^{\log _{b} a}\right)}_{\text {Leaf cost }}+\underbrace{\sum_{i=0}^{h-1} a^{i} f\left(n / b^{i}\right)}_{\text {Non-leaf cost }=\mathrm{g}(n)}
$$

Proof of Case 1

$$
\begin{aligned}
& >\frac{n^{\log _{b} a}}{f(n)}=\Omega\left(n^{\varepsilon}\right) \quad \text { for some } \varepsilon>0 \\
& >\frac{n^{\log _{b} a}}{f(n)}=\Omega\left(n^{\varepsilon}\right) \Rightarrow \frac{f(n)}{n^{\log _{b} a}}=O\left(n^{-\varepsilon}\right) \Rightarrow f(n)=O\left(n^{\log _{b} a-\varepsilon}\right) \\
& >g(n)=\sum_{i=0}^{h-1} a^{i} O\left(\left(n / b^{i}\right)^{\log _{b} a-\varepsilon}\right)=O\left(\sum_{i=0}^{h-1} a^{i}\left(n / b^{i}\right)^{\log _{b} a-\varepsilon}\right) \\
& >=O\left(n^{\log _{b} a-\varepsilon} \sum_{i=0}^{h-1} a^{i} b^{i \varepsilon} / b^{i \log _{b} a}\right)
\end{aligned}
$$

Case 1 (cont')

$$
\sum_{i=0}^{n-1} \frac{a^{i} b^{i e}}{b^{\log _{g} a}}=\sum_{i=0}^{n-1} a^{i} \frac{\left(b^{\varepsilon}\right)^{i}}{\left(b^{\log _{g} a}\right)^{i}}=\sum a^{i} \frac{b^{e i}}{a^{i}}=\sum_{i=0}^{n-1}\left(b^{i}\right)^{i}
$$

$=$ An increasing geometric series since $\mathrm{b}>1$

$$
=\frac{b^{\varepsilon h}-1}{b^{\varepsilon}-1}=\frac{\left(b^{h}\right)^{\varepsilon}-1}{b^{\varepsilon}-1}=\frac{\left(b^{\log _{b} n}\right)^{\varepsilon}-1}{b^{\varepsilon}-1}=\frac{n^{\varepsilon}-1}{b^{\varepsilon}-1}=O\left(n^{\varepsilon}\right)
$$

Case 1 (cont')

$$
\begin{aligned}
=g(n) & =O\left(n^{\log _{b} a-\varepsilon} O\left(n^{\varepsilon}\right)\right)=O\left(\frac{n^{\log _{b} a}}{n^{\varepsilon}} O\left(n^{\varepsilon}\right)\right) \\
& =O\left(n^{\log _{b} a}\right)
\end{aligned}
$$

$$
\varphi T(n)=\Theta\left(n^{\log _{b} a}\right)+g(n)=\Theta\left(n^{\log _{b} a}\right)+O\left(n^{\log _{b} a}\right)
$$

$$
=\Theta\left(n^{\log _{b} a}\right)
$$

Q.E.D.

Proof of Case 2 (limited to $k=0$)

$$
=\therefore g(n)=\sum_{i=0}^{n-1} a^{\prime} \Theta\left(\left(n / b^{\prime}\right)^{\log _{s} a}\right)
$$

$$
=\Theta\left(\sum_{i=0}^{h-1} a^{i} \frac{n^{\log _{b} a}}{b^{i \log _{b} a}}\right)=\Theta\left(n^{\log _{b} a} \sum_{i=0}^{h-1} a^{i} \frac{1}{\left(b^{\log _{b} a}\right)^{i}}\right)=\Theta\left(n^{\log _{b} a} \sum_{i=0}^{h-1} a^{i} \frac{1}{a^{i}}\right)
$$

$$
=\Theta\left(n^{\log _{b} a} \sum_{i=0}^{\log _{b} n-1} 1\right)=\Theta\left(n^{\log _{b} a} \log _{b} n\right)=\Theta\left(n^{\log _{b} a} \lg n\right)
$$

$$
T(n)=n^{\log _{b} a}+\Theta\left(n^{\log _{b} a} \lg n\right)
$$

$$
=\Theta\left(n^{\log _{b} a} \lg n\right)
$$

Conclusion

- Next time: applying the master method.

